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ABSTRACT In many real-world decision problems, there are specific objective, decision variables,
conditions, data and/or parameters that may vary over time. When these problems are solved through
an optimization process, they are generally known as dynamic optimization. Dynamic optimization is
a challenging research topic as the optimal solution usually moves with any change in the problem
environment. In locating the optimal point in any optimization problems, the effectiveness of the search
process is influenced by the nature of the problem landscape. In order to improve the effectiveness of the
search process, in this article, a new approach is developed by integrating a landscape-based strategy with
appropriately designed evolutionary algorithms for solving dynamic problems. The proposed approach is
named as Landscape Influenced Dynamic Optimization Algorithm (LIDOA). LIDOA checks the similarity
before and after the changed environment which is then used as an input to guide the evolutionary search
process. The dynamic benchmark functions from IEEE-CEC2009 are solved using LIDOA. LIDOAwas able
to enhance the performance of the evolutionary algorithms in their adaptation to dynamic changes, which in
turn enhanced their ability to attain better results.

INDEX TERMS Fitness landscape, dynamic optimization, similarity check.

I. INTRODUCTION
The interest in optimization under dynamic environments
have been growing over the years due to the fact that
many real-world decisions and design problems belong
to this category, such as trade market prediction, meteo-
rological forecast, robotics motion control, computational
protein design [1], intelligent watermarking in document
images [2], and vehicle routing problems [3]. Common
applications of dynamic optimization problems include:
power system scheduling, production scheduling, and mov-
ing objects scheduling. In power system scheduling, the load
on the electricity network and the generation from renewable
resources changes with time. With the arrival of new jobs and
experiencing defective materials and machine breakdowns,
a scheduling problem changes with time. Supplying fuel to
patrolling boats by a ship or aircraft, or delivering hazardous
materials to multiple moving units by a robot are also typical
real-world dynamic problems [4].

In general terms, optimization problems that change over
time are called dynamic optimization problems (DOPs),
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which can be mathematically represented as [5]:

F = f (Ex, Eφ, t) (1)

where Ex is decision variable(s), Eφ is parameter(s), and t
is time. In DOPs, the objective function, constraints, data,
and/or environmental conditions may change over time due
to many different reasons. Therefore, the goal of DOPs is not
only to find an optimal solution, but also to closely track the
change of solutions over time [6].

In a dynamic environment, the key points for solving such
problems are adaptability and efficiency. In fact, one of the
main challenges in dealing with DOPs lies in reducing the
computational cost in locating the new solution when there
is a change in environment. In other words, a quick response
to the changes and search for the optima in diverse environ-
ments are the basic requirements for methods toward these
problems.

Over the last two decades, a good number of different
evolutionary algorithms (EAs) have been proposed to solve
DOPs. Compared with the conventional optimization meth-
ods, EAs are mostly simple to conduct the search operations
and impose no requirement of specific mathematical proper-
ties, thus being more robust and flexible. For employment of
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EAs in DOPs, two key points are considered in this article:
the optimization problems to be solved and the class of algo-
rithms to be designed, where the key element of the former
is landscape analysis and the latter frequently leads to type of
the algorithm, such as framework imitating natural processes,
infinite population models, ideas based on thermodynamics
and statistical mechanics [7].

Landscapes analysis is one of the fundamental approaches
to understand the geometry of the search space that can pro-
vide important information for the development of a search
algorithm [1]. The simple landscape measures such as the
ruggedness, peak number, height, separation, and clustering
in the solution space, can be used to reflect the changes in
the landscapes for dynamic problems [8]. These landscape
indicators can be a useful component in designing the algo-
rithm for DOPs. However, most existing landscape measures
are based on static optimization problems, and have limited
effects on improving the algorithm’s performance.

In this article, the Landscape Influenced Dynamic
Optimization Algorithm (LIDOA) is proposed, where a
landscape-based strategy is integrated with appropriately
designed EAs for solving DOPs. First, some points are
selected from the search space based on the sequence-based
deterministic initialization technique [9] and their fitness val-
ues are calculated. These points are then used to determine
the landscape-based similarity indicators for comparing sim-
ilarities in different environments. In this case, it is assumed
that the search boundary will not change but the landscape
will vary over time. For the convenience of comparisons,
the landscape measures are preserved for different environ-
ments. When the fitness landscape changes, the features of
the current landscape are compared with those of the previous
ones based on the landscape measures. Depending on the
level of similarities, the individuals from the past environ-
ments will be selected for the current one and this informa-
tion would help to guide the search process in the current
environment. Several classical EAs, including genetic algo-
rithm (GA), self-adaptive differential evolution algorithm
(jDE) [10] and covariance matrix adaptation evolution strat-
egy (CMA-ES) [11], are employed to examine the efficiency
of LIDOA.

The remainder of this article is organized as follows.
An overview of EAs for DOPs and the basic theory of the
methods employed in this article are presented in Section II
and section III, respectively. The proposed LIDOA is detailed
in Section IV. The analysis of the experimental results and the
conclusion are provided in Sections V and VI, respectively.

II. BACKGROUND
This section reviews the popular evolutionary algorithm (EA)
schemes that have been designed for DOPs. Compared to the
stationary optimization problems, where the goal is to find
the global optimum as fast as possible, DOPs require EAs to
track the trajectory of changing optima in the search space.
One of the biggest challenges that DOPs have in comparison
to traditional EAs is the convergence issue: once converged,

it’s hard to escape from an old optimum [7]. Therefore,
researchers have developed several approaches into EAs to
enhance their performance for DOPs, including diversity,
memory, prediction and multi-population schemes.

Diversity schemes refer to introducing diversity in popula-
tion after a change happens, or maintaining diversity through
the search process without explicitly detecting changes.
A diversity scheme can be achieved by adapting search opera-
tors [3], introducing randomised individuals, distributing sen-
tinel individuals [12], as well as explicitly keeping individuals
from getting too close to one another [7].

Memory schemes preserve past solutions. In many cases,
the best solutions from the previous landscapes are kept in
memory for possible population initialization when a land-
scape changes [13]. The intermediate solutions and solutions
from the latest problem landscapes can also comprise the
memory [13], [14].

Prediction schemes can be used to track the moving
optima [15], [16], locations that individuals should be
re-initialized to [17], as well as the time when the next change
will occur and which possible environments will appear in the
next change [18].

Multi-population schemes concurrently maintain multiple
sub-populations where each of them handles a different task.
In this case, the sub-populations can use a single algorithm or
multiple algorithms [19]. In order to improve the performance
of multi-population schemes, additional strategies such as
the quantum strategy [20] and scheduling approaches were
employed [21].

Each of the above-mentioned schemes has its own advan-
tages and disadvantages. Therefore, combinations of the
above-mentioned schemes have been explored. The most
popular method consists of a memory scheme and a multi-
population scheme, where various strategies have been pro-
posed [10], [22], [23]. Another commonly used method is the
combination of a memory scheme and a diversity scheme,
as was proposed in [24], [25]. In addition, prediction based
on memory and/or multi-population approaches have been
studied on multiple EAs [26], [27].

Despite that many methods have been proposed to deal
with DOPs, very few of them consider using landscape infor-
mation to direct the search process, and even fewer attempts
have been made on what landscape information can be used
for and how to use it. Among theworks that employ landscape
knowledge, they either learn from only the latest problem
landscape, or seldom use the landscape information to direct
the current search.

Vellasques et al. [2] proposed a series of memory-based
dynamic PSO to deal with recurrent optimization prob-
lems. The basic idea is to build a comprehensive model
of the stream of optimization problems by using represen-
tative problem instances [31]. In that, the optimal swarm
obtained in each problem landscape is archived in two
memories and re-evaluated when landscape changes. The
re-evaluated solutions are then compared with the mem-
ory using a Kolmogorov-Smirnov statistical test to find a
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TABLE 1. The advantages and disadvantages of commonly used EA schemes.

historical landscape that is similar to the current one. If a
similar historical landscape is found, the optimal swarm from
that landscape is used directly to save computational time.
Otherwise, L-best dynamic PSO is employedwith the optimal
swarm of the latest landscape as an initial population. In [31],
they modified the algorithm by introducing a Gaussian mix-
ture model built on all of the solutions to represent the prob-
lem landscape. To be specific, at the end of each environment,
a short termmemory stores the best individual in the last envi-
ronment and the density estimation generated by theGaussian
mixture model. Then at the beginning of the changed environ-
ment, a population is re-sampled based on the density estima-
tion and is re-evaluated. The distribution similarity between
the re-evaluated population and that in the last environment
is compared by using a Kolmogorov-Smirnov test, which
will determine if the best solution from the last environment
will be re-used. In addition, a long term memory stores the
information of multiple historical environments is kept for the
same purpose. Then in [32], they further modified the algo-
rithm by using a surrogated-based PSO as an optimization
method, with a portion of one population using exact fitness
evaluations and the other one using a regression model for
fitness.

It is worth noting that although this algorithm employs
a similarity check based on the problem landscape, it is
different from LIDOA in several aspects: 1) the information
used to represent the problem landscape and the way to com-
pare similarity are quite different, where the sequence-based
deterministic initialization [9] is employed to generate the
problem landscape in this article; 2) the optimal swarm from
the similar historical landscape is used directly without being
further optimized; 3) the algorithm mainly focuses on the
reduction of computational cost instead of improving the
fitness error, which is the other way around in this article;
4) only recurrent optimization problems, especially the docu-
ment images and watermarking systems, are examined, while
different functions and change types are considered in this
article. These aspects are also significant components that
make the proposed similarity check strategy efficient.

In order to quickly find or closely track the optima in
a changing environment, it is important to efficiently use
information from the current problem environment and pre-
vious environments. Although EAs are reasonably efficient

for solving DOPs in each environment separately, it is still
an open research issue for developing a framework that can
fully use the environment information and generally benefit
EAs in dealing with DOPs.

III. BASIC THEORY
A. FITNESS LANDSCAPE MEASURES
The concept of fitness landscapes originated from theoretical
biology in 1932 [33]. In evolutionary computation, fitness
landscapes are used to draw an analogy with real landscapes
to gain a better understanding of how and where algorithms
operate [34], [35]. Within this generic model, a location in
the landscape is a solution to a given problem, the elevation
captures how good that solution is, and solutions that are
similar in nature are typically placed close to each other [36].

Fitness landscapes play a vital role in understanding
the search space of optimization problems and in guid-
ing the search process to reach an optimum solution. Despite
the attempts that have been made in using landscape informa-
tion to solve DOPs, there are still many issues to be addressed
in terms of what characteristics of problem landscapes are
useful and how to use them. In a continuously changing envi-
ronment, the similarities between two problem landscapes
indicate certain resemblances between fitness distributions.
In this article, fitness landscape measures are used to check
the similarities between different problem environments. The
purpose of this similarity check is to identify the extent of
changes between environments which can then be used to
decide the search strategy in solving the problem in subse-
quent environments. Any similarity found will provide an
opportunity to re-use some of the preserved solutions and
any dissimilarity will provide a clue of how to generate the
population and conduct the search process more effectively.
Therefore, such an action will help the algorithm to find a
solution with lower computational time, hence improving the
performance of the algorithm.

As previously mentioned, the main goal of the similarity
check strategy is to find the most similar historical land-
scape to the current one, so that historical information can be
re-used to guide the search process. This strategy is conducted
under the assumption that overlapping areas exist among dif-
ferent landscapes. To do so, in this article, several landscape
measures are employed, including the Euclidean distance

178572 VOLUME 8, 2020



K. Li et al.: Landscape-Based Similarity Check Strategy for Dynamic Optimization Problems

(1-norm) between two landscapes, statistic kurtosis, statistic
skewness, as well as the domination landscape matrix [37].

In the Euclidean-based landscape measure, the Euclidean
distance between the landscape fitness of the current land-
scape and that of previous ones are calculated. The historical
landscape with the shortest distance is taken as the most
similar landscape. Kurtosis and skewness are measures to
the symmetry and tailedness of distribution of a landscape
fitness, respectively. There are different methods to calculate
the two measures, with the following equations used in this
article:

kurtosis =

∑N
i=1(Yi − Y )

4/N
σ 4 (2)

skewness =

∑N
i=1(Yi − Y )

3/N
σ 3 (3)

where Yi indicates the fitness of each solution in the landscape
population, Y is the mean value of all the Yi, σ is the corre-
sponding standard deviation, and N is the population size.
The domination landscape (DL) describes the domination

relationship among solutions, which can be used in determin-
ing the parameters for fitness scaling, the EA’s convergence
robustness against fitness noise, as well as classifying the
optimization problems [37]. In this article, the domination
landscape matrix is established based on the performance
of each solution. The domination relationship between n
solutions can be set as a n-by-n matrix:

DL =


0 1 · · · 0
0 0 · · · 1
...

...
. . .

...

1 0 · · · 0

 (4)

where the element in the ith row and jth column is DLi,j = 1
when the ith solution is better than the jth solution, i.e., the
ith solution dominates the jth solution, otherwise DLi,j = 0.
The Hamming distance between the DL matrix in the current
landscape and that in each of the previous landscapes are
then calculated, and the most similar historical landscape is
accordingly selected.

B. CLASSICAL EVOLUTIONARY ALGORITHMS
EAs have been proved to be effective in dealing with
DOPs. This article uses three classical EAs, i.e., GA,
jDE and CMA-ES, to examine the performance of the
landscape-based strategy. The working mechanisms of the
three algorithms are introduced in this section.

1) GA
GA is a randomized optimization algorithm inspired by nat-
ural selection and natural genetics [38]. It starts with ini-
tializing a population of individuals, where each individual
represents a solution within the search range. Then the fitness
of the initialized population is evaluated, according to which
certain individuals are selected as parent individuals to gen-
erate new individuals for the next generation. In most cases,
an individual with better fitness is more likely to be selected.

TABLE 2. Genetic algorithm (GA) operations.

After selection, crossover and mutation are conducted on
the parent individuals to produce new individuals. Crossover
is a procedure of swapping randomly selected information
between two individuals. This is exemplified in Table 2,
where the first two elements of two individuals are swapped.
Mutation alters one or more elements in an individual to mod-
ify a solution. For example, in Table 2, the fourth elements of
individual 1 and the last element of individual 2 are changed
to be different values. The routine of selection, crossover and
mutation is repeated in each generation until the termina-
tion is satisfied. Many other methods have been proposed to
implement crossover and mutation, but the basic idea is to
diversify the individuals.

2) jDE
DE is a powerful stochastic optimization algorithm [39],
and its computational steps include initialization, muta-
tion, crossover and selection. Based on DE, jDE employs
self-adaptive control parameters to perform better in numeri-
cal optimization problems [40]. jDE was further modified to
adapt to dynamic environments [10], which is how it is used
in this article. The procedure of jDE, as used by this article,
is as follows.

At the beginning, a population consisting of PS vectors is
randomly initialized, where each vector represents a solution
to the optimization problem. The mutation strategy is then
used to create one donor vector v for each vector x, also
known as target vector. A basic form of mutation strategy on
the kthe donor vector is as follows:

vk,G+1 = vr1,G + F · (xr2,G − xr3,G) (5)

where randomly selected integers r1, r2, r3 ∈ [1,PS], r1 6=
r2 6= r3 6= k , vk is the donor vector corresponding to the kth
target vector xk , k = 1, 2, . . . ,PS, and G is the number of
generations. In jDE, the control parameter F is self-adapted:

Fk,G+1 =

{
Fl + rand1Fu, if rand2 < τ1

Fk,G, otherwise
(6)

where Fl and Fu are fixed values, rand1 and rand2 are uni-
form random values in [0, 1], and τ1, τ2 represent probabili-
ties to adjust F [41].

After the donor vector vk is obtained, it’s components are
recombined with the corresponding target vector xk to gen-
erate the trail vector uk . This procedure is called crossover,
which can enhance the potential diversity of the popula-
tion [42]. The crossover rate CR is also a self-adapted
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parameter:

CRk,G+1 =

{
rand3, if rand4 < τ2

CRk,G, otherwise
(7)

where rand3 and rand4 are uniform random values in [0, 1].
Afterwards, the performance of xk and uk is compared and

the better one is selected to survive to the next iteration. The
mutation, crossover and selection strategies are repeated until
the terminal criterion is satisfied.

On top of the aforementioned procedures, a multi-
population strategy without information sharing, an aging
strategy to deal with local optima, and an archive to keep
the best individuals were introduced to adapt to dynamic
environments. More details of jDE can be found in [10].

3) CMA-ES
CMA-ES is an evolutionary algorithm specifically designed
for black-box continuous optimisation problems [43]. It has
similar procedures as GA and DE, but with different
operations.

In CMA-ES, a new population is initialized by sampling
candidate solutions based on a multivariate normal distribu-
tion. Then new solutions are generated by adding a normally
distributed random vector, which amounts to mutation. The
generated solutions are evaluated and the ones with better fit-
ness are selected as the parent solutions in the next generation.
In this process, correlations between the variables are defined
by a covariance matrix, which is updated by using covariance
matrix adaptation (CMA) in CMA-ES. In addition, the mean
of the distribution is updated on the basis of maximizing the
likelihood of previously successful solutions. More details of
CMA-ES can be found in [44].

C. SEQUENCE-BASED DETERMINISTIC INITIALIZATION
Sequence-based deterministic initialization is a heuris-
tic space-filling approach to improve the performance of
EAs [9]. This initialization technique takes into account both
the function to be optimized and the search space, and shows
promising performance in providing useful information about
the problem’s behavior as well as producing high-quality
solutions.

To generate the initial population, the search domain [Ex, Ēx]
is evenly divided into q + 1 segment vectors. The interval EI
is determined accordingly:

EI =
Ēx − Ex
q

(8)

The sequence of segment vectors is started with the lower
bound vector of all the decision variables, and ended with the
upper bound vector of all the variables.

The kth segment vector ESk is generated based on the fol-
lowing equation:

ESk =


Ex k = 1
ESk−1 + EI 2 ≤ k ≥ q
Ēx k = q+ 1

(9)

Therefore, the maximum number of individuals that can be
generated is:

(q+ 1)× ((D× q)+ 1) (10)

The details in terms of parameter settings and further anal-
ysis can be found in [9].

IV. DESIGN OF ALGORITHM
In many real-world applications, an environmental change
happens gradually instead of abruptly; therefore, overlap-
ping areas generally exist among changed landscapes [22].
Accordingly, the knowledge learnt in historical landscapes
can be re-used to guide the search process in the current
landscape under limited computational resources and running
time. This article proposes an algorithm based on a similarity
check strategy to efficiently deal with DOPs with limited
resources, which is called Landscape Influenced Dynamic
Optimization Algorithm (LIDOA) in this article.

A. LANDSCAPE INFLUENCED DYNAMIC OPTIMIZATION
ALGORITHM (LIDOA)
The framework of LIDOA has three main components. They
are initialization, similarity check, and search process. In the
first component, the sequence-based deterministic initializa-
tion [9] method is used to generate a population of a fixed
number of individuals which are used to determine the fitness
landscape measure in different environments. The similarity
check strategy is then conducted to judge how similar the pre-
vious landscapes are to the current one, with the most similar
one then selected to utilize the learnt knowledge from it in
the optimization process. Finally, the evolutionary process is
applied to generate solutions. Considering the general nature
of the framework, any evolutionary algorithm can be applied
as the search process, within this framework. Each of these
components are discussed in more details below.

The steps of LIDOA are presented in Algorithm 1. It is
noted that the similarity check strategy is not employed on
the first several landscapes, as there would not be sufficient
information to use it.

Firstly, EA parameters are initialized and an archive Hist
to store the best found solutions in each problem envi-
ronment is set. By using the sequence-based deterministic
initialization approach, an initial population Xland is gener-
ated, and is recognized as the ‘landscape population’, which
remains the same for calculation of landscape measures in all
environments.

As shown in line 5 in Algorithm 1, at the beginning of each
new environment, the landscape population Xland is evaluated
and the corresponding fitness landscape measure FL(l) is
calculated and archived for the lth environment.

The search process in any environment starts with an ini-
tial random population but one can also use the landscape
population as well. In this article, for the first few environ-
ments, the landscape similarity strategy is not applied as the
comparison will not be useful until a reasonable amount of
historical information is collected. The number of problem
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Algorithm 1 Landscape Influenced Dynamic Optimiza-
tion Algorithm (LIDOA)

1: Initialize EA parameters; set the archive Hist for
historical solutions

2: Generate landscape population Xland using
sequence-based deterministic initialization

3: Set landscape index l = 0
4: for l = 1 : lmax do
5: Evaluate Xland to obtain the fitness landscape

information FL(l) of the lth problem
6: Randomly initialize population X
7: if l > 6 then
8: Compare FL(l) with FL(i), i = 1, 2, · · · , l − 1
9: Select the idxth landscape that is most similar to

the lth landscape
10: Use Hist(idx) to replace the same number of

randomly selected solutions in X
11: end if
12: EA to search for the optimal solution
13: Archive the optimal solution(s) in Hist(l)
14: end for

environments for this purpose can be set based on the vari-
ability of the environments, but this article employs 1/10
of the total number of environments, i.e. 6 when there are
60 environments in total.

When the proposed similarity check strategy is applied,
the fitness landscape measure of the current problem FL(l)
is compared with each of the previous problems FL(i), i =
1, 2, · · · , l − 1. Out of l − 1 problem landscapes, the one
with index idx that is most similar to the current problem
can be selected. Afterwards, the best solutions archived from
the selected problem Hist(idx) are used to replace randomly
selected initial individuals (usually one or a few only) in
the current problem. In this way, the knowledge learnt from
previous landscapes is conveyed and that benefits the current
search process.

The above strategy is a general procedure that can be inte-
grated with any population based algorithms to enhance their
performance when solving dynamic optimization problems.

B. COMPLEXITY ANALYSIS
In this section, the computational complexity of LIDOA is
discussed.

The major components of LIDOA are the initialization
of the landscape population, the evaluation of landscape
population, the similarity check between the current fitness
landscape with the previous landscapes, and the re-use of the
learnt knowledge in the search process.

According to Algorithm 1, the time complexity for the
initialization of landscape population is O(S), where S is the
size of the landscape population (Xland ). Note that this is done
only once at the beginning of the process. At the beginning
of each new problem environment, the landscape population

is evaluated which requires O(S). It should be noted that
the fitness landscape is a vector with length L, so the time
complexity of each similarity check isO(L) for each problem
environment, which applies to each of the four landscape
measures presented in subsection III-A. In terms of re-using
knowledge, a certain number of current initial solutions are
replaced by the archived best ones in O(n) time, where n is
the number of replaced solutions, that can be one or more.
In summary, the computational complexity of LIDOA in each
generation where it is applied is O(S), assuming S is bigger
than L, which is fairly insignificant compared to the overall
computational complexity required by the other processes of
EAs.

The space required by LIDOA includes one fixed land-
scape population for all problem environments, one fitness
landscape measure and one solution for each problem envi-
ronment. Considering that the fitness landscape is a single
row vector, the space taken by adding the proposed method
to EAs is minor.

V. EXPERIMENTS
This section examines the performance of LIDOA. The
employed benchmark problems are introduced. Then four
landscape measures are evaluated, and the best one is selected
to show the efficiency of LIDOA on several classical EAs.
To conclude this section, the influence of two parameters on
LIDOA is analysed.

The algorithms are implemented with C++. The processor
is i7-8700, the processor speed is 3.20 GHz and the installed
random-access memory is 64.0 GB.

A. BENCHMARK PROBLEMS
The generalized dynamic benchmark generator (GDBG)
from the CEC’2009 competition on dynamic environments
[45] were employed, including seven test functions. The first
two functions are rotation peak functions with 10 peaks and
50 peaks, respectively, while the other five functions are
composition of Sphere’s function, composition of Rastrigin’s
function, composition of Griewank’s function, composition
of Ackley’s function and a hybrid composition function.

GDBG tunes the system control parameters, such as peak
heights, peak widths and peak positions, so that deviations are
introduced on the solution distribution. It can be represented
as follows [45]:

φ(t + 1) = φ(t)⊕1φ (11)

where t is the real-world time, φ is the system control param-
eter, and 1φ is a deviation from the current system control
parameters.

Six change types are covered for the dynamism of system
control parameters. The framework of the dynamic changes
are described as follows [45]:

1. small step:

1φ = α · ‖φ‖ · r · φseverity (12)
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FIGURE 1. Comparison of landscape measures.

2. large step:

1φ = ‖φ‖ · (α · sign(r)+ (αmax − α) · r) · φseverity (13)

3. random:

1φ = N (0, 1) · φseverity (14)

4. chaotic:

φ(t + 1) = A · (φ(t)− φmin) · (1− (φ(t)− φmin)/‖φ‖)

(15)

5. recurrent:

φ(t + 1) = φmin + ‖φ‖(sin(
2π
P
t + ϕ)+ 1)/2 (16)

6. recurrent with noise:

φ(t + 1) = φmin + ‖φ‖(sin(
2π
P
t + ϕ)+ 1)/2

+N (0, 1) · noisyseverity (17)

where ‖φ‖, φseverity and φmin are the change range, the change
severity and the minimum value of φ, respectively. In addi-
tion, α and αmax are constant values, r is a random number
between (−1, 1), and noisyseverity is the noisy severity. sign(x)
is a sign function of x, and N (0, 1) denotes a random number
which obeys to the standard normal distribution. For chaotic
change, A is a positive constant value between (1.0, 4.0). For
the recurrent change and recurrent with noise change, P is the
period, ϕ is the initial phase.

TABLE 3. Parameter settings.

The parameter settings are presented in Table 3. Each
experiment was run for 20 times. The mean value of the
best fitness error obtained over 60 landscapes were calcu-
lated, then the average of the mean value over 20 runs were
employed as fitness error for further analyses.

B. LANDSCAPE MEASURES ANALYSIS
Before analysing the performance of LIDOA, the four land-
scape measures (Euclidean distance, domination landscape
matrix, skewness and kurtosis) are examined. In order to
check whether the landscape measures select the similar his-
torical landscape, the landscape fitness values of the current
landscape and selected historical landscapes are given. Six
benchmark instances are exemplified in Figure 1, including
function 1 (number of peaks= 50) with small changes, func-
tion 2 with large changes, function 3 with random changes,
function 4 with chaotic changes, function 5 with recurrent
changes, and function 6 with recurrent with noise changes.
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FIGURE 2. Relative fitness errors regarding change types by GA with
landscape measures.

FIGURE 3. Effect of the euclidean-based measure on EAs.

FIGURE 4. Effect of the domination-based measure on EAs.

TABLE 4. The Wilcoxon test between EAs, with and without similarity
check strategy.

Due to limited space, only the results from the 40th landscape
as the current landscape, are presented in the paper.

For functions 1 and 4, historical landscapes selected by the
four measures are all very similar to the current landscape.
In terms of the other four functions, the landscapes selected

TABLE 5. Fitness improvement rates of EAs with Euclidean distance and
domination matrix landscape measures on different change types.

TABLE 6. The advantages of the Euclidean-based measure over the
domination-based measure.

FIGURE 5. Relative fitness errors regarding change types with similarity
check strategy based on Landscape population sizes of 124, 427, 1111 and
4221.

FIGURE 6. Relative fitness errors regarding change types with similarity
check strategy based on 1, 3 and 5 historical best solutions.

by the Euclidean-based measure are generally the ones most
similar to the current landscape, while the kurtosis-based,
skewness-based and domination-based landscape measures
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TABLE 7. Relative fitness errors achieved by GA with each landscape measure.

show unstable performances. With regard to change types,
the Euclidean-based measure is able to find similar his-
torical landscapes for all the six changes. On the other
hand, the domination-based measure is less competent on
both random changes and recurrent with noise changes.
The kurtosis-based and skewness-based measures have dif-
ficulty in handling recurrent with noisy changes and ran-
dom changes, respectively. It can be concluded that the
Euclidean-based measure characterizes problem landscapes
in a more comprehensive way in comparison with the other
three landscape measures.

In addition, the overall performance of the four landscape
measures were examined and compared on all benchmark
instances based onGA. The relative fitness error of each land-
scape measure on the benchmark instances was calculated by
the following formula:

Frelative =
fi − fmin
fmin

(18)

where fi is the fitness error obtained by the ith method,
∀i = 1, 2, 3, 4, and fmin the best fitness error obtained by fi.

The smaller the sum of relative fitness error, the better the
corresponding algorithm performs.

GA with Euclidean distance as its landscape measure
obtained the best fitness on 30 out of 42 instances with the
sum of relative fitness error 0.05. GAwith domination matrix
outperforms other methods on 7 out of 42 instances with
the sum of relative fitness error being 0.53, which is slightly
better than GA with kurtosis and GA with skewness as their
landscape measure, respectively. The relative fitness error
obtained by GA with each landscape measure on different
instances can be found in Appendix.

The relative fitness error regarding change types is pre-
sented in Figure 2. The Euclidean-based measure was the
best on all change types except for recurrent with noise
changes, on which the domination-based measure outper-
forms the other three landscape measures. In addition,
the domination-based measure ranked second on small
changes, large changes, random changes and recurrent
changes. Therefore, both Euclidean distance and domination
landscape matrix will be employed to review the efficiency
of the proposed LIDOA.
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TABLE 8. Fitness errors and fitness improvement rates of EAs, with and without Euclidean distance landscape measure.

C. EFFECT OF LIDOA ON DIFFERENT EAs
To assess the performance of LIDOA, the similarity check
strategy is adopted with three different algorithms (GA, jDE
and CMA-ES) and compared with those without the proposed
approach. The versions with LIDOA are named with ‘+’ at
the end, i.e., GA+, jDE+ and CMA-ES+. Note that, due to
its good results obtained above, only the landscape measures
based on Euclidean distance and domination matrix are used.

In order to analyse the overall performance, the fitness
improvement achieved in each problem is calculated using
Eq (19), that is, the normalised difference in both fitness
errors, where a positive value of FI means the EA with
LIDOA is better.

FI =
X − X+

X
(19)

where X is the fitness error achieved by the original algo-
rithm, and X+ the corresponding fitness error obtained
by EA with LIDOA. FI is calculated on each of the

42 benchmark instances. The greater the fitness improve-
ment FI , the better the corresponding method performs.
The comparison between EAs and EAs with a landscape-

based strategy is presented in Figures 3 and 4. LIDOA
with the Euclidean-based measure improves the performance
of GA, jDE and CMA-ES on 42, 24 and 23 instances
out of 42 instances, respectively. In other words, LIDOA
enhances all of the three examined EAs on more than half
the cases. In addition, the sum of FI indicates that the
similarity check strategy has overall advantages in dealing
with dynamic optimization problems. The detailed fitness
improvement on each benchmark instance can be found in
Appendix.

The performance of LIDOA is further analysed by using
a Wilcoxon test. The Wilcoxon test was proposed by Frank
Wilcoxon [46] to evaluate the difference between two sets
of data. For two data sets X and Y with size n, the proce-
dures to implement the Wilcoxon signed-ranks test are as
follows:
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TABLE 9. Fitness errors and fitness improvement rates of EAs, with and without domination matrix landscape measure.

1) Calculate the difference score D between X and Y
where the size of D should also be n.

2) Omit the element in D where the value is zero, and the
reduced difference score is D′ with size n′, n′ ≤ n.

3) Rank D′ according to its absolute value in ascending
order.

4) Assign the corresponding symbol ‘+’ or ‘−’ to the rank
of D′.

5) The Wilcoxon test statistic is subsequently obtained by
the sum of the ranks.

A Wilcoxon test was conducted to examine if there is
a significant difference between EAs (GA, jDE and CMA-
ES) and EAs that use Euclidean as the similarity check
measure. The results are presented in Table 4. At the 5%
significant level, a significant difference can be observed
between GA and GA with Euclidean-based similarity check.
However, there is no significant difference on jDE and CMA-
ES. One of the reasons is that the Euclidean-based strat-
egy improves only a limited number of instances on the
two EAs.

The comparison of the original EAs and those with dom-
ination landscape matrix were conducted to further analyse
LIDOA. Figure 4 shows that the modified EA with domina-
tion landscape matrix obtains better results for 42, 26 and
23 out of 42 instances, respectively. As mentioned earlier,
positive FI values also show the advantage of LIDOA with
domination matrix measure. Similar to the Euclidean-based
measure, the domination matrix based similarity check shows
a significant difference when employed on GA, but not on
jDE and CMA-ES, as presented in Table 4. Though the
Wilcoxon test on GA shows the capability of the similarity
check strategy, the results on jDE and CMA-ES indicate
that more effort should be made to make the method more
efficient.

The performance of the similarity strategy regarding the
change types is presented in Table 5. The fitness improve-
ment rates of different functions from the same change type
are added, so as to compare the effect of Euclidean dis-
tance and domination matrix landscape measures on vari-
ous change types. As can be seen from the table, GA with

178580 VOLUME 8, 2020



K. Li et al.: Landscape-Based Similarity Check Strategy for Dynamic Optimization Problems

TABLE 10. Fitness errors and relative fitness errors of GA with similarity check strategy based on Landscape population sizes of 124, 427, 1111 and 4221.

Euclidean distance shows overall advantage on all change
types. The same conclusion can be made on GA with domi-
nation matrix. jDE with Euclidean distance outperforms jDE
on random and chaotic changes, while jDE with domina-
tion matrix obtains better results on the other four change
types. In terms of CMA-ES, the Euclidean distance landscape
measure improves the performance on most change types
except for chaotic and recurrent with noise changes, while
the domination matrix landscape measure is overall superior
except for on the large changes.

In Table 6, the ‘+’ sign indicates that the Euclidean-based
measure performs better than the domination-based measure
on the corresponding instance, while the ‘−’ sign indicates
the opposite result. Although the Euclidean-based measure
outperforms the domination-based measure on most change
types, the latter is more reliable on recurrent changes and
recurrent with noise changes. The comparison between the
Euclidean-based measure and the domination-based measure
on change types further indicates the further improvement

that may be found from the integration of different landscape
measures.

D. EFFECT OF THE LANDSCAPE POPULATION SIZE
The landscape population size is essential in LIDOA as it is
the basis of the similarity check strategy. A larger landscape
population can better reflect the characteristics of the prob-
lem, but can be time consuming as well as it can mislead the
search with too many details, while a smaller population may
be efficient but suffer from insufficient information. In this
section, four landscape population sizes, i.e. population with
124 (q = 3), 427 (q = 6), 1111 (q = 10) and 4221(q = 20)
individuals, respectively, were examined to investigate the
effect of this parameter. The experiments were conducted
on GA because the landscape-based strategy showed greater
impact on it compared to jDE and CMA-ES, as can be seen
in Tables 3 and 4. Therefore, the effect imposed by different
parameter settings can be more easily observed on GA.
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TABLE 11. Fitness errors and relative fitness errors of GA with similarity check strategy based on 1, 3 and 5 historical best solutions.

The experiments were conducted on GA with Euclidean
distance as the landscape measure, which is referred to as
GA+ in Figure 5. The relative fitness errors regarding change
types show that the landscape population size of 427 per-
formed best on small changes and recurrent changes, while
the landscape population size of 1111 was the best on the
other four change types. Similarly, the fitness error obtained
on each benchmark instance indicates that the landscape pop-
ulation sizes of 427 and 1111 show advantages over the other
two population sizes on most of the benchmark instances.
It can be concluded that the selection of population size
should be considered based on the optimization objectives.
Additional experimental results on jDE can be found in
Appendix.

E. EFFECT OF THE NUMBER OF HISTORICAL LANDSCAPES
In the real-world dynamic problems, the current problem
landscape can be similar to multiple historical landscapes,
as the current one can share different characteristics with each

of them. Therefore, the knowledge from various historical
landscapes can provide more information as well as diversify
the population. However, the re-use of too many historical
landscapes will not only slow down the optimization but may
also distract the search. In this section, the effect of the num-
ber of historical landscapes is examined. The best solution
from the 1, 3 and 5 most similar landscapes are re-used in
the new problem, and the corresponding experimental results
are shown in Figure 6. The experiments were conducted on
GA due to the same reasons as stated in section V-D and
Euclidean distance was employed as the landscape measure,
referring to as GA+ in the figure.

It can be clearly seen that GA with 5 historical landscapes
outperformed other settings on all change types, and GA
with 3 historical landscapes is better than re-using only one
landscape. This indicates that more information can generally
produce better results when a landscape-based strategy is
used with GA. Additional experiments on jDE that generate
different results can be seen in Appendix.

178582 VOLUME 8, 2020



K. Li et al.: Landscape-Based Similarity Check Strategy for Dynamic Optimization Problems

TABLE 12. Fitness errors and relative fitness errors of jDE with similarity check strategy based on Landscape population sizes of 124, 427, 1111 and 4221.

VI. CONCLUSION
In this research, Landscape Influenced Dynamic Optimiza-
tion Algorithm (LIDOA) was proposed to improve the effi-
ciency of EAs in solving DOPs. The knowledge learned in
each landscape was archived and re-utilized in the new envi-
ronment. On the basis of the sequence-based deterministic
initialization technique, landscape measures were employed
to select the historical landscape that was most similar to the
current one. The optimal solution from the chosen landscape
was then re-used to enhance the optimization ability of EAs.

The commonly used benchmark from CEC2009 was
employed, which consists of seven functions and six change
types. Four landscape measures were examined, and it can be
concluded that the Euclidean distance and domination matrix
were better measures, compared to skewness and kurtosis, yet
none of them could clearly dominate the other. Subsequently,
for further analysis, those two measures were then adopted
with GA, jDE and CMA-ES. Experimental results show the
overall advantage of LIDOA.

The analysis regarding change types indicate that the
Euclidean distance and domination matrix landscape mea-
sures have advantages over different instances. Accordingly,
better performance can be expected with appropriate integra-
tion of multiple landscape measures. The effect of different
parameters, including landscape population size and re-used
landscapes, on the optimization was also analysed.

The general advantages that LIDOA shows come from
multiple resources. First of all, the landscape-based similarity
check strategy is independent of the problem types. There-
fore, it is applicable to a large range of problems. Similarly,
LIDOA can improve the performance of various EAs. In addi-
tion, the re-used global optimum helps to escape from the
local optima. However, there are also shortcomings of the
proposed approach. The computational complexity of EAs is
not reduced after using LIDOA, as it is added to EAs without
changing them. Apart from this, only limited information has
been re-used in this article. The performance can be expected
to be further enhanced if more knowledge is re-utilized.
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TABLE 13. Fitness errors and relative fitness errors of jDE with similarity check strategy based on 1, 3 and 5 historical best solutions.

Although this article is a step-forward to integrate land-
scape measures with EAs to solve DOPs, further improve-
ments are still needed. A possible direction may be the use
of multi-algorithm and multi-operator frameworks. Better
approaches to share information among environments are
also required.

APPENDIX
See Tables 7–13.
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