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ABSTRACT This article investigates multi-attribute group decision-making (MAGDM) problems based
on interval-valued Pythagorean fuzzy linguistic sets (IVPFLSs). The IVPFLSs are regarded as an efficient
tool to describe decision makers’ (DMs’) evaluation information from both quantitative and qualitative
aspects. However, existing IVPFLSs based MAGDM methods are still insufficient and inadequate to deal
with complicated practical situations. This article aims to propose a novel MAGDM method and the
main contributions of the present work are three-fold. First, we propose new operations of interval-valued
Pythagorean fuzzy linguistic numbers (IVPFLNs) based on linguistic scale function. Second, we propose
new aggregation operators (AOs) of IVPFLNs based on power average operator and Muirhead mean. The
proposed AOs take the interrelationship among any numbers of attributes into account and eliminate the
bad influence of DMs’ unreasonable evaluation values on the final decision results. Third, based on the new
operations and AOs of IVPFLNs, we introduce a novel approach to MAGDM and present its main steps.
Finally, we discuss the effectiveness of the proposed approach and investigates their advantages through
numerical examples.

INDEX TERMS Interval-valued Pythagorean fuzzy linguistic sets, interval-valued Pythagorean fuzzy
linguistic power Muirhead mean, linguistic scale function, multiple attribute group decision-making.

I. INTRODUCTION
Multiple attribute group decision-making (MAGDM) the-
ories and models have gained much attention and been
extensively employed in practical decision-making problems,
such as supplier selection [1], [2], investment selection [3],
[4], smart medical device selection [5], signal processing
[6] etc. How to effectively deal with the inherent fuzziness
of decision-making problems and decision makers’ (DMs’)
evaluation information is fundamental issue before deter-
mining the optimal alternative. In order to do this, Yager
[7] proposed the concept of Pythagorean fuzzy sets (PFSs),
satisfying the constraint that the square sum of membership
grade (MG) and non-membership grade (NMG) is equal
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to or less than one. From the constraint of PFSs, we can
find out that they can describe larger information space
than the intuitionistic fuzzy sets (IFSs) [8]. Therefore, PFSs
have been regarded as an efficient tool in portraying DMs’
complicated and fuzzy evaluation information in MAGDM
process and quite a few novel decision-making methods have
been proposed [9]–[14]. Recently, Harish [15] proposed the
interval-valued PFSs (IVPFSs), which employ interval val-
ues rather crisp numbers to represent the MG and NMG.
Evidently, compared with the traditional PFS, the IVPFSs
take more information into account and can better depict
DMs’ judgements over alternatives in decision-making pro-
cedure. Afterwards, IVPFSs based decision-making methods
have been a research focus. For example, Peng and Yang
[16] investigated the basic properties of IVPFS, studied their
aggregation operators (AOs), and proposed a new MAGDM
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method. Harish [17] proposed a novel accuracy function
for IVPFSs. Yang et al. [18] proposed novel operations of
interval-valued Pythagorean fuzzy numbers (IVPFNs) under
Frank t-norm and t-conorm and based on which the authors
further proposed a set of interval-valued Pythagorean fuzzy
(IVPFS) power average operators. Chen [19] proposed an
IVPF compromise decision-making approach and applied it
in bridge construction analysis. Wei and Mao [20] proposed
an IVPF Maclaurin symmetric mean AO based decision-
making method, which is powerful for its ability of capturing
the interrelationship among multiple attributes. Sajjad Ali
Khan et al. [21] proposed a hybrid IVPF decision-making
method based on TOPSIS and Choquet integral. Sajjad Ali
Khan and Abdullah [22] proposed an IVPF grey relational
analysis method to deal withMAGDMproblems with incom-
plete weight information. Liang et al. [23] introduced IVPF
extended Bonferroni mean operators to proceed the hetero-
geneous interrelationship between aggregated IVPFNs. Garg
[24] proposed some exponential operations of IVPFNs and
introduced new IVPF operators. Tang et al. [25] proposed
a series of IVPF Muirhead mean (MM) operators, which
can capture the complicated interrelationship among IVPFNs
flexibly. Peng and Li [26] proposed two IVPF decision mak-
ing methods based on weighted distance-based approxima-
tion and multiparametric similarity measure and employed
it in emergency decision making. For more recent develop-
ments of IVPFSs based decision-makingmethods, readers are
suggested to refer [27]–[31].

More recently, Du et al. [32] proposed a new extension
of IVPFS, called IVPF linguistic set (IVPFLS), which is a
combination of IVPFS with linguistic terms set. The IVPFLS
is parallel to interval-valued intuitionistic linguistic sets
(IVILSs) [33] and both of them can portray both DMS’ quan-
titative and qualitative evaluation information. But, IVPFLSs
are more powerful and flexible than IVILSs as they have laxer
constraint, which provides DMs more freedom to express
their judgments. In [32], Du et al. further defined the opera-
tions of IVPF linguistic numbers (IVPFLNs), proposed their
AOs and developed a new MAGDM method under IVPFLSs
context. However, the decision-making method proposed by
Du et al. [32] still has several shortcomings. First, the oper-
ations of IVPFLVs proposed by Du et al. [32] are not closed
and they fail to handle the semantic translation requirements
of different DMs. (We will discuss the drawbacks of these
operations in Section 3 in detail.) Second, Du et al.’s [32]
decision-making method cannot effectively deal with DMs’
extreme evaluation values. In other words, Du et al.’s [32]
method may produce unreasonable decision results. Third,
Du et al.’s [32] method is based on the simple weighted
average/geometric operator, which is unable to deal with the
complicated interrelationship among attributes. Hence, the
reliability of decision results derived by this method is weak.

Based on above analysis, this article aims to propose a new
MAGDMmethod with IVPFL information. First, we propose
novel operations of IVPFLNs based on linguistic scale func-
tion (LSF). The new IVPFL operational rules overcome the

drawbacks of existing operations of IVPFLNs. In the addi-
tion, the operations can effectively handle the semantic trans-
lation requirements of different DMs. Besides, some other
notions such as comparison method and distance measure
are also presented. Second, to overcome the second and third
shortcomings we propose new AOs of IVPFLNs based on
the power average [33] operator and Muirhead mean (MM)
[34]. The PA operator was originated by Prof. Yager, and
it has received much interests due to its ability of reducing
the bad influence of DMs’ unreasonable evaluation infor-
mation [35]–[39]. Hence, in this article we firstly propose
some IVPFL operators based on PA, i.e. the IVPFL power
average (IVPFLPA) operator and the IVPFL power weighted
average (IVPFLPWA) operator. TheMM is good at capturing
the interrelationship among multiple attributes and this is the
reason that it has been widely employed in information aggre-
gation process [40]–[43] Recently, Li et al. [44] integrated PA
with MM and proposed the power Muirhead mean (PMM)
operator, which takes the advantages of both PA and MM.
Hence, the PMM operator has been regarded as a promising
information aggregation technique [45]–[47]. So, we further
propose some AOs of IVPFLNs based on PMM, i.e. the
IVPFL power Muirhead mean (IVPFLPMM) operator and
the IVPFL power weighted Muirhead mean (IVPFLPWMM)
operator. Finally, we present a new MAGDM method based
on the proposed AOs. In the new decision-making approach,
the IVPFLPWA is employed to calculate the comprehensive
decisionmatrix and the IVPFLPWMM is used to compute the
overall evaluation values of alternatives. We further provide
numerical experiments to show the good performance of our
proposed method.

The rest of this article is organized as follows.
Section 2 reviews some existing concepts and proposes new
operations of IVPFLNs. Section 3 presents new AOs of
IVPFLNs and discusses their properties. Section 4 puts for-
ward a new MAGDM method. Section 5 provides numerical
examples to better illustrate the performance and advantages
of our proposed method. The summery of this article and the
future research issues are presented in Section 6.

II. PRELIMINARIES
In this section, we review some basic concepts and proposes
new operational laws of IVPFLNs based on LSF.

A. THE INTERVAL-VALUED PYTHAGOREAN FUZZY
LINGUISTIC SETS
Definition 1 [32]: Let X be an ordinary fixed set and S
be a continuous linguistic term set, then an interval-valued
Pythagorean fuzzy linguistic set (IVPFLS) A defined on X is
expressed as

A =
{〈
x,
[
sθ(x), (µA (x) , vA (x))

]〉
|x ∈ X

}
, (1)

where µA (x) and vA (x) are two interval values in [0, 1],
denoting the MD and NMD of the element x ∈ X to the set A,
such that Sup (µA (x))2 + Sup (vA (x))2 ≤ 1 for ∀x ∈ X . For
convenience, we call A = 〈sθ , (µA, vA)〉 an IVPFLN, which
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can be denoted by α = 〈sθ , ([a, b] , [c, d])〉 for simplicity,
such that 0 ≤ a ≤ b ≤ 1, 0 ≤ c ≤ d ≤ 1 and b2 + d2 ≤ 1.

Based on the operations of IVPFNs, Du et al. [32] proposed
some operational rules of IVPFLNs.
Definition 2 [32]: Let α1 =

〈
sθ1 , ([a1, b1] , [c1, d1])

〉
, α2 =〈

sθ2 , ([a2, b2] , [c2, d2])
〉
and α = 〈sθ , ([a, b] , [c, d])〉 be any

three IVPFLNs, λ be a positive real number, then
(1) α1 ⊕ α2 =〈
sθ1+θ2 ,

([(
a21 + a

2
2 − a

2
1a

2
2

)1/2
,
(
b21 + b

2
2 − b

2
1b

2
2

)1/2]
,

[c1c2, b1b2])〉 ;

(2) α1 ⊗ α2 =
〈
sθ1×θ2 , ([a1a2, b1b2] ,[(

c21 + c
2
2 − c

2
1c

2
2

)1/2
,
(
d21 + d

2
2 − d

2
1d

2
2

)1/2])〉
;

(3) λα =〈
sλθ ,

([(
1−

(
1− a2

)λ)1/2

,

(
1−

(
1− b2

)λ)1/2
]
,
[
cλ, dλ

])〉
;

(4) αλ =〈
sθλ ,

([
aλ, bλ

]
,

[(
1−

(
1−c2

)λ)1/2

,

(
1−

(
1−d2

)λ)1/2
])〉

.

To compare any two IVPFLNs, Du et al. [32] proposed a
comparison method.
Definition 3 [32]: Let α = 〈sθ , ([a, b] , [c, d])〉 be a

IVPFLN, then the score function S (α) of α is expressed as

S (α) = sθ×(a2+b2−c2−d2+2)
/
4, (2)

and the accuracy function H (α) of α is expressed as

H (α) = sθ×(a2+b2+c2+d2)/2. (3)

Let α1 and α2 be any two IVPFLNs, then
(1) If S (α1) > S (α2), then α1 > α2;
(2) If S (α1) = S (α2), then,

If H (α1) = H (α2), then α1 = α2;
If H (α1) > H (α2), then α1 > α2.

B. THE POWER AVERAGE AND MUIRHEAD MEAN
Definition 4 [33]: Let ai (i = 1, 2, . . . , n) be a collection
of crisp numbers, then the power average (PA) operator is
expressed as

PA (a1, a2, . . . , an) =

n
⊕
i=1
(1+ T (ai)) ai

n∑
i=1
(1+ T (ai))

, (4)

where T (ai) =
n∑

j=1,i 6=j
Sup

(
ai, aj

)
, Sup

(
ai, aj

)
is the support

of ai from aj, satisfying the following properties
(1) 0 ≤ Sup (a, b) ≤ 1;
(2) Sup (a, b) = Sup (b, a);
(3) Sup (a, b) ≤ Sup (c, d), if |a, b| ≥ |c, d |.
Definition 5 [34]: Let ai (i = 1, 2, . . . , n) be a collection

of crisp numbers and P = (p1, p2, . . . , pn)T be a vector of
parameters. If

MMP (a1, a2, . . . , an) =

 1
n!

∑
ϑ∈Ln

n∏
j=1

a
pj
ϑ(j)

 1
n∑
j=1

pj
, (5)

then MMP is the Muirhead mean (MM) operator,
where ϑ (j) (j = 1, 2, . . . , n) represents any permutation of
(1, 2, . . . , n) and Ln denotes all possible permutations of
(1, 2, . . . , n).

III. NEW OPERATIONS OF IVPFLNS BASED ON
LINGUISTIC SCALE FUNCTIONS
In this section, we aim to propose novel operations of
IVPFLNs based on LSF. In order to do this, we first
explain the necessity and motivations of proposing novel
operations of IVPFLNs. Second, we briefly review the
notion of LSFs. Further, we present new interval-valued
Pythagorean fuzzy linguistic operations and discuss their
properties.

A. NECESSITY AND MOTIVATIONS
In [32], Du et al. proposed some basic operations of
IVPFLNs. However, Du et al.’s [32] operations have an obvi-
ous shortcoming. To better explain the shortcoming, we pro-
vide the following example.
Example 1: Let α1 = 〈s3, ([0.6, 0.7] , [0.3, 0.4])〉 and

α2 = 〈s5, ([0.4, 0.6] , [0.2, 0.6])〉 be any two IVPFLNs
defined on a given LTS S = {s0, s1, . . . , s6}. According to
the operations proposed by Du et al. [32], we have
(1) α1 ⊕ α2 = 〈s8, ([0.68, 0.8207] , [0.06, 0.24])〉;
(2) α1 ⊗ α2 = 〈s8, ([0.24, 0.42] , [0.3555, 0.68])〉;
(3) 3α1 = 〈s9, ([0.8590, 0.9313] , [0.027, 0.064])〉;
(4) α31 = 〈s27, ([0.216, 0.343] , [0.4964, 0.6382])〉.
From Example 1, it is easy to find out that the operations

proposed by Du et al. [32] have an evident drawback, i.e.
the calculation results in Example 1 have exceed the upper
limit of the given LTS S. Hence, it is necessary to propose
some new operational rules of IVPFLNs. Actually, similar
researches can be found in recent publications. For instance,
Liu et al. [48] proposed novel operations of intuitionistic
uncertain linguistic variables based on LSF. Liu et al. [49]
proposed operations and aggregation operators of interval-
valued hesitant uncertain linguistic variables based on LSF.
Therefore, we can propose new operational rules of IVPFLNs
based on LSF. In order to this, we first review the concept of
LSFs.
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B. THE CONCEPT OF LSF
Definition 6 [50]: Let S = {si |i = 0, 1, . . . , 2t } be a linguis-
tic term set, si ∈ S be a linguistic term and τi ∈ [0, 1] be a
real number. A linguistic scale function (LSF) f is a mapping
from si to τi (i = 1, 2, . . . , 2t) such that

f : si→ τi (i = 0, 1, 2, . . . , 2t) , (6)

where 0 ≤ τ0 < τ1 < ... < τ2t . Hence, f is a strictly
monotonically increasing function with regard to linguistic
subscript i. Generally, there are three types of LSFs and we
give a brief review in the following.

(1) The most widely used LSF is expressed as

f1 (si) = θi =
i
2t
(i = 0, 1, 2, . . . , 2t) , (7)

which is a simple average calculation of the subscripts of
linguistic terms.

(2) The second type of LSF is expressed s follows

f2 (si) = θi =


ρt − ρt−i

2ρt − 2
(i = 0, 1, 2, . . . , t)

ρt + ρi−t − 2
2ρt − 2

(i = t + 1, t + 2, . . . , 2t) ,

(8)

(3) The third type of LSF is expressed as

f3 (si) = θi =


tε − (t − i)ε

2tε
(i = 0, 1, 2, . . . , t)

tβ + (i− t)β

2tβ
(i = t + 1, t + 2, . . . , 2t) ,

(9)

For Eq. (8), γi ∈ [0, 1] and the absolute deviation between
adjacent linguistic subscripts increase with linguistic sub-
scripts i (i = 0, 1, 2, . . . , 2t). We can use a subjective method
to determine the value of ρ. Suppose that the weight of
attribute A is much greater than attribute B, and the weight
ratio is m, then ρk = m(k represents the scale level) and
ρ = k
√
m. Up to now, most researchers reckon that the upper

limit of the weight ratio is 9. Thus, ρ = 7
√
9 ≈ 1.37 can be

calculated when the scale level is 7.
Especially, if ε = β = 1, then Eq. (9) is reduced

to Eq. (7). Meanwhile, the function f can be further
expanded to a continuous function such that f ∗ : f̃ →
�+

(
�+ = {d |d ≥ 0} , d ∈ R

)
, which satisfies f ∗ (si) = γi.

The inverse function of f ∗ is depicted as f ∗−1. Then, we can
get

f1 ∗−1 (γi) = s2t∗i (i = 0, 1, 2, . . . , 2t) , (10)

f2 ∗−1 (γi) =

{
st−logρ (ρt−(2ρt−2)γi), (γi ∈ [0, 0.5])

st+logρ ((2ρt−2)γi−ρt+2), (γi ∈ [0.5, 1.0]) ,

(11)

f3 ∗−1 (γi) =

{
st−(tε−2×tε×γi)1/ε , (γε ∈ [0, 0.5])

st+(2×tβ×γi−tβ)1/β ,
(
γβ ∈ [0.5, 1]

) (12)

C. NEW OPERATIONS OF IVPFLNS
Definition 7: Let α1 =

〈
sθ1 , ([a1, b1] , [c1, d1])

〉
, α2 =〈

sθ2 , ([a2, b2] , [c2, d2])
〉
and α = 〈sθ , ([a, b] , [c, d])〉 be any

three IVPFLNs and λ be a positive real number, then
(1) α1 ⊕ α2 =

〈
f ∗−1 (f ∗ (θ1)+ f ∗ (θ2)− f ∗ (θ1) f ∗ (θ2)) ,([(

a21+a
2
2−a

2
1a

2
2

)1/2
,
(
b21+b

2
2−b

2
1b

2
2

)1/2]
,[c1c2, b1b2]

)〉
;

(2) α1 ⊗ α2 =
〈
f ∗−1 (f ∗ (θ1)× f ∗ (θ2)) ,(

[a1a2, b1b2] ,
[(
c21+c

2
2−c

2
1c

2
2

)1/2
,(
d21+d

2
2−d

2
1d

2
2

)1/2])〉
;

(3) λα =
〈
f ∗−1

(
1− (1− f ∗ (θ))λ

)
,([(

1−
(
1−a2

)λ)1/2

,

(
1−

(
1−b2

)λ)1/2
]
,
[
cλ, dλ

])〉
;

(4) αλ =
〈
f ∗−1

(
(f ∗ (θ))λ

)
,([

aλ, bλ
]
,

[(
1−

(
1−c2

)λ)1/2

,

(
1−

(
1−d2

)λ)1/2
])〉

.

Example 2. Let α1 = 〈s3, ([0.6, 0.7] , [0.3, 0.4])〉 and α2 =
〈s5, ([0.4, 0.6] , [0.2, 0.6])〉 be any two IVPFLNs defined on
a given LTS S = {s0, s1, . . . , s6}. If LSF 1 is applied in
Definition 7, then we have
(1) α1 ⊕ α2 = 〈s5.5, ([0.68, 0.8207] , [0.06, 0.24])〉,
(2) α1 ⊗ α2 = 〈s2.5, ([0.24, 0.42] , [0.3555, 0.68])〉;
(3) 3α1 = 〈s5.25, ([0.8590, 0.9313] , [0.027, 0.064])〉;
(4) α31 = 〈s0.75, ([0.216, 0.343] , [0.4964, 0.6382])〉.
It is easy to prove that the following theorem holds.
Theorem 1: Let α1, α2 and α be any three IVPFLNs, then
(1) α1 ⊕ α2 = α2 ⊕ α1;
(2) α1 ⊗ α2 = α2 ⊗ α1;
(3) λ (α1 ⊕ α2) = λα2 ⊕ λα1, λ > 0;
(4) λ1α ⊕ λ2α = (λ1 + λ2) α, λ1, λ2 > 0;
(5) αλ1 ⊗ α

λ
2 = (α2 ⊗ α1)

λ , λ > 0;
(6) αλ1 ⊗ αλ2 = αλ1+λ2 , λ1, λ2 > 0;

D. NEW COMPARISON METHOD OF IVPFLNS
Based on LSF, we propose novel comparison method of
IVPFLNs.
Definition 8: Let α = 〈sθ , ([a, b] , [c, d])〉 be an IVPFLN,

then the score function of α is defined as

S (α) =
1
2
×

(
1+

a2 + b2

2
−
c2 + d2

2

)
× f ∗ (θ) , (13)

and the accuracy function of α is defined as

H (α) =
(
a2 + b2

2
+
c2 + d2

2

)
× f ∗ (θ) , (14)

For any two IVPFLNs α1 =
〈
sθ1 , ([a1, b1] , [c1, d1])

〉
and

α2 =
〈
sθ2 , ([a2, b2] , [c2, d2])

〉
, then
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(3) If S (α1) > S (α2), then α1 > α2;
(4) If S (α1) = S (α2), then,

If H (α1) = H (α2), then α1 = α2;
If H (α1) > H (α2), then α1 > α2.

Example 3: Let α1 = 〈s3, ([0.6, 0.7] , [0.4, 0.5])〉 and
α2 = 〈s4, ([0.6, 0.75] , [0.35, 0.5])〉 be any two IVPFLNs
defined on a given LST S = {s0, s1, . . . , s6}. If we employ
LSF 1, we can obtain S (α1) = 0.305, H (α1) = 0.315,
S (α2) = 0.425 and H (α2) = 0.4317. Hence, α1 < α2. If we
employ LSF 2 and ρ = 1.37, then we can obtain S (α1) =
0.305, H (α1) = 0.315, S (α2) = 0.3938 and H (α2) = 0.4.
Hence, α1 < α2. If we use LSF 3 and ε = β = 1.25, then we
get S (α1) = 0.305, H (α1) = 0.315, S (α2) = 0.3995 and
H (α2) = 0.4057. Thus, α1 < α2.

E. DISTANCE BETWEEN TWO IVPFLNS BASED ON LSF
Based on LSF, we propose a new concept of distance between
two IVPLFNs.
Definition 9: Let α1 =

〈
sθ1 , ([a1, b1] , [c1, d1])

〉
, α2 =〈

sθ2 , ([a2, b2] , [c2, d2])
〉
be any two IVPFLNs, then the dis-

tance between α1 and α2 is expressed as

d (α1, α2)

=
1
4
× |f ∗ (θ1)− f ∗ (θ2)|

×

(∣∣∣a21−a22∣∣∣+∣∣∣b21−b22∣∣∣+∣∣∣c21−c22∣∣∣+∣∣∣d21−d22 ∣∣∣) . (15)

Example 4: Let α1 = 〈s3, ([0.6, 0.7] , [0.3, 0.4])〉 and
α2 = 〈s5, ([0.4, 0.6] , [0.2, 0.6])〉 be two IVPFLNs defined
on a given LTS S = {s0, s1, . . . , s6}. If we use LSF 1, then
the distance between α1 and α2 is

d (α1, α2)

=
1
4
×

∣∣∣∣36 − 5
6

∣∣∣∣
×

(∣∣∣0.62 − 0.42
∣∣∣+ ∣∣∣0.72 − 0.62

∣∣∣
+

∣∣∣0.32 − 0.22
∣∣∣+ ∣∣∣0.42 − 0.62

∣∣∣) = 0.0483.

IV. NOVEL AGGREGATION OPERATORS OF IVPFLNS
Based on PA, MM and the new operations of IVPFLNs,
we propose novel AOs of IVPFLNs and discuss their prop-
erties.

A. THE INTERVAL-VALUED PYTHAGOREAN FUZZY
LINGUISTIC POWER AVERAGE OPERATOR
Definition 10: Let αi (i = 1, 2, . . . , n) be a collection of
IVPFLNs, then the interval-valued Pythagorean fuzzy lin-
guistic power average (IVPFLPA) operator is expressed as

IVPFLPA (α1, α2, . . . , αn) =

n
⊕
i=1
(1+ T (αi)) αi

n∑
i=1
(1+ T (αi))

, (16)

where T (αi) =
n∑

j=1,i 6=j
Sup

(
αi, αj

)
, Sup

(
αi, αj

)
denotes the

support for αi from αj, satisfying the condition

(1) 0 ≤ Sup
(
αi, αj

)
≤ 1;

(2) Sup
(
αi, αj

)
= Sup

(
αj, αi

)
;

(3) Sup (α, β) ≤ Sup (χ, δ), if d (α, β) ≥ d (χ, δ).
If we assume

φi =
1+ T (αi)

n∑
i=1
(1+ T (αi))

, (17)

then (16) can be written as

IVPFLPA (α1, α2, . . . , αn) =
n
⊕
i=1
φiαi, (18)

where 0 ≤ φi ≤ 1 and
n∑
i=1
φi = 1.

Theorem 2:Letαi=
〈
sθi , ([ai, bi] , [ci, di])

〉
(i=1, 2, . . . , n)

be a collection of IVPFLNs, then the aggregated value by the
IVPFLPA operator is an IVPFLN and

IVPFLPA (α1, α2, . . . , αn)

=

〈
f ∗−1

(
1−

(
n∏
i=1

(
1−f ∗ (θ)

)φi)) ,(1− n∏
i=1

(
1−a2i

)φi)1/2

,

(
1−

n∏
i=1

(
1−b2i

)φi)1/2
 ,

[
n∏
i=1

cφii ,
n∏
i=1

dφii

])〉
. (19)

The proof of Theorem 1 is trivial. In addition, it is easy to
prove that the IVPFLPA operator has the following proper-
ties.
Theorem 3 (Idempotency): Let αi (i = 1, 2, . . . , n) be a set

of IVPFLNs, if αi = α = 〈sθ , ([a, b] , [c, d])〉 for any i, then

IVPFLPA (α1, α2, . . . , αn) = α. (20)

Theorem 4 (Boundedness): Let αi (i = 1, 2, . . . , n) be a
collection of IVPFLNs. Let α− = min (α1, α2, . . . , αn) and
α+ = max (α1, α2, . . . , αn). Then

x ≤ IVPFLPA (α1, α2, . . . , αn) ≤ y. (21)

where x =
n
⊕
i=1
φiα
− and y =

n
⊕
i=1
φiα
+.

B. THE INTERVAL-VALUED PYTHAGOREAN FUZZY
LINGUISTIC POWER WEIGHTED AVERAGE OPERATOR
Definition 11: Let αi (i = 1, 2, . . . , n) be a collection of
IVPFLNs, and w = (w1,w2, . . . ,wn)T be the weight vector
of αi (i = 1, 2, . . . , n), such that 0 ≤ wi ≤ 1 and

∑n
i=1 wi =

1. The interval-valued Pythagorean fuzzy linguistic power
weighted average (IVPFLPWA) operator is expressed as

IVPFLPWA (α1, α2, . . . , αn) =

n
⊕
i=1

wi (1+ T (αi)) αi

n∑
i=1

wi (1+ T (αi))
, (22)
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where T (αi) =
n∑

j=1,i 6=j
Sup

(
αi, αj

)
, Sup

(
αi, αj

)
denotes the

support for αi from αj, satisfying the properties presented in
Definition 10. If we assume

ςi =
wi (1+ T (αi))
n∑
i=1

wi (1+ T (αi))
, (23)

then (22) can be transformed into

IVPFLPWA (α1, α2, . . . , αn) =
n
⊕
i=1
ςiαi, (24)

such that 0 ≤ ςi ≤ 1 and
∑n

i=1 ςi = 1.
The following theorem can be obtained based on the oper-

ations of IVPFLNs.
Theorem 5:Letαi=

〈
sθi , ([ai, bi] , [ci, di])

〉
(i=1, 2, . . . , n)

be a collection of IVPFLNs, then the aggregated value by the
IVPFLPWA operator is an IVPFLN and

IVPFLPWA (α1, α2, . . . , αn)

=

〈
f ∗−1

(
1−

(
n∏
i=1

(
1−f ∗ (θi)

)ςi))
(1− n∏

i=1

(
1−a2i

)ςi)1/2

,

(
1−

n∏
i=1

(
1−b2i

)ςi)1/2
 ,

[
n∏
i=1

cςii ,
n∏
i=1

dςii

])〉
. (25)

In addition, it is easy to prove that the IVPFLPWA operator
has the properties of boundedness.

C. THE INTERVAL-VALUED PYTHAGOREAN FUZZY
LINGUISTIC POWER MUIRHEAD MEAN OPERATOR
Definition 12: Let αj (j = 1, 2, . . . , n) be a collection of
IVPFLNs and P = (p1, p2, . . . , pn) ∈ Rn be vector of
parameter. The interval-valued Pythagorean fuzzy linguistic
power Muirhead mean (IVPFLPMM) operator is defined as

IVPFLPMMP (α1, α2, . . . , αn)

=

 1
n!
⊕
ϑ∈Ln

n
⊗
j=1

n
(
1+ T

(
αϑ(j)

))
n∑
j=1

(
1+ T

(
αj
))αϑ(j)


pj

1
n∑
j=1

pj

, (26)

where

T
(
αj
)
=

n∑
i=1,i 6=j

Sup
(
αi, αj

)
, (27)

and d
(
αi, αj

)
is the distance between αi and αj,

ϑ (j) (j=1, 2, . . . , n) represents any permutation of
(1, 2, . . . , n), Ln denotes all possible permutations of
(1, 2, . . . , n), n is the balancing coefficient, and Sup

(
αi, αj

)
denotes the support for αi from αj, satisfying the properties

in Definition 10. To simplify Eq. (26), let

ηj =
1+ T

(
αj
)

n∑
j=1

(
1+ T

(
αj
)) , (28)

then Eq. (26) can be written as

IVPFLPMMP (α1, α2, . . . , αn)

=

(
1
n!
⊕
ϑ∈Ln

n
⊗
j=1

(
nηϑ(j)αϑ(j)

)pj) 1
n∑
j=1

pj
. (29)

where 0 ≤ ηj ≤ 1 and
n∑
j=1
ηj = 1.

Theorem 6:Letαj=
〈
sθj ,

([
aj, bj

]
,
[
cj, dj

])〉
(j=1, 2, . . . , n)

be a collection of IVPFLNs, then the aggregated value by the
IVPFLPMM operator is still an IVPFLN and (30), as shown
at the bottom of the next page.

Proof: According to Definition 7, we can get

nηϑ(j)αϑ(j)

=

〈
f ∗−1

(
1−

(
1− f ∗

(
θϑ(j)

))nηϑ(j)) ,([(
1−

(
1−a2ϑ(j)

)nηϑ(j))1/2
,
(
1−

(
1−b2ϑ(j)

)nηϑ(j))1/2]
,[

c
nηϑ(j)
ϑ(j) , d

nηϑ(j)
ϑ(j)

])〉
,

and(
nηϑ(j)αϑ(j)

)pj
=

〈
f ∗−1

((
1−

(
1−f ∗

(
θϑ(j)

))nηϑ(j))pj) ,([(
1−

(
1−a2ϑ(j)

)nης(j)) 1
2
pj

,
(
1−

(
1−b2ϑ(j)

)nης(j)) 1
2
pj
]
,[(

1−
(
1−

(
c
nηϑ(j)
ϑ(j)

)2)pj) 1
2

,

(
1−

(
1−

(
d
nηϑ(j)
ϑ(j)

)2)pj) 1
2
])〉

.

Therefore,

n
⊗
j=1

(
nηϑ(j)αϑ(j)

)pj
=

〈
f ∗−1

 n∏
j=1

(
1−

(
1− f ∗

(
θϑ(j)

))nης(j))pj ,
 n∏

j=1

(
1−

(
1− a2ϑ(j)

)nηϑ(j)) pj
2
,

n∏
j=1

(
1−

(
1− b2ϑ(j)

)nηϑ(j)) pj
2

 ,
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1−

n∏
j=1

(
1−

(
c
nηϑ(j)
ϑ(j)

)2)pj 1
2

,

1−
n∏
j=1

(
1−

(
d
nηϑ(j)
ϑ(j)

)2)pj 1
2

〉 .

and

⊕
ϑ∈Ln

n
⊗
j=1

(
nηϑ(j)αϑ(j)

)pj
=

〈
f ∗−1

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1−f ∗

(
θϑ(j)

))nηϑ(j))pj,


1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1−a2ϑ(j)

)nηϑ(j))pj1/2

,

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1−b2ϑ(j)

)nηϑ(j))pj1/2
 ,


∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
c
nηϑ(j)
ϑ(j)

)2)pj1/2

,

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
d
nηϑ(j)
ϑ(j)

)2)pj1/2

〉 .

Then,

1
n!
⊕
ϑ∈Ln

n
⊗
j=1

(
nηϑ(j)αϑ(j)

)pj
=

〈
f ∗−1

1−∏
ϑ∈Ln

1− n∏
j=1

(
1−

(
1−f ∗

(
θϑ(j)

))nηϑ(j))pj 1
n!
,



1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1−a2ϑ(j)

)nηϑ(j))pj 1
n!


1/2

,

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1−b2ϑ(j)

)nηϑ(j))pj 1
n!


1/2 ,

∏
ϑ∈Tn

1−
n∏
j=1

(
1−

(
c
nηϑ(j)
ϑ(j)

)2)pj1/2


1
n!

,


∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
d
nηϑ(j)
ϑ(j)

)2)pj1/2


1
n!

〉
.

Finally,
(

1
n! ⊕
ϑ∈Ln

n
⊗
j=1

(
nηϑ(j)αϑ(j)

)pj) 1
n∑
j=1

pj
, as shown at the

bottom of the next page.

IVPFLPMMP (α1, α2, . . . , αn) =

〈
f ∗−1


1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− f ∗

(
θϑ(j)

))nηϑ(j))pj 1
n!


1
n∑
j=1

pj

 ,


1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− a2ϑ(j)

)nηϑ(j))pj 1
n!


1

2
n∑
j=1

pj

,

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− b2ϑ(j)

)nηϑ(j))pj 1
n!


1

2
n∑
j=1

pj

 ,

1−

1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
c
nηϑ(j)
ϑ(j)

)2)pj 1
n!


1
n∑
j=1

pj


1/2

,

1−

1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
d
nηϑ(j)
ϑ(j)

)2)pj 1
n!


1
n∑
j=1

pj


1/2

〉
. (30)
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Theorem 7 (Idempotency): Let αj (j = 1, 2, . . . , n) be a set
of IVPFLNs, if αj = α = 〈sθ , ([a, b] , [c, d])〉 of all j, then

IVPFLPMMP (α1, α2, . . . , αn) = α. (31)

Proof:Asαj = α = 〈sθ , ([a, b] , [c, d])〉 (j = 1, 2, . . . , n),
then Sup

(
αi, αj

)
= 1 for i, j = 1, 2, . . . , n (i 6= j) is obtained.

Thus, ηj = 1/n (j = 1, 2, . . . , n) holds for all j. According to
Theorem 5, we have
Theorem 8 (Boundedness): Let αj = 〈sθj , ([aj, bj],

[cj, dj])〉(j = 1, 2, . . . , n) be a collection of IVPFLNs, then

α− ≤ IVPFLPMMP (α1, α2, . . . , αn) ≤ α
+, (32)

where

α− =

〈
s n
min
j=1
(θj)
,

([
n

min
j=1

(
aj
)
,

n
min
j=1

(
bj
)]
,[
n

max
j=1

(
cj
)
,

n
max
j=1

(
dj
)])〉

and

α+ =

〈
s n
max
j=1
(θj)
,

([
n

max
j=1

(
aj
)
,

n
max
j=1

(
bj
)]
,[

n
min
j=1

(
cj
)
,

n
min
j=1

(
dj
)])〉

.

Proof: As the LSF f is a strictly monotonically increas-
ing function, then we have

In addition
Hence, we have α− ≤ IVPFLPMMP (α1, α2, . . . , αn).

Similarly, we can get IVPFLPMMP (α1, α2, . . . , αn) ≤ α
+.

Therefore α− ≤ IVq−ROULPMMH (α1, α2, . . . , αn) ≤ α
+.

In the following, we investigate some special cases of the
proposed IVPFLPMM operator with respect to the parameter
vector P.
Case 1. If P = (1, 0, . . . , 0), then the IVPFLPMM opera-

tor reduces to the IVPFLPA operator, i.e.

IVPFLPMM (1,0,0,...,0) (α1, α2, . . . , αn)

=

〈
f ∗−1

1−
n∏
j=1

(
1− f ∗

(
θj
))ηj ,



1−

n∏
j=1

(
1−a2j

)ηj1/2

,

1−
n∏
j=1

(
1−b2j

)ηj1/2
,

 n∏
j=1

c
ηj
j ,

n∏
j=1

d
ηj
j

〉 .
=

n
⊕
j=1
ηjαj = IVPFLPA (α1, α2, . . . , αn) . (33)

In this case, if Sup
(
αi, αj

)
= t (t > 0) for i, j =

1, 2, . . . , n (i 6= j), then the IVPFLPMM operator reduces
to the interval-valued Pythagorean fuzzy linguistic average

(
1
n!
⊕
ϑ∈Ln

n
⊗
j=1

(
nηϑ(j)αϑ(j)

)pj) 1
n∑
j=1

pj

=

〈
f ∗−1


1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− f ∗

(
θϑ(j)

))nηϑ(j))pj 1
n!


1
n∑
j=1

pj

 ,


1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− a2ϑ(j)

)nηϑ(j))pj 1
n!


1

2
n∑
j=1

pj

,

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− b2ϑ(j)

)nηϑ(j))pj 1
n!


1

2
n∑
j=1

pj

 ,

1−

1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
c
nηϑ(j)
ϑ(j)

)2)pj 1
n!


1
n∑
j=1

pj


1/2

,

1−

1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
d
nηϑ(j)
ϑ(j)

)2)pj 1
n!


1
n∑
j=1

pj


1/2

〉
.
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(IVPFLA) operator, i.e.

IVPFLPMM (1,0,0,...,0) (α1, α2, . . . , αn)

=

〈
f ∗−1

1−
n∏
j=1

(
1− f ∗

(
θj
))1/n ,



1−

n∏
j=1

(
1− a2j

)1/n1/2

,

1−
n∏
j=1

(
1− b2j

)1/n1/2
 ,

 n∏
j=1

c1/nj ,

n∏
j=1

d1/nj

〉 .
=

1
n

n
⊕
j=1
αj = IVPFLA (α1, α2, . . . , αn) . (34)

Case 2. If P = (1, 1, 0, 0, . . . , 0), then the IVPFLPMM
operator reduces to the interval-valued Pythagorean fuzzy
linguistic power Bonferroni mean (IVPFLPBM) operator, i.e.

In this case, if Sup
(
αi, αj

)
= t (t > 0) for i, j =

1, 2, . . . , n (i 6= j), then the IVPFLPMM operator reduces to
the interval-valued Pythagorean fuzzy linguistic Bonferroni
mean (IVPFLBM) operator, i.e.

(
1
n!
⊕
ϑ∈Ln

n
⊗
j=1

(
nηϑ(j)αϑ(j)

)pj) 1
n∑
j=1

pj

=

〈
f ∗−1


1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1− (1− f ∗ (θ))n

1
n

)pj 1
n!


1
n∑
j=1

pj

 ,


1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− a2

)n 1
n
)pj 1

n!


1

2
n∑
j=1

pj

,

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− b2

)n 1
n
)pj 1

n!


1

2
n∑
j=1

pj

 ,

1−

1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1− (c)2

)pj 1
n!


1
n∑
j=1

pj


1/2

,

1−

1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1− (d)2

)pj 1
n!


1
n∑
j=1

pj


1/2

〉
.

= 〈θ, ([a, b] , [c, d])〉 = α.

f ∗−1


1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− f ∗

(
θϑ(j)

))nηϑ(j))pj 1
n!


1
n∑
j=1

pj



1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− f ∗

(
n

min
j=1

(
θϑ(j)

)))nηϑ(j))pj 1
n!


1
n∑
j=1

pj

 = n
min
j=1

(
θj
)
.
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Case 3: If P =

k︷ ︸︸ ︷
(1, 1, . . . , 1

n−k︷ ︸︸ ︷
, 0, 0, . . . , 0), then

the IVPFLPMM operator reduces to the interval-valued
Pythagorean fuzzy linguistic power Maclaurin symmetric
mean (IVPFLPMSM) operator, i.e.

In this case, In this case, if Sup
(
αi, αj

)
= t (t > 0) for

i, j = 1, 2, . . . , n (i 6= j), then the IVPFLPMM operator
reduces to the interval-valued Pythagorean fuzzy linguistic
Maclaurin symmetric mean (IVPFLMSM) operator, i.e.
Case 4: If P = (1, 1, . . . , 1) or P =

(
1
/
n, 1

/
n, . . . , 1

/
n
)
,

then the IVPFLPMM operator reduces to the interval-valued
Pythagorean fuzzy linguistic power geometric (IVPFLPG)
operator, i.e.

IVPFLPMM (1,1,...,1)or(1/n,1/n,...,1/n) (α1, α2, . . . , αn)

=
n
⊗
j=1

(
nηjαj

)1/n
=

〈
f ∗−1

 n∏
j=1

(
1−

(
1− f ∗

(
θj
))nηj)1/n ,



 n∏
j=1

(
1−

(
1− a2j

)nηj)1/2n

,

 n∏
j=1

(
1−

(
1− b2j

)nηj)1/2n
 ,


1−

n∏
j=1

(
1−

(
c
nηj
j

)2) 1
n

1/2

,

1−
n∏
j=1

(
1−

(
d
nηj
j

)2) 1
n

1/2
〉 . (39)

In this case, if Sup
(
αi, αj

)
= t (t > 0) for i, j =

1, 2, . . . , n (i 6= j), then the IVPFLPMM operator reduces to
the interval-valued Pythagorean fuzzy linguistic geometric
(IVPFLG) operator, i.e.

IVPFLPMM (1,1,...,1)or(1/n,1/n,...,1/n) (α1, α2, . . . , αn)

=

〈
f ∗−1

 n∏
j=1

(
f ∗

(
θj
))1/n ,

 n∏
j=1

a1/nj ,

n∏
j=1

b1/nj

 ,

1−

n∏
j=1

(
1− c2j

)1/n1/2

,

1−
n∏
j=1

(
1− d2j

)1/n1/2

〉

=
n
⊗
j=1
α
1/n
j = IVPFLG (α1, α2 . . . , αn) . (40)

D. THE INTERVAL-VALUED PYTHAGOREAN FUZZY
LINGUISTIC POWER WEIGHTED MUIRHEAD MEAN
OPERATOR
Definition 13: Let αj (j = 1, 2, . . . , n) be a collection of
IVPFLNs and P = (p1, p2, . . . , pn) ∈ Rn be vector of
parameter. Let w = (w1,w2, . . . ,wn)T be the weight vector,
such that

∑n
j=1 wj = 1 and 0 ≤ wj ≤ 1. The interval-valued

Pythagorean fuzzy linguistic power weightedMuirheadmean
(IVPFLPWMM) operator is defined as

IVPFLPWMMP (α1, α2, . . . , αn)

=

 1
n!
⊕
ϑ∈Ln

n
⊗
j=1

nwϑ(j)
(
1+ T

(
αϑ(j)

))
n∑
j=1

wj
(
1+ T

(
αj
)) αϑ(j)


pj

1
n∑
j=1

pj

,

(41)

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− a2ϑ(j)

)nηϑ(j))pj 1
n!


1

2
n∑
j=1

pj

≥
n

min
j=1

(
aj
)
,

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− b2ϑ(j)

)nηϑ(j))pj 1
n!


1

2
n∑
j=1

pj

≥
n

min
j=1

(
bj
)
,

1−

1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
c
nηϑ(j)
ϑ(j)

)2)pj 1
n!


1
n∑
j=1

pj


1/2

≤
n

max
j=1

(
cj
)

1−

1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
d
nηϑ(j)
ϑ(j)

)2)pj 1
n!


1
n∑
j=1

pj


1/2

≤
n

max
j=1

(
dj
)
.
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where T
(
αj
)
=

n∑
i=1,i6=j

Sup
(
αi, αj

)
, Sup

(
αi, αj

)
= 1 −

d
(
αi, αj

)
, and d

(
αi, αj

)
is the distance between αi and

αj, ϑ (j) (j = 1, 2, . . . , n) represents any permutation of
(1, 2, . . . , n), Ln denotes all possible permutations of
(1, 2, . . . , n), n is the balancing coefficient, and Sup

(
αi, αj

)
denotes the support for αi from αj, satisfying the properties
in Definition 10. To simplify Eq. (41), let

γj =
wj
(
1+ T

(
αj
))

n∑
j=1

wj
(
1+ T

(
αj
)) , (42)

then Eq. (41) can be written as

IVPFLPWMMP (α1, α2, . . . , αn)

=

(
1
n!
⊕
ϑ∈Ln

n
⊗
j=1

(
nγϑ(j)αϑ(j)

)pj) 1
n∑
j=1

pj
. (43)

where 0 ≤ ηj ≤ 1 and
∑n

j=1 ηj = 1.
Theorem 9:Letαj=

〈
sθj ,

([
aj, bj

]
,
[
cj, dj

])〉
(j = 1, 2, . . . , n)

be a collection of IVPFLNs, then the aggregated value by the
IVPFLPWMM operator is still an IVPFLN and

The poof of Theorem 9 is similar to that of Theorem 2.

V. A NEW MAGDM METHOD UNDER IVPFLS
Based on the proposed AOs of IVPFLNs, we propose a
new MAGDM method to deal with decision-making prob-
lems under IVPFLSs. Let’s consider a MAGDM problem
with IVPFL information. There are m feasible alternatives
{A1,A2, . . . ,Am} that to be evaluated under n attributes,
i.e. {C1,C2, . . . ,Cn}. The weight vector of attributes is
w = (w1,w2, . . . ,wn)T , such that

∑n
i=1 wi = 1 and

0 ≤ wi ≤ 1. A group of DMs are required to eval-
uate the performance of all the possible alternatives. Let
{D1,D2, . . . ,Dt } be the DM set, with the weight vector
being λ = (λ1, λ2, . . . , λt)

T , such that 0 ≤ λe ≤ 1 and∑t
e=1 λe = 1. For attribute Cj (j = 1, 2, . . . , n) for alter-

IVPFLPMM (1,1,0,...,0) (α1, α2, . . . , αn)

=

〈
f ∗−1



1−
n∏

i, j = 1
i 6= j

(
1−

(
1− (1− f ∗ (θi))nηi

) (
1−

(
1− f ∗

(
θj
))nηj)) 1

n(n−1)



1
2
 ,





1−
n∏

i, j = 1
i 6= j

(
1−

(
1−

(
1− a2i

)nηi) (
1−

(
1− a2j

)nηj)) 1
n(n−1)



1
4

,

1−
n∏

i, j = 1
i 6= j

(
1−

(
1−

(
1− b2i

)nηi) (
1−

(
1− b2j

)nηj)) 1
n(n−1)



1
4
 ,



1−

1−
n∏

i, j = 1
i 6= j

((
cnηii

)2
+

(
c
nηj
j

)2
−
(
cnηii

)2 (cnηjj

)2) 1
n(n−1)



1
2


1/2

,

1−

1−
n∏

i, j = 1
i 6= j

((
dnηii

)2
+

(
d
nηj
j

)2
−
(
dnηii

)2 (dnηjj

)2) 1
n(n−1)



1
2


1
2

〉
=

 1
n (n− 1)

n
⊕

i, j = 1
i 6= j

(
nηiαi ⊗ nηjαj

)


1
2

= IVPFLPBM1,1 (α1, α2, . . . , αn) . (35)
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native Ai (i = 1, 2, . . . ,m), DM De (e = 1, 2, . . . , t) utilizes
αeij =

〈
sθeij ,

([
aeij, b

e
ij

]
,
[
ceij, d

e
ij

])〉
to express his/her evalua-

tion value, where αeij is an IVPFLN defined on the linguistic
set S. Hence, t interval-valued Pythagorean fuzzy decision
matrices are obtained. In the following, based on the proposed
AOs, we give the main steps of determining the rank of
feasible alternatives.
Step 1. Generally, there are two types of attributes, i.e., ben-

efit type and cost type. Hence, the original decision matrices
should be normalized. If Cj is benefit type, then the original
decision matrices do not need to be normalized. If Cj is cost
type, then the original decision matrices should be changed
according to the following formula

αeij =
〈
sθeij ,

([
ceij, d

e
ij

]
,
[
aeij, b

e
ij

])〉
, (45)

Step 2. Compute Sup
(
αkij, α

d
ij

)
(k, d = 1, 2, . . . , t; k 6= d)

according to the following equation

Sup
(
αkij, α

d
ij

)
= 1− d

(
αkij, α

d
ij

)
, (46)

where d
(
αkij, α

d
ij

)
is the distance between the two IVPFLNs

αkij and α
d
ij . Definition 8 illustrates how to calculate the dis-

tance between any two IVPFLNs.
Step 3. Calculate the overall supports T

(
αkij

)
by

T
(
αkij

)
=

t∑
g=1,g 6=k

Sup
(
αkij, α

g
ij

)
. (47)

Step 4. For DM Dk , compute the power weight associated
with the IVPFLN αkij by

δkij =
λk

(
1+ T

(
αkij

))
t∑

k=1
λk

(
1+ T

(
αkij

)) . (48)

Step 5. Use the IVPFLPWA operator to determine the
comprehensive decision matrix

αij = IVPFLPWA
(
α1ij, α

2
ij, . . . , α

t
ij

)
. (49)

Step 6. Calculate the support between the two IVPFLNs αil
and αif by

Sup
(
αil, αif

)
= 1− d

(
αil, αif

)
, (50)

IVPFLPMM (1,1,0,...,0) (α1, α2, . . . , αn)

=

〈
f ∗−1


1−

n∏
i, j = 1
i 6= j

(
1− f ∗ (θi) f ∗

(
θj
)) 1

n(n−1)


1
2
 ,




1−

n∏
i, j = 1
i 6= j

(
1− a2i a

2
j

) 1
n(n−1)


1
2

,

1−
n∏

i, j = 1
i 6= j

(
1− b2i b

2
j

) 1
n(n−1)


1
2
 ,



1−

1−
n∏

i, j = 1
i 6= j

(
c2i + c

2
j − c

2
i c

2
j

) 1
n(n+1)


1
2


1/2

,

1−

1−
n∏

i, j = 1
i 6= j

(
d2i + d

2
j − d

2
i d

2
j

) 1
n(n+1)



1
2


1/2


〉

=

 1
n (n− 1)

n
⊕

i, j = 1
i 6= j

(
αi ⊗ αj

)


1
2

= IVPFLBM1,1 (α1, α2, . . . , αn) . (36)
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wherein l, f = 1, 2, . . . , n; l 6= j
Step 7. Compute the overall T

(
αij
)
by

T
(
αij
)
=

n∑
j=1;j 6=s

Sup
(
αij, αis

)
. (51)

Step 8. Compute the power weight associated with the
IVPFLN αij by

γij =
wj
(
1+ T

(
αij
))

n∑
j=1

wj
(
1+ T

(
αij
)) . (52)

Step 9. For each alternative, use the proposed IVPFLP-
WMM to compute the overall evaluation values, i.e.

αi = IVPFLPWMMY (αi1, αi2, . . . , αin) , (53)

and a series of overall evaluation valuesαi (i = 1, 2, . . . ,m)
are obtained.
Step 10. Compute the scores of αi (i = 1, 2, . . . ,m)

according to Definition 8.
Step 11. Rank the corresponding alternatives and select the

optimal one.

VI. NUMERICAL EXAMPLES
Example 5 (Revised from [33]): Suppose that there are
four command and control systems {A1,A2,A3,A4} that to
be evaluated under three attributes, i.e. system availabil-
ity (G1), information accuracy (G2) and picture complete-
ness (G3). The weight vector of the attributes is λ =
(0.3727, 0.3500, 0.2773)T . Let S = {s0, s1, . . . , s6} be a
linguistic term set and three decision experts D1, D2, and D3
utilize IVPFLNs defined on S to express their decision ideas.
Hence, three IVPFL decision matrices R1, R2 and R3 are
obtained, which are shown in Tables 1-3. The weight vector
of DMs is λ = (0.3, 0.4, 0.3)T .

A. THE DECISION-MAKING PROCESS
We use the MAGDM method introduced in Section V to
resolve Example 5, and the particular methods procedure is
presented as follows.
Step 1: It is clearly that all attributes are benefit type, there

is no need to normalize the original decision matrix.
Step 2: Calculate the Sup

(
αkij, α

d
ij

)
according to Eq. (46)

(Suppose LFS1 is utilized as the specified LSF in
the calculation process). For convenience, we utilize
the symbol Skd to represent the support between αkij
and αdij (i = 1, 2, 3, 4, 5; j = 1, 2, 3; k, d = 1, 2, 3; k 6= d).

IVPFLPMM

k︷ ︸︸ ︷
(1, 1, . . . , 1

n−k︷ ︸︸ ︷
, 0, 0, . . . , 0) (α1, α2, . . . , αn)

=

〈
f ∗−1


1−

∏
1≤i1<i2<···<ik≤n

1−
k∏
j=1

(
1−

(
1− f ∗

(
θij
))nηij ) 1

Ckn


1
k
 ,



1−

∏
1≤i1<i2<···<ik≤n

1−
k∏
j=1

(
1−

(
1− a2ij

)nηij)1
/
Ckn


1/2k

,

1−
∏

1≤i1<i2<···<ik≤n

1−
k∏
j=1

(
1−

(
1− b2ij

)nηij)1
/
Ckn


1/2k
 ,


1−

1−
∏

1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
c
nηij
ij

)2)1
/
Ckn


1/k


1/2

,

1−

1−
∏

1≤i1<i2<···<ik≤n

1−
k∏
j=1

(
1−

(
d
nηij
ij

)2) 1
Ckn


1
k


1/2

〉
.

(
1
Ck
n

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

(
nηijαij

))1/k

= IVPFLPMSM (k) (α1, α2, . . . , αn) . (37)
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Hence, we obtain the following results

S12 = S21 =


0.9842 0.9858 0.9863
0.9588 1.0000 0.9875
0.9225 0.9963 1.0000
0.9525 0.9408 0.9842
1.0000 0.9483 0.9800



S13 = S31 =


0.9550 1.0000 0.9717
0.9592 0.9929 0.9750
0.9683 0.9783 1.0000
0.9729 1.0000 1.0000
0.9733 0.9833 0.9750



S23 = S32 =


0.9850 0.9933 0.9888
0.9758 0.9733 0.9854
0.9929 0.9904 1.0000
0.9942 0.9900 0.9908
0.9896 0.9908 0.9900



Step 3: Calculate T
(
αkij

)
according to Eq. (47). For con-

venience, we use the symbol T k to represent the values

T
(
αkij

)
(i = 1, 2, 3, 4, 5; j = 1, 2, 3; k = 1, 2, 3)

T 1
=


1.9392 1.9858 1.9579
1.9179 1.9929 1.9625
1.8908 1.9746 2.0000
1.9254 1.9408 1.9842
1.9733 1.9317 1.9550



T 2
=


1.9692 1.9792 1.9750
1.9346 1.9733 1.9729
1.9154 1.9867 2.0000
1.9467 1.9308 1.9750
1.9896 1.9392 1.9700



T 3
=


1.9400 1.9933 1.9604
1.9350 1.9663 1.9604
1.9613 1.9688 2.0000
1.9671 1.9900 1.9908
1.9629 1.9742 1.9650



Step 4: For DM Dk , calculate his/her power weight asso-
ciated with the IVPFLV αkij on the basis of his/her weight γk
according to Eq. (49). For convenience, we use the symbol
δk to represent the values δkij (i, j = 1, 2, 3, 4; k = 1, 2, 3).

IVPFLPMM

k︷ ︸︸ ︷
(1, 1, . . . , 1

n−k︷ ︸︸ ︷
, 0, 0, . . . , 0) (α1, α2, . . . , αn)

=

〈
f ∗−1


1−

∏
1≤i1<i2<···<ik≤n

1−
k∏
j=1

f ∗
(
θij
)1

/
Ckn


1/k
 ,



1−

∏
1≤i1<i2<···<ik≤n

1−
k∏
j=1

a2ij

1
/
Ckn


1/2k

,

1−
∏

1≤i1<i2<...<ik≤n

1−
k∏
j=1

b2ij

1
/
Ckn


1/2k
 ,


1−

1−
∏

1≤i1<i2<···<ik≤n

1−
k∏
j=1

(
1− c2ij

)1
/
Ckn


1/k


1/2

,

1−

1−
∏

1≤i1<i2<···<ik≤n

1−
k∏
j=1

(
1− d2ij

)1
/
Ckn


1/k


1/2


〉
.

=

(
1
Ck
n

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1
αij

)1/k

= IVPFLMSM (k) (α1, α2, . . . , αn) . (38)
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TABLE 1. The interval-valued Pythagorean fuzzy linguistic decision matrix R1 of Example 1 provided by D1.

Therefore, we can obtain the following results.

δ1 =


0.2988 0.3000 0.2992
0.2988 0.3016 0.2996
0.2968 0.2997 0.3000
0.2979 0.2989 0.3002
0.2997 0.2984 0.2991



δ2 =


0.4024 0.3992 0.4013
0.4007 0.3995 0.4009
0.3991 0.4012 0.4000
0.4000 0.3972 0.3990
0.4017 0.3989 0.4008



δ3 =


0.2988 0.3008 0.2995
0.3005 0.2989 0.2994
0.3041 0.2991 0.3000
0.3021 0.3039 0.3008
0.2986 0.3027 0.3001



Step 5. Utilize the IVPFLPWA operator to aggregate the
individual decision matrices into a collective one, which is
listed in Table 4.
Step 6. For Table 4, calculate the support between αil

and αif , that is, Sup
(
αil, αif

)
according to Eq. (50). For

convenience, we utilize the symbol S lf to represent the value
Sup

(
αil, αif

)
(i,= 1, 2, 3, 4, 5; l, f = 1, 2, 3; l 6= f ). Hence,

we can obtain the following results

S12 = S21 = (0.9547, 0.9747, 0.9853, 0.9946) ,

S13 = S31 = (0.9782, 0.9550, 0.9988, 0.9928) ,

S23 = S32 = (0.9975, 0.9983, 0.9863, 0.9899) .

Step 7: Calculate the support T
(
αij
)
according to Eq. (51).

Similarly, we use the symbol Tij to denote the value T
(
αij
)

IVPFLPWMMP (α1, α2, . . . , αn)

=

〈
f ∗−1


1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− f ∗

(
θϑ(j)

))nγϑ(j))pj 1
n!


1
n∑
j=1

pj

 ,


1−

∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− a2ϑ(j)

)nγϑ(j))pj 1
n!


1

2
n∑
j=1

pj

,

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
1− b2ϑ(j)

)nγϑ(j))pj 1
n!


1

2
n∑
j=1

pj

 ,

1−

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
c
nγϑ(j)
ϑ(j)

)2)pj 1
n!


1
n∑
j=1

pj


1/2

,

1−

1−
∏
ϑ∈Ln

1−
n∏
j=1

(
1−

(
d
nγϑ(j)
ϑ(j)

)2)pj 1
n!


1
n∑
j=1

pj


1/2

〉
. (44)
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TABLE 2. The interval-valued Pythagorean fuzzy linguistic decision matrix R2 of Example 1 provided by D2.

TABLE 3. The interval-valued Pythagorean fuzzy linguistic decision matrix R3 of Example 1 provided by D3.

TABLE 4. The comprehensive evaluation decision matrix of Example 5.

for simplicity, and we can obtain the following matrix

T =

 3.8276 3.9303 3.9501
3.8738 3.9576 3.9757
3.9233 3.9300 3.9890


Step 8: Calculate the power weight γij associated with the

IVPFLV αif according to Eq. (52), and we have

γ =

 0.3694 0.3720 0.3712
0.3503 0.3513 0.3504
0.2803 0.2768 0.2784


Step 9: For alternative Ai (i = 1, 2, 3, 4, 5), utilize the

IVPFLPWMM operator to calculate the overall evaluation
αi (i = 1, 2, 3, 4, 5). Without the loss of generality, let H =
(1, 1, 1) and the overall evaluation values are shown as fol-
lows

α1 = 〈s3.9562, ([0.5967, 0.7387] , [0.1010, 0.2119])〉

α2 = 〈s3.2478, ([0.6468, 0.8531] , [0.0852, 0.1634])〉

α3 = 〈s3.8006, ([0.6022, 0.7373] , [0.0000, 0.2272])〉

α4 = 〈s3.3774, ([0.5241, 0.6682] , [0.1282, 0.3110])〉

α5 = 〈s3.6080, ([0.6155, 0.7853] , [0.0515, 0.2127])〉

Step 10: Calculate the score values S (αi) (i = 1, 2, 3, 4)
and we can get

S (α1) = 0.4693

S (α2) = 0.4211

S (α3) = 0.4520

S (α4) = 0.3670

S (α5) = 0.4431

Step 11: According to the score values S (αi)
(i=1, 2, 3, 4, 5), the ranking order of the alternatives can be
determined, that is, A1 � A3 � A5 � A2 � A4. Therefore, A3
is the best alternative.

B. THE INFLUENCE OF THE PARAMETERS ON THE
RESULTS
In this section, we try to investigate the influence of the
parameter vector P and LSF f on the decision results.
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TABLE 5. The ranking results with different parameter vectors P in the IVPFLPWMM operator.

TABLE 6. Score functions and ranking orders by different LSFs when H = (1,1,1).

1) THE INFLUENCE OF THE PARAMETER VECTOR P
We assign different values in P in the IVPFLPWMMoperator
and present the decision results in Table 5 (LSF 1 is used in
the calculation process).

As we can see from Table 5, when P = (1, 0, 0) the
ranking order of alternatives is A3 � A1 � A2 � A5 � A4,
and the optimal alternative is A3. When P = (1, 1, 0) and
P = (1, 1, 1), the ranking order of alternatives is A1 �
A3 � A5 � A2 � A4, and the best alternative is A1.
This is because when P = (1, 0, 0), our proposed decision-
makingmethod does not consider the interrelationship among
attributes. In other word, when P = (1, 0, 0), it is assumed
that all the attributes are independent. When P = (1, 1, 0)
and P = (1, 1, 1), our proposed method takes the interre-
lationship among attributes. In this Example 5, there exists
evident interrelationship between attributes. Let NP denotes
the number of related attributes (NP = 1, 2, 3). We notice
that with the increase of NP, the score values of alternatives
will decrease, which illustrates the flexibility of our proposed
decision-making method. In actually decision situations,
DMs can select the proper parameter P according to practical
needs.

2) THE IMPACT OF THE LSF ON THE RESULTS
Then, we investigate how the LSF f affects the decision
results. We take different LSFs in the operations of IVPFLNs
and presented the decision results in Table 6. As seen from
Table 6, different score values of the overall evaluation values
are obtained by using different LSF in the calculation process,
which further leads to different ranking orders of all the
feasible alternatives. In real decision-making situations, DMs
and select a proper LSF according to actual needs.

C. VALIDITY OF OUR PROPOSED METHOD
In this subsection, we attempt to prove the effectiveness
of our proposed method through comparison method. First,
we compare our method with some other methods based on
IVPFLSs. Then, as IVILS is a special case of IVPFLSwe then
compare our method with those based on IVILSs to further
explain the effectiveness of our method.

1) COMPARED WITH DECISION-MAKING METHOD BASED
ON IVPFLS
We compare our proposed method based on the IVPFLP-
WMM operator with Du et al.’s method based on interval-
valued Pythagorean fuzzy linguistic weighted average
(IVPFLWA) operator. The two methods are used to solve the
following decision-making problem and we compare their
final results.
Example 6 (Adopted from Du et al. [32]): The govern-

ment wants to evaluate the performance of five departments
during the rescue work after the earthquake occurred. Let
Ai (i = 1, 2, . . . , 5) be the five departments andDMs evaluate
their emergency response capabilities under five attributes,
i.e. the emergency forecasting capability (G1), the emergency
process capability (G2), the after-disaster loss evaluation
capability (G3), the emergency support capability (G4), and
the after-disaster reconstruction capability (G5). Let w =
(0.15, 0.28, 0.18, 0.25, 0.14)T be the weight vector of the
attributes. Assume S = (s0, s1, . . . , s6) to be a predefined
linguistic term set and the DMs employ IVPFLNs defined
on S to express their evaluation values. The decision matrix
is presented in Table 7. We use our proposed method and
Du et al.’s [32] method to solve Example 6 and present in the
decision results in Table 8.
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TABLE 7. The interval-valued Pythagorean fuzzy linguistic decision matrix of Example 6.

TABLE 8. The decision results of Example 6 by different methods.

TABLE 9. The ranking results with different methods of Example 5.

As we can see from Table 8, although the score values
of alternatives produced by the two different methods are
different, the ranking orders of alternatives are the same and
the best alternative is A3, which illustrates the validity of our
proposed method.

2) COMPARED WITH DECISION-MAKING METHODS UNDER
IVILS
We continue to compare our proposed method with that
proposed by Dong and Wan’s [33] based on the interval-
valued intuitionistic linguistic weighted arithmetic average
(IVILWAA) operator. We employ our propose method and
Dong and Wang’s method to solve Example 5 and present
the decision results in Table 9. As we can see from Table 9,
the ranking order produced by our proposed method is the
same as that obtained by Dong and Wan’s [33] decision-
making method, and that illustrates the validity of our pro-
posed method.

D. ADVANTAGES OF OUR METHOD
In this section, we detailly investigate the advantages and
superiorities of our proposedmethod though numerical exam-
ples.

1) IT EFFECTIVELY DEALs WITH DMS’ UNREASONABLE
EVALUATION VALUES
In some practical decision-making problems, some DMsmay
provide unreasonable decision-making values. The reasons

are usually two-fold. First, due to the intricacy of MAGDM
problems, DMs can hardly get all the information of all the
feasible alternatives in a limited time and they may provide
unduly high or low evaluation values. Second, as DMs usually
have different background and priori knowledge some of
them maybe prejudiced against some alternatives and they
probably provide tendentious evaluation values. Evidently,
the biased evaluation information offered by prejudiced DMs
have negative influence on the final decision results. If such
bad impact is not eliminated or reduces, unreasonable deci-
sion outcomes may be gained. It is noted that our method is
based on the PA operator. The PA operator was originated to
deal with possible unreasonable evaluation values and hence,
our proposed method can also effectively handle the unduly
high or low evaluation values.

2) IT CONSIDERS THE COMPLICATED INTERRELATIONSHIP
BETWEEN ATTRIBUTES
As we can see from Table 8, when P = (1, 0, 0, 0, 0), then
our proposed method produces the same ranking order as
Du et al.’s [32] method. This is because Du et al.’s [32]
method is based on the simply weighted average opera-
tor, which does not consider the interrelationship between
attributes. When P = (1, 0, 0, 0, 0), our proposed method
does not take the interrelationship between the attributes,
which is the same as the weighted average operator. In addi-
tion, when P = (1, 1, 0, 0, 0), our method takes the inter-
relationship between any two attributes into consideration.
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When P = (1, 1, 1, 1, 1), the interrelationship among mul-
tiple attribute values is taken into consideration. Similarly,
as seen from Table 8 our proposed method produces the same
ranking order as Du et al.’s [32] method when P = (1, 0, 0).
In this case, both our proposed method and Dong andWang’s
[33] method assume that the attributes are independent and
there is no interrelationship between attributes. When P =
(1, 1, 0), our method reflects the interrelationship among any
two attributes. When P = (1, 1, 1), the interrelationship
among all the attributes is taken into account. In most real
decision-making problems, the attributes are usually corre-
lated and there exists complicated interrelationship among
attributes. To determine the optimal alternative, the interrela-
tionship among attributes should be taken into consideration.
If there indeed no interrelationship between attributes, we can
assign P = (s, 0, 0, . . . , 0) (s > 0) in our method. Hence, our
method is more powerful and flexible than those proposed by
Du et al. [32] and Dong and Wan [33].

3) THE PROPOSED OPERATIONS OF IVPFLNS ARE MORE
REASONABLE AND FLEXIBLE
In addition, the operations in this article are more flexible.
First, they consider satisfy the constraint of LTS. Second, they
consider DMs’ attitude toward to optimism and pessimism.
Hence, they can more suitable and powerful to deal with
practical MAGDM problems. However, it should be noted
that the operations proposed by Du et al. [32] and Dong
and Wan [33] are based on simple operators and they have
shortcomings in dealing with practical MAGDM problems.

VII. CONCLUSION
This article investigates MAGDM method wherein DMs’
evaluation information is expressed as IVPFLNs. The main
contributions of this article include three aspects. First,
we proposed new operational laws of IVPFLNs based on
LSF. The new operations are more reasonable and can depict
DMs’ attitude towards optimism and pessimism. Second,
we proposed novel AOs of IVPFLNs based on the PA and
PMM operators. These operators can more effectively deal
with DMs’ biased evaluation values and take the interrela-
tionship among attributes into consideration. Third, we pre-
sented a new MAGDM method. In the new decision-making
method, the IVPFLPWA operator is used to compute the
collective decision matrix and the IVPFLPWMM operator is
employed to calculate the overall evaluation value of each
alternative. Finally, we showed the validity of the proposed
method. We also conducted comparison analysis to illustrate
the advantages and superiorities of our method.

In the future, we will continue our research from two
aspects. First, we shall study more applications of our
decision-making methods in more practical MAGDM prob-
lems. Second, we will study more MAGDM methods based
on IVPFL information to provide DMs more options of man-
ners to select the best alternative.
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