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ABSTRACT Recent years have shown a noticeable rise in the number of incidents with drones, related to both
civilian and military installations.While drone neutralization techniques have become increasingly effective,
detection most often relies on professional equipment, which is too expensive to be used for all critical nodes
and applications. Therefore, there is a need for drone detection systems that could work on low performance
hardware. Its critical component consists of an object detection system. In this article, we introduce a new
object detection dataset, built entirely to train computer vision based object detection machine learning
algorithms for a task of binary object detection to enable automated, industrial camera based detection
of multiple drone objects using camera feed. The dataset expands existing multiclass image classification
and object detection datasets (ImageNet, MS-COCO, PASCAL VOC, anti-UAV) with a diversified dataset
of drone images. In order to maximize the effectiveness of the model, real world footage was utilized,
transformed into images and hand-labelled to create a custom set of 56821 images and 55539 bounding
boxes. Additionally, semi-automated labelling was proposed, tested and proved to be very useful for object
detection applications. The dataset was divided into train and test subsets for further processing and used to
generate 603 easily deployable Haar Cascades as well as 819 high performing Deep Neural Networks based
models. They were used to test different object detection methods to determine the long term feasibility of
a large scale drone detection system utilizing machine learning algorithms. The study has shown that Haar
Cascade can be used as the Minimum Viable Product model for mediocre performance but fails to scale up
effectively for a larger dataset compared to the Deep Neural Network model.

INDEX TERMS Aerospace engineering, aerospace safety, artificial intelligence, computer vision, databases,
image processing, unmanned aerial vehicles.

I. INTRODUCTION
Due to the increasing utilization of civilian Unmanned Aerial
Vehicles (UAVs), the need to identify drones in the sky,
especially in urban environments, is greater than ever. Recent
high publicity events connected to UAVs include the notable
Gatwick Airport drone incident [1] and attacks on gas instal-
lations in Saudi Arabia [2]. This means both the risk of
privacy intrusion and critical infrastructure trespassing, pos-
sibly posing a danger of human harm in case of airports,
power stations, water treatment plants and other. Further-
more, recent tests have shown that even unintentional drone
operation in the vicinity of an airport can result in heavy air-
plane fuselage damage as analyzed by Dayton University [3],
showing the impact of a drone collisionwith an airplanewing.
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Typically drones are hard to detect visually due to their
relatively small surface area and their limited movement once
positioned over a target. This problem is exacerbated by the
fact that most industrial camera systems have low frame
processing rate, which makes direct utilization of image flow
and frame-by-frame comparison techniques difficult. As such
it was the authors’ motivation to propose Single Shot Detec-
tor (SSD) based Haar Cascades and Deep Convolutional
Neural Networks machine learning algorithms to determine
the detection capability of those technologies in real world
application of UAV detection.

The task of detecting UAV requires mid/high resolution
images with a relatively small drone (calculated as a percent-
age of an input image) visible in the background.

Currently, there is no available object detection dataset
consisting of a large set of UAVs specifically made for object
detection and not for object tracking. Therefore the authors
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decided to create an entirely new dataset based on real footage
(with all imperfections that only the real world can offer),
which would severely limit the number of classes to 1, but at
the same time offer superior performance on that single class.
Considering that the model needs to learn different object
representations given similar foreground, in this situation
extracting a high stride sequence of frames from the video
footage was an acceptable solution.

Typically UAV detection systems relied on multistage
processing systems which include steps like image threshold-
ing, background removal and object tracking. These meth-
ods show limited capability in urban areas due to a high
false positive rate because of planes, birds, leaves, trash and
other objects. The presented machine learning based sys-
tem utilizes both tested approaches like Haar Cascade based
systems along with high performing Deep Learning based
approaches.

The article presents an overview of available datasets used
for image classification and object detection tasks utilized for
machine learning computer vision research and development.
Then dataset generation along with the resultant training and
testing dataset is shown. Since the dataset was purposefully
made from a large set of distributions of real-world footage,
object tracking based methods could not be used for image
labelling. To reduce to manual burden required the authors
decided to begin the tagging process with test set preparation
(5375 images, 2625 positives) and just a small fraction of
train set (4500 images), which was then in turn used to create
ANN-based detection model, working as ‘‘drone proposal’’
network. While this has not completely eliminated human
effort required it allowed tagging time reduction from 45 to
22.5 seconds (on average). This novel approach is easily
scalable and can be used for labelling various kinds of objects.
Hence, the preparation of large domain-specific datasets may
be streamlined. In this instance, themethodwas used to create
and propose a novel UAV dataset consisting of 51446 train
and 5375 test 640 × 480 RGB images presenting drones in
different types, sizes, scales, positions, environments, times-
of-day with corresponding XML label set, prepared for Haar
Cascade training. The dataset is aimed to increase the security
level in critical civilian and military infrastructure.

This is followed by a brief overview of object detection
metrics and methods with a strong emphasis on Haar Cascade
and Deep Learning based models, which are used in this
research.

In order to create a drone detection system, 603 Haar
Cascade and 819ANNmodels were evaluated for the purpose
of easy to use, low compute applications (Haar Cascade with
OpenCV) and more demanding, but higher performing appli-
cation (security surveillance with ANN MobileNet based
models).

Finally, the article presents detection algorithms results,
which represent a reference point for the development of a
more complicated detection system. The articles ends with a
chapter on future work with ideas for future improvements
and research.

The primary novelties and importance of the paper may be
summarized as follows:

1. We present and share a novel drone detection dataset
consisting of 51446 train and 5375 test set images with cor-
responding annotations (52676 train and 2863 test set drone
instances).

2. We propose and successfully use a novel method of
obtaining object detection bounding box tags by first defining
the test set and a portion of the ultimate train set in order
to fine tune pretrained CNNs to create ‘‘drone proposal’’
bounding boxes, which can then be used to accelerate tagging
process without relying on object tracking methods.

3. We present developed Haar Cascade based object detec-
tion models, which can be easily incorporated into edge
devices using existing frameworks such as OpenCV. We also
present the results of our research on the amount of positive
and negative examples required to maximize the cascade
performance.

4. We present fine-tuned MobileNet ANN based models,
depicting the results of our research and network optimization
along 1 million iterations.

5. We demonstrate a successful application of the proposed
methods on the challenging problem of real-world, deploy-
ment dataset with a direct side-by-side comparison of Haar
Cascade and ANN based solutions, presenting the advantages
and disadvantages of both approaches.

II. RELATED WORK
Various approaches to the problem of UAV detection have
been proposed [4], usually utilizing motion detection and
optical flow detection algorithms combination [5], highly
augmented dataset [6], utilizing spatial-temporal informa-
tion [7] or mainly focusing on the object motion itself [8].
For practical uses, an SSD system — as proposed in this
paper — will be used in conjunction with multiple other
systems, both software and hardware based. An overview of
this multispectral UAV detection was proposed in [9].

Most of the object detection applications for drones con-
sider using a drone mounted camera to detect objects on
the ground from a high altitude. It is less common to detect
flying objects themselves, specifically drones. While binary
differentiation (between drone and non-drone) within one
end-to-end neural network is the ultimate goal for models like
this, usually the main priority is directed to detecting each of
those two classes separately [5].

Typically object detection tasks are addressed using open
source image classification and object detection datasets like
The Modified National Institute of Standards and Technol-
ogy (MNIST) dataset [10]. The MNIST dataset contains
60,000 training and 10,000 test images of 28 × 28 pixel
grayscale (1 channel), centered, handwritten digits. Today
this dataset represents a typical introduction dataset for image
classification problems, due to its small disc space require-
ment, multiclass problem statement (10 classes) ease of
access and easily available training materials/tutorials.
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Since theMNIST dataset does not represent real objects, its
relatively modern extension was created in 2009 by the Cana-
dian Institute For Advanced Research (CIFAR) in the form of
CIFAR-10 dataset [11], representing 10 classes of real world
objects (cats, dogs, horses, birds, deer, frogs, cars, trucks,
ships and airplanes) as a research subset of 80 million tiny
images dataset [12] for use in machine learning and computer
vision challenges. The CIFAR-10 dataset contains 60,000
32 × 32 pixel color (3 channels) images. The classes are
evenly distributed, with 6,000 images for each class. CIFAR-
100 is an extension of that dataset containing 100 classes [11]
and 600 images for each class, grouped into 20 superclasses
(larger classes aggregating smaller subsets).

CIFAR-10 is also often used for general testing of machine
learning algorithms but is limited due to its low resolution
and lack of bounding box labels/annotations (all objects are
simply centered on their corresponding images) needed for
object detection tasks. At the same time, it represents an on-
going trend to test machine learning algorithms on real world
images, rather than on limited datasets.

Therefore, another real world image dataset, called Ima-
geNet, was created in 2009 [13]. As of today, it consists of
more than 14 million real world hand-annotated images of
more than 20,000 categories, out of which more than 1 mil-
lion contain bounding box annotations [14]. Since 2010 the
dataset has been used to run the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), which allows a highly
objective comparison between machine learning models. The
ILSVRC is not run on the entire data, but rather on its subset
consisting of 1000 classes. In 2012, Alex Krizhevsky was
awarded the 1st prize in this challenge using Deep Convo-
lutional Neural Networks, leading to the recent resurgence
in Artificial Neural Network (ANN) research and develop-
ment [15]. Since the ImageNet dataset additionally provides
bounding box annotations for more than 1 million images
it was also used to host the ImageNet Object Localization
Challenge, which aims to create a State of The Art (SOTA)
model based on 150,000 images and 1,000 categories with
bounding box annotations.

While the ImageNet dataset was not inherently designed
for object localization/detection tasks, the Pattern Analy-
sis, Statistical Modeling and Computational Learning Visual
Object Classes (PASCAL VOC) dataset can be used specifi-
cally for these purposes [16]. The dataset has been extended
since the challenge origin in 2005 up to its end in 2012, when
VOC challenges dedicated to object detection tasks were held
[16]. The latest dataset contains 20 classes, 11540 images and
a total of 27450 annotations (the testing set does not contain
annotations).

The main disadvantage of ImageNet and PASCAL VOC
datasets is that they usually present given objects on its own,
without the context of the surrounding the object usually
exists in. In order to counteract that, the Microsoft COCO
(Common Object in Context) dataset has been created con-
taining 330,000 images, 1.5 million object instances, 80 cat-
egories, pixel-based segmentations and image captions [17].

Neither COCO, PASCALVOC nor ImageNet dataset contain
sequential images extracted from a video. Furthermore, aver-
age COCO dataset resolutions are also larger than those of
ImageNet and PASCAL VOC datasets.

Recently all three datasets have been used to create gen-
eral object detection models, which could be used as weight
initialization for similar problems and then fine-tuned on
the problem dataset allowing quicker training and reducing
the need for a labelled dataset. This approach, called trans-
fer learning, allows using a pretrained dataset and model
architecture rather than creating an entirely new network
based on a limited dataset [18], [19]. In order to ease that
process popular deep learning framework called TensorFlow
has included a set of pretrained object detection models,
typically trained on the datasets mentioned before in the
article [20]. COCO, PASCAL VOC and ImageNet datasets
represent useful datasets and benchmarks for image classi-
fication/localization/detection models and research. Unfortu-
nately, the mentioned datasets combined had little to offer in
terms of drone images in different environments, this is why
a new, large dataset had to be proposed for extensive research
on efficient and high performance UAV detection systems.

Recently two datasets have been proposed and used for
3D flight trajectory reconstruction [21], [22], and specifically
for anti-UAV purposes [23], [24]. While those two datasets
allow for large size drone-based dataset, they were created
in well-defined conditions with chessboard based calibration
and special equipment added for UAV tracking and subse-
quent dataset preparation. While this approach is extensively
valuable for research purposes, it does not represent real
world occlusion, clutter, illumination, camera movement, and
a wide range of urban environments that UAVs need to be
tested against. While the anti-UAV dataset allowed the appli-
cation of transfer learning methods for ANN models such as
YOLO [25], an additional dataset was needed to represent
UAVs in a broader range of environments.

For this purpose, a high stride sequence of frames was
extracted from the video footage. This approach is very sim-
ilar to ImageNet, PASCAL VOC and COCO, where images
used to create the dataset were extracted and processed from
third-party image/video URLs, freely available from the gen-
eral URL search, though the original data are not owned by
the authors of this article and can/will be used for research
purposes only.

III. DATASET PREPARATION
First, the authors created a custom ANN based model using
fully manually labelled images. After obtaining a sufficient
number of training and testing data samples, the obtained
models were used to accelerate the dataset generation process
through a semi-automated process.

Since the resultant training dataset was sufficiently large
(up to 51446 images), no overfitting was noticed and as
such, no validation dataset was used. Typically, a 70-10-20
training-validation-test split would be used, but in order
to facilitate model training, a large training dataset and a
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FIGURE 1. Overview of the labelling pipeline with and without
implementation of the automated novel labeling process. Its introduction
allows approximately 50% tagging time savings.

diversified testing dataset were used. Subsequent analysis
showed that the model did not overfit into the testing dataset.
After all the steps mentioned above, a total of 56821 images
and 55539 bounding boxes were obtained and divided into
the training and the testing dataset. Dataset, its sources and
references are publicly available [26].

A. DATASET GENERATION PROCESS
The authors decided to utilize publicly available drone
footages, both downloaded from the internet and recorded
personally by the authors. Authors had analyzed the potential
of using synthetically rendered images based on available
CAD models [27] but ultimately decided to use only real
records, to allow the detection model to capture real-world
imperfections. Every 50th frame of the movie (approximately
every 2 s) was extracted and saved for later use to create an
input database. The first 4500 training images and all 5375
testing datasets were hand labelled by the first author. The
hand labelling took approximately 30-60 seconds per item,
depending on the image. An overview of the manual labeling
pipeline is shown in Fig. 1.

Then the authors used the pretrained COCO
ssd_mobilenet_v1 model [20] to train artificial neural net-
work based drone detectors with 0.50 detection confidence.
All model parameters remained default, which included
weighted sigmoid classification loss, weighted smooth local-
ization loss and fixed image shape resizer of 300 × 300.
The model training process automatically saved a checkpoint
approximately every 10 minutes. All checkpoints created
were used for the analysis. The preliminarymodel was run for
600,000 Stochastic Gradient Descent (SGD) iterations. Then
all intermediate checkpoints were saved and finally frozen
and tested on the testing dataset.

The best performing model was obtained for iteration
249204 with model accuracy of 67%, F1 score of 61%, AUC
of 0.56, mAP of 52%, precision of 73% and recall of 52%
(metric’s definitions are presented further in the paper). This
model was then run on all frames/images obtained later, thus
creating a semi-automated labelling pipeline.

Images labelled by the resultant model were manually
corrected to ensure the highest quality of labels and images
deemed negative (no drone detected by the ANN model

used) were manually checked to ensure that all drones in
the images were indeed captured. Since this approach took
approximately 15-30 seconds per image, this allowed the
ultimate productivity boost of approximately 100%. The pro-
cess used is shown in Fig. 1. Initial data are acquired and
subsequently processed through the labeler (in this instance,
the first author) to get labeled data, which were ultimately
used to create the detection model tested with the use of a
separate validation dataset. The inference model acquired in
this process was then used on available footage to acquire
more data, in this instance labelled by ANN. In order to
maximize the quality of the labeled data, the ‘‘human labeler’’
is also present in the loop to ensure that all bounding box
positions are correctly marked.

By introducing a semi-automated process it is estimated
that the authors managed to reduce the average image
labelling time from 45 to 22.5 seconds. As automated
labelling was performed on 46946/51446 training images,
the total labelling workload was reduced by approximately
293 hours or 36 eight-hour-long workdays.

B. TRAINING DATASET
Initially, the training dataset was created on the basis of
readily accessible open source datasets such as ImageNet,
Google based graphic search and similar publicly available
sources. Unfortunately, this approach was highly inefficient
and fewer than 500/51446 training images were created in
this way. A vast majority of the training samples came from
578 drone videos obtained from popular video services.

The full training dataset consists of 51446 images scaled
down from different resolutions (ranging from 640 × 480 to
4K) to the resolution of 640×480, out of which 51445 images
contain a total of 52676 drone bounding boxes and 1 negative
image (not containing any UAVs). For the object detection
task, a vast majority of input images are negative examples
(do not contain the class in question), therefore adding a
negative dataset would not provide any value added to the
model. Similarly to the validation dataset, the bounding boxes
used for training purposes are presented in bulk in a 2D
histogram, as shown in Fig. 2.

In the training dataset, there are more small objects than
large objects. Specifically: approximately 40.8% of objects
are small (area < 1024), 35.8% are medium (1024 < area <

9216), and 23.4% are large (area > 9216) as specified by the
COCO challenge [28]. The area is measured as the number of
pixels in each of the bounding boxes. A cumulative histogram
representing the bounding box area as a percentage of the
entire image area is presented in Fig. 2.

Overall, the aim of a large diverse dataset was to present
drones of different types, sizes, scales, positions, environ-
ments, times-of-day, etc., so as to allow a broad range of
representations to train object detectionmodels. This includes
small (calculated as a percentage of overall image) drone on
blue sky background (as shown in Fig. 3) and drones within
an urban environment (as shown in Fig. 4).
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FIGURE 2. Spatial distribution of full training set bounding boxes and
normalized cumulative histogram of bounding box areas. The heatmap
shows the density of a drone occurrence (with axis representing image
width and height) after scaling it to 640× 480 pixels. As the histogram
shows, the majority of drone sizes are small, which represent the typical
expected deployment scenario of the developed model – security
applications to prevent drone trespassing.

FIGURE 3. An example from the train set – a drone on the relatively
cloudy, blue background.

FIGURE 4. An example from the train set – a drone on the rural
background.

C. TESTING DATASET
The testing dataset was extracted from 21 drone videos
obtained from popular video services and 29 videos which do
not show drones, which were used to create a negative sample
dataset of urban areas, nature, airports and plane footage.

FIGURE 5. Spatial distribution of testing (validation) set bounding boxes
and normalized cumulative histogram of bounding box areas. The
heatmap shows the density of drone occurrence (with axis representing
image width and height) after scaling it to 640× 480 pixels. As the
histogram shows the majority of drone sizes are small, which represent
the typical expected deployment scenario of a developed model –
security applications to prevent drone trespassing.

The testing set consists of 5375 images scaled down from
different resolutions (ranging from 640 × 480 to 4K) to
the resolution of 640 × 480, out of which 2750 do not
contain any UAVs (negatives) and 2625 images containing
drones (positives), a total of 2863 objects. The testing dataset
bounding box position is presented in bulk in Fig. 5. Each
of the bounding boxes was projected onto a 2D matrix cor-
responding to 640 × 480 image resolution, resulting in a
density map as shown in Fig. 5. The vast majority of drones
were marked in the center of the image, which reflects the
training dataset. This is a natural consequence of the chosen
data acquisition method, which relied on extracting frames
from UAV videos where the drone was a centrally positioned
object as the camera operator fixed on it. Ideally, both the
training and the testing (validation) dataset should have an
even spatial distribution. In practice, models trained on the
basis of the proposed dataset are well protected from uneven
spatial distribution of the binary class on the given image.
Haar Cascade uses a sliding window approach, which is spa-
tially independent (excluding padding) while artificial neural
network transfer learning based methods shown later use
the region proposal network approach, which significantly
reduces dependency on spatial evenness.

In the testing dataset, there are more small objects than
large objects. Specifically: approximately 36.3% of objects
are small (area < 1024), 35.3% are medium (1024 < area <

9216), and 28.3% are large (area > 9216) as specified by the
COCO challenge [28]. A cumulative histogram representing
the bounding box area as a percentage of the entire image is
presented in Fig. 5.

Similarly to the training set, the aim of the authors was to
create a diverse dataset with even class distribution, highly
diversified background, and negative examples with difficult,
typically urban, background. Examples of test dataset frames
are presented in Fig. 6 and Fig. 7.

IV. OBJECT DETECTION OVERVIEW
Object detection was traditionally based on feature extrac-
tion based on image statistics (usually after computer vision
based preprocessing such as thresholding). Recently this pro-
cess has been replaced by automated feature extraction with
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FIGURE 6. An example from the test set – no drone present on the image
containing a difficult to classify, urban environment.

FIGURE 7. An example from the test set – a drone present on the cloudy
image.

methods such as Haar Cascades and Convolution Neural
Networks.

A. AIMS AND CHALLENGES
Object detection is a computer vision technique aimed at
classification and bounding box retrieval of one or more
classes for the given image assuming more than one instance
of a class present on that image. While methods such as
convolution neural networks rely on operations directly on the
input pixels, typically, machine learning methods relied on
task specific features extracted from the image (such as HUE
intensity [29], HOG/SIFT features [30], [31], GIST [32],
LBP [33], Texton [34], etc.), which were then stored as
feature vectors and finally compared with other image-based
abstractions in high dimensional hyperspace. Dimensions
usually represented statistical descriptions of the feature vec-
tors to be further processed with machine learning methods
(Principal Component Analysis, Support Vector Classifier,
Linear Discriminant Analysis and others). This process is
shown in Fig. 8. The input image is reduced to a specified size

FIGURE 8. Feature-based representation of object detection.

(as the common denominator for both training/testing dataset
and model deployment), then multiple specified features are
extracted in order to create a feature vector (a combination of
all extracted features). The feature vector is then processed
by a number of Machine Learning routines and finally, one
hot encoder result is acquired, which specifies the expected
input image class.

The purpose of the feature vector was to create an abstract
representation of input image, which could be then efficiently
processed to establish a correct output. Different kernels and
filters were used to extract edges and then to determine image
features. Usually, a specified, finite set of filters would be
tested to determine the best result, sometimes stacked (cas-
cading) on top of each other. This created tree like structures
of different processes and filters combined to form a sequen-
tial algorithm to maximize the overall performance. This
tree like structure, often referred to as hierarchical output,
was very time consuming to create and usually showed good
performance on one specific application.

A hierarchical representation of the problem is one of the
methods allowing successful mitigation of challenges faced
by any image processing system. The primary challenges
include:

• Viewpoint variation (camera focal properties variation),
which include size/scale variation, rotation/inclination
variation, position variation, pose variation

• Object variation (intra-class variation), such as object
color/shape/size variation and object deformation - dif-
ferent dog breads, different drone models

• Illumination (including shading), reflections, shadows,
atmospheric effects (hot gases, natural convection, rain,
snow, haze, fog, etc.)

• Occlusion & background clutter

A general approach to building image classifiers is to collect
an image dataset (including labels), use a machine learning
algorithm to train it, tune the algorithm on the dataset and
evaluate the result using a separate dataset called the testing
dataset or the test dataset. Assuming that there is no hyperpa-
rameter tuning used, there is no need for a validation set cre-
ated aside from the testing set. There are multiple approaches
to handle computer vision challenges, which typically utilize
advanced data processing algorithms such as Support Vector
Machine (SVM), Hidden Markov Models (HMM), Principal
Component Analysis (PCA).While those techniques are very
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FIGURE 9. Overview of Haar Features. Expanded upon available literature
[35], [47], [48].

helpful, they lack an adequate amount of model parameters to
sufficiently generalize the given problem, which would allow
object detection in any object condition and background.
At the same time, they offer industry recognition, acceptable
performance on small datasets and the ability to train without
expensive equipment. Amethod that has enjoyed commercial
success and industrial application is Haar Cascade based
object detection.

B. HAAR CASCADE ALGORITHM OVERVIEW
Machine learning Haar Cascade object detection system, pro-
posed in 2001 by Paul Viola and Michael Jones [35] is based
on the work by Papageorgiou et al. (1998) [36], although the
algorithm itself can be traced back to 1973 [37] or back to the
original formulation of the mathematical wavelet function by
Haar [38], which is the source for the name of the algorithm.

Through the last two decades, the technology has been used
preliminarily for face detection [39] in different appliances,
such as hand cameras (Fuji camera in 2006 [40]), cell phones,
image processing software, social media, etc. This is due
to the fact that high model training computation require-
ments are compensated for by an extremely lightweight and
effective solution during model deployment, which is usually
illumination invariant [41]. Multiple other cascades exist for
everyday items, such as sofas, TVs, vehicles [42] or even
agriculture. Haar features have also been used for medical
applications [43], industrial applications [44], general pur-
pose detection [45] and for object tracking [46]. The authors
did not manage to obtain Drone Haar Cascade for the detec-
tion of Unmanned Aerial Vehicle (UAV) of any kind, hence
decided to build their own one. Haar features are simple
pixelwise relations between adjacent pixels, which form a
predefined shape as shown in Fig. 9.

The Haar detector scans an input image at multiple scales,
starting with a base size and incrementally increasing the
size of the window. The sliding frame is then converted into
integral and ‘‘boxlet’’ image representation, later used to fit
within predefined Haar features.

Classifiers are called to solve a sequence of ‘‘weak’’ learn-
ing problems,With the final, ‘‘strong’’, classifier representing
a weighted combination of weak classifiers followed by a
threshold.

The detection phase of the Haar algorithm includes mul-
tiple stages, with a weak classifier trained on each stage

separately, which allows disregarding the majority of sub-
windows as negatives in the first stages. For more compli-
cated detection problems, a higher number of training stages
are used (usually more than 20, the system proposed by Viola
and Jones used 38 [35]). If a specific area was marked as the
object of interest a sufficient number of times, it is considered
the object in question.

C. NEURAL NETWORK CONVOLUTION
ALGORITHM OVERVIEW
In general, the artificial neural network (ANN) works upon
the concept of loss minimization, usually defined using Soft-
max or SVM formulations [49]. and has been recently used
for a wide variety of applications from mechanical engi-
neering [50], aerospace engineering [51] to robotics and
control [52]. For the purposes of computer vision ANNs
typically utilize a combination of Convolutional Neural Net-
works (CNNs) and Fully Connected Layers (FCs). CNNs
have proven to be an effective modeling solution for appli-
cations ranging from computer vision (image classification,
object detection, neural style transfer) [53], [54], cybersecu-
rity [55], time series processing [56], fluid mechanics [57]
and general physics challenges [58].

A simplified CNN based process is shown in Fig. 10. Input
image height and width are usually equal. In this example,
a 285×255 input imagewould be scaled to a new size of 255×
255 and then the network is trained. As such, any processed
image will have to be scaled as well to fit the required input
size.

Python 3.6+, mainly via Python IDLE and Jupyter frame-
work, was used for dataset generation and training/testing
purposes. All models were developed on Windows 10, Intel
Core i7-8700K CPU @3.70 GHz with 4 × 8 GB DDR4-
3000 RipJaws V RAM and MSI GeForce GTX 1080 Ti
graphics card. Aside from vertical flipping (for deep learning
only), no dataset augmentation was used.

V. UAV OBJECT DETECTION RESULTS
This section presents object detection evaluation metrics
along with Haar Cascade and CNN based model results.

A. EVALUATION METRICS
In general, artificial intelligence, machine learning, and—
more recently—deep learning aims to solve the regression
problem, the classification problem or a combination of both.
For the problem of classification, a typical validation metric
is derived from the confusion matrix, which represents a
comparison between true and predictive conditions. For a
single class classification problem it can be represented by
a 2×2 solution matrix with supplementary metrics [59]. The
final evaluation metrics can be computed as a combination
of confusion matrix elements [60] (1)–(6), as shown at the
bottom of the next page.

The metric used in the final evaluation varies depending on
the application. In UAV detection, the problem model should
be both able to detect drones when they appear (maximize
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FIGURE 10. Simplified convolutional neural network based object
detection.

FIGURE 11. IoU metric visualization.

the number of true positives and precision) and be robust
enough to rarely detect drones when they do not appear
(minimize the nmber of false positives and fallout). If the end-
users are interested in one single value combining those two
requirements, then the F1 score is typically the recommended
option.

In the case of unbalanced classes, another useful metric
is the Matthews Correlation Coefficient (MCC), which is
specifically designed for binary classification [61].

To establish a level of overlap for ground truth and pro-
posed boxes, typically the IoU (Intersection over Union) met-
ric is used as shown in Fig. 11. Typically, IoU of 0.5 is used.
Higher IoU levels are not recommended for large distance
object detection as small pixel changes would result in a large
impact on IoU.

For models providing detection confidence, two additional
metrics can be used— the Receiver Operating Character-
istic (ROC) curve and the Precision-Recall curve, created
on the basis of parameter calculation for the entire confi-
dence range. The area under the ROC curve, mathematically
ranging between 0 and 1, is a one value metric called Area
Under Curve (or AUC). For multiclass problems, Average

FIGURE 12. ROC curve (left) and Precision-Recall curve (right) as obtained
for the ANN (CNN) based model described later in the text.

Precision is averaged across classes to calculate the mean
Average Precision (mAP). In the analyzed problem of sin-
gle class detection mAP and AP will be equal and will be
used interchangeably. The example of these metrics, obtained
during the analysis presented further in the article, is shown
in Fig. 12. The datapoints were established by 117 individual
results aggregations performed for model confidence rising
from 0 to 100% (with a step decrease to 0.1% for ranges
of 0–10% and 99–100%).

For the purpose of UAV detection IoU of 0.5 and detec-
tion confidence of 0.5 will be used. ROC/AUC/mAP and
Precision-Recall curve have been obtained for every single
inference model frozen every 10 minutes. MCC, Accuracy,
F1 score, precision, recall, sensitivity and specificity have
been calculated for each model.

B. HAAR CASCADE BASED OBJECT DETECTION RESULTS
Tab. 1 shows the results of the best performing Haar Cascades
(top 10 as measured by accuracy), while the aggregate results
for the remaining models (all 603 of them) are presented later
on in this section. As mentioned earlier, all performance met-
rics are created on the basis of the testing dataset consisting
of 2625 positives and 2863 negatives. While a relatively low
number of false positive classifications is favorable (result-
ing in high precision), recall is in fact very low, which is
corresponding to overall low model performance. Top accu-
racy does not exceed 55% and this is mostly due to the

Accuracy =

∑
True Positive+

∑
True Negative∑

Total Population
(1)

Precision =

∑
True Positive∑

True Positive+
∑
False Positive

(2)

Recall =

∑
True Positive∑

True Positive+
∑
False Negative

(3)

Specificity =

∑
True Negative∑

True Negative+
∑
False Positive

(4)
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2 ·

∑
True Positive

2 ·
∑
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∑
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∑
False Negative
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∑
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∑
FP ·
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(
∑
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∑
FP) · (

∑
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∑
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∑
TN +

∑
FN )

(6)
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FIGURE 13. Impact of the total number of images used on the main
model performance metrics – accuracy and F1 score.

fact that Haar Cascade models have optimized themselves to
detect only the most obvious drone object examples.

Haar Cascade training process time is growing with the
total number of images used. Simple models with up to a few
hundred images train in less than 15 minutes. Unfortunately,
the largest Haar Cascade based model (18174 images used)
took 3 months of constant processing to train. The advantage
of this approach is that CPU usage throughout the training
process is relatively low, which means that training multiple
models/classifiers at the same time is possible, but ultimately
this also creates a project bottleneck and is very likely to result
in a failure (due to unexpected power outages, forced sys-
tem/antivirus restarts, company forced restart, internal system
errors, malfunctions, etc.). This means that a smaller number
of samples should be used. Fig. 13 shows the impact of the
number of total images used on the main performancemetrics
of accuracy and F1 score.
As shown in Fig. 13, the resultant confusion matrix based

accuracy does not exceed 55% and F1 score does not exceed
0.32. A similar visualization performed on the number of
positives and negatives used is shown in Fig. 14 and Fig. 15.

The presented results show the limitations of the Haar
Cascade algorithm. The Haar-based classifier does not scale
well to a large number of samples and its detection capa-
bility is highly limited. This outcome is not dependent on
the number of positive/negative images used for the training
process. In fact, the third best model record was created on the
basis of 2000 images total (1600 positives and 400 negatives),
which means that it had no value added from increasing the

FIGURE 14. Impact of the total number of positives (images showing at
least one instance of the object class to be detected) used on the main
model performance metrics – accuracy and F1 score.

number of the training dataset beyond that number. At the
same time, as shown in Fig. 16, the detection time increases
for models with a larger number of images used for training.
A linear model fit is a good first approximation of this phe-
nomenon (R2

= 0.54).
In order to allow effective insight into the Haar

Cascade model performance, the best obtained model
(#Positives=5174, #Negatives=13000) has been tested in
real world application – drone hoovering over a concert area
[62]. The footage depicts a deployment set – none of the
frames were used in neither train nor test set. The results
show that Haar Cascade is effective in detecting medium size
drones on a range of sky backgrounds (clouded, dark, etc.),
as shown in Fig. 17.

The same Haar Cascade fails to detect small-size drones or
a drone with an urban background as shown in Fig. 18.

At the same time, Haar Cascade was able to detect a
small percentage of small drones, as shown in Fig. 19. As
shown in the Figure, while Haar Cascade was, in fact, able
to detect even very small-sized drones (measured as a per-
centage of overall image), this came at a cost of higher false
discovery rate.

C. CONVOLUTION NEURAL NETWORK BASED OBJECT
DETECTION RESULTS
This section presents an analysis of the drone detection
model created with Artificial Neural Networks, specifically
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TABLE 1. 10 Haar Cascade models with the highest accuracy at 0.5 IoU.

FIGURE 15. Impact of the total number of negatives (images with no
instance of object to be detected) used on the main model performance
metrics – accuracy and F1 score.

Convolution Neural Networks. For deep learning imple-
mentation, a MobileNet v1 model, pretrained on the
COCO dataset, was retrained on the entire training
dataset of 51446 images. All model parameters remained
default, which included weighted sigmoid classification loss,
weighted smooth localization loss and fixed image shape
resizer of 300 × 300. Due to GPU memory size limita-
tion, a batch of 10 images was used. The analysis was run
for 1,000,000 iterations (approximately 195 epochs) as a

FIGURE 16. 603 Haar Cascade model detection times as a function of the
number of images used for the analysis. The linear fit model has been
presented (red line).

FIGURE 17. OpenCV based deployment of trained Haar Cascade on the
real world footage of a drone on the clouded, dark sky background.

preliminary check of the dataset capacity to generalize the
testing dataset. With approximately 0.7 sec/step, the entire
analysis took 194 hours or more than 8 days of constant
training (although the entire process was paused at multiple
instances). Each training model was saved approximately
every 10 minutes of training runtime resulting in 819 models,
which were then frozen and evaluated separately on the
testing dataset. All performance metrics assume the detection
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FIGURE 18. Haar Cascade model detection – not only did the model fail
to detect the drone (False Negative), but it also detected five nonexistent
drones (False Positives).

FIGURE 19. Best Haar Cascade model detection with a true positive
detection on a small-sized (measured as a percentage of overall image)
drone at an incurred cost of false detection.

confidence threshold of 0.50 and the IoU threshold of 0.5.
The results obtained on the basis of the testing dataset are
presented in Tab. 2.

As shown in Tab. 2, the true positive detection rate is sig-
nificantly larger than that of Haar Cascade, however, even the
best ANN detection model has not detected more than 54% of
true positives in the database (total of 2625). The maximum
model accuracy does not exceed 70% and the F1 score does
not exceed 60.2%. Still, ANN results are significantly better
than those of Haar Cascades (mind that the Haar Cascades
accuracy does not exceed 55% and the F1 score does not
exceed 32%).

In contrast to the Haar Cascade detection model, deep
learning provides detection confidences along the detection
bounding box itself, which allows more robust results evalu-
ation using metrics like ROC and AUC. These supplementary
results are presented in Tab. 3.

While the results presented in Tab. 3 allow generation
of a short overall summary of the training process, they
provide little insight into the sensitivity of the models to
confidence level change. This can be only presented on the
Precision-Recall and ROC curves, as shown in Fig. 20. These
representations offer a detailed insight into model operation
with a variable confidence threshold, so ultimately project
stakeholders may select the most appropriate model.

TABLE 2. Confusion matrix based results for the best 10 models trained
on the 51446 images training dataset ranked according to model accuracy.

TABLE 3. Supplementary performance metrics for the best 10 models
trained on the 51446 images training dataset ranked according to model
accuracy.

FIGURE 20. ROC curve (left) and Precision-Recall curve (right) as obtained
for the best performing ANN (CNN).

As mentioned earlier, the average precision for the
Precision-Recall curve, or mAP, can be calculated separately
for each model. This way, effective representation of the
overall model performance over different confidence thresh-
olds can be obtained. Unfortunately, reducing 1 million iter-
ations and 819 resultant models into a single table does
not give a visualization of the network ‘‘learning’’ process.
This is why a representative metric of mAP needs to be
visualized over the entire training spectrum (throughout all
the iterations performed). The resulting training mAP metric
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FIGURE 21. Smoothed mAP results for 819 trained models and full 51446
image dataset trained using the pretrained COCO MobileNet v1 model.
As shown in the figure, model performance exhibits a globally positive
trend. Model performance stabilizes over 750,000 iterations, which is an
indicator of the model reaching its detection potential.

FIGURE 22. Non smoothed accuracy (@0.5 conf. & IoU) results for
819 trained COCO MobileNet v1 models showing steadily increasing
performance gains for the models.

results, smoothed using a moving average of 15 instances, are
presented in Fig. 21.

As shown in Fig. 21, the average precision rises from 0 as
expected, but then the training process is relatively unstable,
peaking at approximately 350,000 iteration with an unex-
pected local minimum at iteration 625,000. Since the batch
size was relatively small, the training process was relatively
volatile. Hence, the need for moving average based smooth-
ing (15 instances) emerged for postprocessing. The general
trend presented in Fig. 21 is positive, which means that train-
ing the same model longer is likely to result in better overall
model performance. At the same time, the model seems to be
reaching a local plateau at over 750,000 iterations.

Naturally, mAP is only one of the multiple object detec-
tion model evaluation metrics. In order to allow intuitive
model performance presentation, model accuracy is typi-
cally used. The accuracy of the frozen ANN models is pre-
sented in Fig. 22 (no smoothing). For the first ∼50,000
iterations, the model quickly optimizes for the new problem.
Then, the general trend confirms the conclusions from mAP
postprocessing that further model optimization would yield
better model performance as the overall model accuracy is

FIGURE 23. Non smoothed model F1 score (@0.5 conf. & IoU) as a
function of iteration number showing steady performance gains.

TABLE 4. Additional information on the best 10 models trained on the
51446 images training dataset ranked according to model accuracy.

trending up. However, in contrast to mAP, accuracy shows a
steady increase above the 750,000mark, which is an indicator
that further performance gains can be achieved.

The model starts learning at iteration 0 (accuracy equals 0),
stabilizes at approximately 50% and then slowly trends
upwards. At million iterations the average accuracy checks
approximately 58% with large variation and global maxima.

As mentioned earlier, while the accuracy of the model
provides valuable information for some users unfamiliar with
the confusion matrix, the F1 score, a harmonic mean between
Precision and Recall, is a much better model performance
indicator. As shown in Fig. 23, the model is also trending
upwards, but in a much more stable fashion than the accuracy
plot did and with fewer outliers.

Typically, the 50% confidence level threshold is used to
determine if a particular detection is treated by the model
as true or not. Naturally, this value may be adjusted so
as to maximize accuracy, F1 score or any other metric.
Tab. 4 shows the maximum obtainable accuracy and F1
score and corresponding confidences needed to acquire such
results. As shown in Tab. 4, the confidence threshold of 0.50 is
rarely the optimum.

Additionally, Tab. 4 presents the detection time metric for
the testing dataset. As shown, detection time ranges from
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TABLE 5. Average/maximum aggregation of key performance indicators
of 1 million iteration worth or 819 models trained on the 51446 images
training dataset.

FIGURE 24. ANN detection model (as obtained for iteration=867503)
deployed over a drone footage. The model was shown to be very effective
in detecting model presented in the figure but often failed to detect
drones of a small size (calculated as a percentage of overall image).

61 to 66 seconds with a low standard deviation. The consis-
tency in the detection time is a direct result of the same neural
network architecture, which results in the same number of
parameters and computations needed for each model. Note
that the worst ANN-based detection time is less than the
best time for the Haar Cascade model (71 seconds), which
means that—for the same hardware— the GPU-based accel-
erated ANN approach is faster than ML based Haar Cascades
utilizing CPU only.

As a summary, all overall model performance indicators
are presented in Tab. 5. The data presented in the table show
model accuracy, F1 score, AuC and mAP metrics for the
entire 819 models, aggregated for average and maximum to
better generalize the training process.

In order to allow effective insight into ANN model perfor-
mance, the best obtained model (@Iteration=867503) was
tested in real world application [62], identical to the one
Haar Cascade was tested upon. The results show that ANN
is effective in detecting medium size drones on a range of sky
backgrounds (clouded, dark, etc.), as shown in Fig. 24.

Another advantage of ANN model over Haar Cascade
is the detection confidence value. Its acceptance threshold
can be modified depending on the environmental condition,
background type (sky, urban, nature) to maximize overall
detection performance.

Furthermore, detection confidence allows performance
increase through a two-stage detection process. Firstly, the

FIGURE 25. Best performing ANN detection model (as obtained for
iteration=867503) deployed over a drone footage with a correct detection
over a small size drone (calculated as a percentage of overall image) with
no false detection present.

entire input image would be processed with low detection
confidence to provide detection ‘‘drone proposals’’ (similarly
to tagging pipeline). The ‘‘drone proposals’’ could be then
extracted to prevent resizing distortions and to maintain high
image definition and then yet again processed through the
ANN. This results in overall higher detection performance
and cannot be used for Haar Cascades as their output does
not include detection confidence.

Overall, ANN showed better performance than Haar Cas-
cades, mainly due to a significantly lower false detection rate.
In fact, ANN failed to detect some of the drones detected by
Haar Cascades, as shown in Fig. 25, but rarely suffered from
false detection.

VI. CONCLUSION
Currently available datasets are insufficient to create drone
object detection algorithms in versatile environments. There-
fore, a novel dataset generation pipeline has been presented
with additional methods for labelling process automation and
the productivity boost of 50% (dataset tagging time reduction
from 45 to 22.5 seconds on average). This novel approach
can also be easily scaled and used for any kind of object
detection based labelling, which can help to reduce one of the
largest challenges of ANN-based computer vision research –
lack of large domain-specific datasets and hurdles connected
to obtaining them. It also allows the capitalization of model
deployment at the early stages of the machine learning model
development pipeline.

This approach resulted in a novel dataset of 51446 image
training dataset (1 negative, 51445 positives) and a
5375 image testing dataset (2750 negatives, 2625 positives)
available for drone detection research purposes.

Haar Cascade is an algorithm created almost two decades
ago, although it is still used today in multiple appliances like
cell phones or cameras. This is due to the fact that it is easily
supported by most operating systems and can be run directly
on most CPUs with little software required. Typically, Haar
Cascades are used for face detection problems, although
they can be trained for any new problem using a predefined
dataset. However, since training based on a large number of
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images can take up to few months, it is recommended to try
different combinations of images to maximize test dataset
based performance with a smaller number of images. For
a drone detection application, the Haar Cascades training
algorithm optimizes weak intermediate classifiers to quickly
disregard most of the frames, which in practice results in
only a few detections for the entire dataset, including few
true positives. However, as 51% of testing dataset images
are negatives, the end result is the relatively high accuracy
of up to 55% and low F1 score (not exceeding 32%), for
603 models analyzed. The more images were used for the
training, the longer the detection time is. Generally, since
Haar Cascade can provide a relatively good result with just
a few hundred samples, it can be a starting point for rapid
software prototyping and labelling automation. Since Haar
Cascade does not provide detection confidences, some of the
object detection metrics, like ROC or Precision-Recall curve,
cannot be obtained.

While the accuracy of the Haar Cascade model is limited,
its low computational cost and ease of deployment (just one
line of code required) allow its uses in conjunction with other
image processing methods.

Artificial Neural Networks with many hidden layers,
also called Deep Learning, have been known for decades,
but 2012 ImageNet successes have shown a resurgence
in their use with multiple successful industrial applica-
tions. For object detection purposes pretrained convolutions
based (CNN) models can be used as the starting point to
be fine-tuned on a drone dataset in a process called trans-
fer learning. Since model parameters optimized on large
inputs take a lot of GPU memory, the mini-batch used at
training time has to be relatively small, which results in
volatile training results, but with a positive overall trend for
both accuracy and F1 score. For transfer learning purposes,
the MobileNet v1 model pretrained on the COCO dataset was
run for 1 million iterations (approximately 195 epochs) with a
fixed image resizer of 300×300, generating 819 models. The
obtained accuracy for 819 obtained models does not exceed
70% and the F1 score does not exceed 60.2%. CNN based
output, in contrast to Haar Cascades, additionally provides
detection confidence (50% by default). Assuming that any
confidence threshold is available, the maximum obtained
accuracy checks 70.3% (at confidence equal to 0.33) and
the maximum obtained F1 score checks 62.7% (at confi-
dence equal to 0.24). Since all models represent the same
number of parameters, but iteratively improved over each
epoch, the resultant computational requirement and subse-
quent detection time are relatively constant and superior to
Haar Cascade based models. The biggest disadvantage of
using CNNs over Haar Cascade is the GPU acceleration
required.

In general, ANN based solutions achieve better perfor-
mance than Haar Cascades but require more computational
power, dedicated GPU, and processing time. Its deploy-
ment also is more challenging than that of the Haar Cas-
cade alternative. Haar Cascades return more drone detections

than ANNs, but with a significantly larger amount of false
positives.

VII. FUTURE WORK
Potential improvements and further research directions are
discussed in this section. Future work will be entirely devoted
to ANN based approaches with the Haar Cascade based
model used only as a reference/benchmark.

The top priority will be to run the current model configura-
tion for at least 2.5million iterations to determine the inflation
point of diminishing return, where longer training does not
substantially improve model performance. Furthermore, for
comparative study purposes only, the training set will be used
as a testing set to determine if the current model is able to
properly generalize the given input dataset of 51446 images.

Currently, the entire 51446 training image dataset is used
for training. While this number seems to be large enough to
generalize the drone detection task with sufficient model per-
formance, the exact number of images to be used seems large
for a single class task. As such, multiple different training
dataset configurations will be run to establish a point in which
adding more images to the dataset does not provide sufficient
improvement based on the testing dataset performance (the
testing set will remain the same for comparison). Everymodel
will be run for 1 million iterations minimum for direct com-
parison with a model set established during research used for
this paper.
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