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ABSTRACT Blockchain promises to provide a distributed and decentralized means of trust among untrusted
users. However, in recent years, a shift from decentrality to centrality has been observed in the most accepted
Blockchain system, i.e., Bitcoin. This shift has motivated researchers to identify the cause of decentrality,
quantify decentrality and analyze the impact of decentrality. In this work, we take a holistic approach to
identify and quantify decentrality in Blockchain based systems. First, we identify the emergence of centrality
in three layers of Blockchain based systems, namely governance layer, network layer and storage layer.
Then, we quantify decentrality in these layers using various metrics. At the governance layer, we measure
decentrality in terms of fairness, entropy, Gini coefficient, Kullback–Leibler divergence, etc. Similarly, in the
network layer, we measure decentrality by using degree centrality, betweenness centrality and closeness
centrality. At the storage layer, we apply a distribution index to define centrality. Subsequently, we evaluate
the decentrality in Bitcoin and Ethereum networks and discuss our observations. We noticed that, with time,
both Bitcoin and Ethereum networks tend to behave like centralized systems where a few nodes govern the
whole network.

INDEX TERMS Blockchain, centrality, measurement, analysis.

I. INTRODUCTION
In recent years, the world has recognized Blockchain as
one of the technological advances to provide distributed and
decentralized means of trust among untrusted peers [1]–[3]
(See Fig. 1). Although there have been several academic
and corporate efforts to design peer-to-peer network-based
systems, Blockchain stands out among the rest because of
its ability to withstand Sybil attacks [4], [5]. Normally, in a
Sybil attack, the attackers gain a large influence in a peer-
to-peer network based system by creating a large number
of pseudonymous identities. Hence, this attack can impede
peer-to-peer network-based systems which solely rely on
distributed and decentrality properties. Baran, in his semi-
nal work [6], first discussed centralized, decentralized and
distributed networks. Later, Buterin [7] used Baran’s work
as a framework to discuss the meaning of decentrality in a
Blockchain system.
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Decentralization in distributed systems refers to the fact
that there is no central point of control among distributed and
connected peers or nodes [8]. It ensures that no single user or a
group of users could control a system’s assets or impose
changes which other users don’t consent to. Hence, decentral-
ization increases the number of decision-makers and thereby
removes the need to trust a central authority [9].

Although, in distributed systems, most nodes work
autonomously to achieve a common goal, there are some
nodes with more important roles than others, for example,
miners in bitcoin [10], [11] or super-nodes in bittorrent [12].
These important nodes within a decentralized system could
create a potential centrality.

Furthermore, decentralized system design does not ensure
decentralized control. Even themost apparently decentralized
systems have shown the ability to produce structurally cen-
tralized control. For example, the early decentralized tech-
nologies of the Internet and Web relied on key points of
centralization, such as the Domain Name System and the
World Wide Web Consortium.
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FIGURE 1. Application of Blockchain.

Recently, based on [7], a similar trend has also been
observed in Blockchain based systems. For example, the loca-
tion of nodes running a Blockchain system can gravitate
towards centrality [13]. Similarly, the existence of Bitcoin
consortium which maintains Bitcoin source code also shows
central authority of the code [7].
Motivation: Recognizing the presence of centrality in a

Blockchain system is very important since Blockchains offer
distinct, potentially liberating opportunities for reinventing
financial systems, organizations, governance, supply chains,
and more [14]. When we recognize that the subsystems of
a decentralized system can have centralizing effect, we can
prevent such centralization of the subsystems to undermine
a decentralized design [15]. In order to make these systems
truly decentralized, we must ensure that each and every sub-
system should minimize any central points of control.

A scientific quantification of decentralization is critical in
assessing the level of decentralization in Blockchain-based
systems. Most of the previous work on defining central-
ity in Blockchain considered only a particular aspect of
Blockchain. For example, in [16] the authors focus on net-
work topology using graph theory, and [7] considers the
economic aspect to define decentrality.

In [17], Bach et al. analyzed the algorithmic steps taken by
various consensus algorithms and carried out a comparative
study on energy saving and tolerated power of adversary.
Similarly, in [18], Porat, et al., analyzed Blockchain consen-
sus in terms of problem complexity. In [19], Ren modeled the
consensus algorithm as a stochastic model and provided an
insight into the impact of network and hashing on forking.
Thus, the previous works captured only certain aspects of
Blockchain.
Contribution: In this work, we take a holistic approach to

quantify decentrality.

• First, we identify the emergence of centrality in different
layers of Blockchain, namely governance layer, network
layer and storage layer.

• Second, we present various metrics which capture the
decentrality in respective layers. In particular, for mea-
suring decentrality in the governance layer, we use fair-
ness index, entropy, Gini coefficient, Euclidean distance,
Minkowski distance, cosine similarity and Kullback-
Leibler divergence metrics. Similarly, to measure decen-
trality in the network layer, we use degree centrality,

betweenness centrality and closeness centrality metrics.
For storage layer decentrality measurement, we use a
distribution index, which captures the idea of how well
the storage information is distributed among several
storage systems.

• Third, we illustrate our methodology by evaluating the
decentrality for Bitcoin and Ethereum networks.We first
create baseline metric measurements for the three layers.
Then, we gather data from Bitcoin and Ethereum sys-
tems, and calculate the decentrality metrics for the three
layers. Finally, we compare the baseline measurements
with the Bitcoin and Ethereum decentrality metrics.

The rest of the paper is organized as follows: Section II dis-
cusses background and some of the related work; Section III
presents different metrics to quantify decentrality; Section IV
discusses our results; and finally Section V presents the con-
clusions and future works.

II. BACKGROUND AND RELATED WORK
In this section, we discuss both permissioned and permission-
less Blockchains, the concept of decentrality, benefits and
needs of decentrality and distributed storage for Blockchains.

A. BLOCKCHAIN
A Blockchain is a special kind of distributed and decen-
tralized system, which helps users or nodes, who cannot
trust each other, to reach a consensus without relying on a
single centralized controlling entity [5], [20]. It is a chain
of blocks where each block contains a set of records. Some
special nodes, aka validating nodes or miners, add blocks to
the Blockchain through a procedure called ‘‘mining’’ [10].
In case more than one miner adds blocks to the chain simul-
taneously, a fork occurs in the Blockchain. In such a case,
the ‘‘longest-chain’’ rule is applied, where the nodes fol-
low the branch containing the most number of blocks [16].
By design, Blockchain is tamper-proof, and once a new block
has been recorded, the data in that block cannot be altered
retroactively [21], [22].

1) PERMISSIONED BLOCKCHAIN
In Permissioned Blockchains, nodes trust only a set of val-
idating nodes and a governing authority [23]. Hence, they
are more centralized. These systems sacrifice some of their
decentrality for better scalability and performance [24], [25].
By having a governing authority that provides an inherent
level of trust between participants, these Blockchain sys-
tems enable design decisions, such as sharding and channels,
to be implemented without much complexity. Furthermore,
the governing body can enforce data access controls to par-
ticipants in the channel and only allow them to view sensitive
transaction data [26].

2) PERMISSIONLESS BLOCKCHAIN
In permissionless Blockchains, nodes do not particularly trust
any set of validating nodes. Instead, they try to reach a
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TABLE 1. Summary of the related work for the Measurement of Blockchain based Systems.

consensus in a probabilistic or incentivised way, obviating
the need to rely on centralized authorities [34]. The lack of
a central authority enables Blockchain systems to provide
stronger integrity and liveliness properties for distributed
systems. Because there is no central authority in control,
corrupting a Blockchain or hampering the propagation of its
contents are only possible through collusion among pow-
erful nodes. Consequently, permissionless Blockchains can
achieve higher resistance against tampering and censorship,
even in the presence of malicious nodes [23], [35].

B. DECENTRALITY
Decentralized systems are a subset of distributed systems
where multiple authorities control different components and
no authority is fully trusted by all [6], [7]. Decentrality is
a property related to the control over the system. Better
decentralization means higher resistance against censorship
and tampering.

In Bitcoin and Ethereum systems, nodes generate blocks
at a rate proportional to their computational power. Despite
envisioned decentralization in Bitcoin, the high cost of min-
ing has led to considerable centralization of consensus in
practice. In order to share the risk of spending the resources
but failing towin the competition, groups ofminers formmin-
ing pools. This resulted in just a few mining pools validating
most transactions. Better decentralization of miners means
higher resistance against censorship of individual transac-
tions and consequently a higher trust in the system [36].
In [27], [28] and [30], the authors discuss several ways to
define decentrality and the ways in which systems uninten-

tionally may move to centrality. In [29], the authors introduce
a new metric, the centralization level, a quantitative measure
of Blockchain decentralization, reflecting the distributions of
transactions contributed by different Blockchain providers.
A Blockchain is Nε centralized if the top N nodes performed
more than 1 − ε fraction of transactions. A Blockchain is
more centralized if it has a smaller N and incurs a small
centralization if N is large. Hence, a public chain’s central
trust is T = N0.49; a consortium chain’s central trust level
is T = N0.33; and a private chain’s central trust level is
T = N1. Wu et al., in [8], proposed an entropy method to
quantify the decentralization for Bitcoin and Ethereum.Using
the information entropy, they measure the discrete degrees of
blocks mined and address balances to quantify the degrees of
decentralization for Blockchain systems.

FIGURE 2. Three Layers of Decentrality in Blockchain systems.

C. BENEFITS OF DECENTRALITY
The foundation of centralized systems is the absence of
mutual trust among nodes or users, so they need a trusted
intermediary to cooperate with each other. The problem with
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FIGURE 3. Generic Architecture of decentrality measurement of Blockchain systems consisting Blockchain analyst and Distributed Blockchain system
along with its submodules with layered view.

centralized systems is that they lack transparency, and there-
fore allow for single point of failure, censorship and abuse of
power. Hence, there is a need for decentralized systems. The
benefits of the decentralized systems are:

• Trust: Users do not put their trust in a central authority
and instead put their trust on each other, hence any
modification to data on the Blockchain by anyone can
be observed by all others [29]. Here, users believe that
no ‘‘trusted’’ group that exerts control could seize their
assets or impose changes they did not consent to [12].

• Immutability: The data present in the Blockchain sys-
tems can not be changed, i.e., only read and append
functionalities are applicable, not deletion [27], [37].

• Robustness: Failure of a node cannot take down the
entire network as data is distributed across multiple
Blockchain nodes. This results in high level of data
availability. Even if a large number of nodes fail or are
shut down by an attack, the data is still available for
access at other nodes.

• Attack resistance: Decentralized systems are more
expensive to attack, destroy or manipulate because they
do not suffer from sensitive central points that can be
attacked at much lower cost than the economic size of
the system [38].

• Collusion resistance: It is much harder for nodes in
a decentralized system to collude to act in ways that
benefit them at the expense of other nodes [39].

• Central censorship free: There is no censorship. In a
decentralized system, it is very difficult for a single party
to censor communication traffic over the network [11].

D. REQUIREMENTS OF DECENTRALITY
For a system to claim to be decentralized, several require-
ments must be met:

• The system should not depend on a trusted third party.
• Any node can submit a transaction, i.e., every node has
the right to submit to the Blockchain.

• Any node can validate a transaction. For example, in Bit-
coin, it is envisioned that anyone can validate and add
transactions.

• The distribution of effective power among the validating
nodes should be even. It means some nodes should
not have more control over how the chain should be
extended.

• The incentive system for running the Blockchain should
be fair. Otherwise, it may result in formation of a coali-
tion of nodes and thereby reducing the number of inde-
pendent nodes.

E. DISTRIBUTED STORAGE
An important point of vulnerability in Blockchain based
systems is the storage of the Blockchain system [40], [41].
Running a Blockchain system on a particular cloud infras-
tructure makes Blockchain prone to a single point of fail-
ure. For example, Denial of Service attacks can disrupt
cloud based systems [33], [42]. Similar trends have been
observed in the most notable of distributed systems, Domain
Name Systems. In order to overcome the single point failure,
many organizations get the IP addresses from various DNS
providers. Blockchain systems also have a similar vulnerabil-
ity. To address rising storage costs and increasing transaction
volumes in Blockchain systems, Raman and Varshney [33],
proposed a distributed storage system, by combining private
key encryption and Shamir’s secret sharing scheme, which
distributes transaction data without significant loss in data
integrity. Furthermore, not only the distribution of the data,
but also the impact of the workload in the data centers and
arrival of requests to the data centers need to be considered
to address the vulnerability in Blockchain systems [43], [44].
Zhuang et al. [32] show how, in a decentralized cloud setting,
a group of small data centers can cooperate with each other
to improve the performance.

III. QUANTIFYING DECENTRALITY
In this section, we first identify the emergence of centrality
in three layers of Blockchain (See Fig. 2). Then, we present
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a generic process of decentrality measurement. Thereafter,
we present various metrics which capture decentrality in
respective layers.

Blockchain system may be conceptualized as consisting
of three layers [27], [31], namely, governance layer, network
layer and storage layer (see Fig. 3). In the governance layer,
the nodes reach a consensus that is logically defined in the
source code by selecting a leader or by probabilistically using
a governance protocol. In Bitcoin, the node governance is
achieved by creating a block and reaching consensus about
the block by using proof of work (PoW) and the longest chain
rule. Here, proof of work depends on the hash rate of individ-
ual nodes. The logic of the governance protocol changes as
the Blockchain designers modify the code. Although miner
nodes create blocks, a block is not accepted in the blockchain
unless it reaches other nodes over a network. In the network
layer, the network capacity in terms of topology and QoS play
important roles to achieve a consensus. Another important
parameter that delays the consensus process is the block size
and block storage. If the block size is large, it delays the
process of reaching consensus and the ability to validate the
Blockchain. Similarly, if Blocks are stored or processed at
a single cloud service provider, it might lead to single point
failure. Hence, the parameter layer covers both block size
and block storage. So clearly, centrality could arise because
of node governance protocol, network structure, and cloud
storage.

A. THE PROCESS OF DECENTRALITY MEASUREMENT
In this section, we discuss a generic process to measure the
decentrality in a Blockchain-based system. First, we dis-
cuss the actors in the measurement. Then, we discuss the
steps taken by the actors to calculate the decentrality of
Blockchain. Subsequently, we also provide the pseudo-code
of the Blockchain centrality measurement, in which we dis-
cuss the details of the involved sub-processes.

There are two actors in the process, namely, the Blockchain
analyst and the Blockchain system (See Fig.3). Blockchain
analyst wants to design and measure decentrality of
Blockchain systems. There are six steps involved in the
measurement. Blockchain analyst queries and gathers the
information about the three layers of Blockchain (See Fig. 4).
She calculates variousmetrics associated with the three layers
and baseline measurements. Then compares different decen-
tralized systems to see how centralized or decentralized the
system being considered is. Algorithm 1 shows the process
in great detail.

Decentrality is quantified in three dimensions:

B. GOVERNANCE LAYER
One way to quantify decentrality is based on nodes partici-
pating in the block creation or mining process. In particular,
the number of nodes, or the number of organizations actually
controlling the nodes, and their power measured in hash rate.
Here, hash rate is the ability of a node to perform hash
computations within a time interval.

Algorithm 1 Pseudocode for Decentality Measurement Pro-
cess
1) Blockchain analyst queries and gathers Blockchain

system about hashrate, network topology and storage
location information from Blockchain system

2) Using the gathered information, the analyst calculates
the following metrics for the three layers:
a) For the governance layer, analyst calculates fair-

ness index, entropy, Gini coefficient, distance,
and similarity measures.

b) For the network layer, analyst calculates degree,
betweenness, and closeness centrality.

c) For the storage layer, analyst calculates distribu-
tion index.

3) Baseline measurements are computed for the three lay-
ers based on the information received (See Table 2)

4) Analysts use the baselinemeasurements to calculate the
metrics.

5) The comparison metrics derived from the gathered data
of the Blockchain system and the baseline measure-
ments, i.e., for governance layer, compare the result
with Table 4. Similarly, for network and storage layer,
comparisons of the values shown in Figure 16, 17, 18,
19, and 20

A simple metric of decentralization is simply the number
of nodes. Here, the more nodes a Blockchain network has
the more decentralized it is. The marginal utility of each
additional node decreases with the network size. For example,
a network with 1 million nodes is just as decentralized as a
network with 1 billion nodes.

In order to consider the marginal utility of additional
nodes, we could use logarithmic scale. Under a logarithmic
scale a network with one node is maximally centralized and
has minimum decentrality. The decentrality increases log-
arithmically with addition of more nodes. A network with
128 nodes would have a decentrality of 7, where a network
of 1024 would have 10. Similarly, Bitcoin network with about
6000 to 7000 full nodes would have decentrality 12.5 if we
only count the full nodes.

Moreover, it is the individual hash rate power of block
miners which controls the fate of the network, in the short-
term. They have the power to create forks in a blockchain.
Hence, it is not enough to have 1000 participating nodes if
1 node has power to produce 51 percent of the blocks. All
that matters is how many nodes can collaborate to generate
51 percent blocks and to some extent what is the largest
percentage of block production held by a single individual.

Hence, by observing the probability of a node being
selected as a leader or successfully creating a block, we can
see whether the Blockchain is moving towards centrality.
The Blockchain system assumes that every node has equal
probability of being selected in the long-term. When some
nodes have a higher probability of being selected than others,
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FIGURE 4. Generic process of decentrality measurement of Blockchain
systems by Blockchain analyst.

the Blockchain becomes more centralized. Once, we have
the probability distribution of the nodes being successful at
mining new blocks, we can calculate the decentrality using
below mentioned metrics:

1) FAIRNESS
Fairness metrics have been used extensively in resource allo-
cation in wireless networks. They measure the fairness level
of resource decisions in allocations [45]. As the objective of
a consensus protocol in Blockchain is to be fair among the
miners, we can use the Fairness index to quantify decentrality,
as

F(X ) =
(
∑i=N

i=1 pi)
2

N
∑i=N

i=1 p
2
i

, (1)

where pi is the fraction of total blocks mined by a node i
and where N is the number of miners. When a system is
completely distributed, when all pis are the same, the fairness
is 1. When it is completely central, the fairness will be 1

N .
We can also define decentrality as a normalized fairness,

i.e.,

NF(X ) =
F(x)− 1

N

1− 1
N

(2)

When a system is completely distributed, the normalized
fairness is 1. When it is completely central, the normalized
fairness will be 0.

2) ENTROPY
Entropy has been employed in various fields to quantify
uncertainty or randomness of an event or mechanism [46].
If we consider the Blockchain system as an information-
source, we can model it as a random variable. Here,
the amount of information emanating from a source is the
amount of uncertainty that existed before the source released
the information. In Blockchain systems, we can estimate the
probability that a miner will create the next block based on
its ability to add a block in the past. With respect to this
model, we can use Shannon’s entropy [47], H (x), to quantify
decentrality as,

H (X ) =
i=N∑
i=1

−pilog(pi), (3)

We can also define decentrality as a normalized entropy [48],
[49], i.e.,

d(X ) =
H (X )
log2(N )

, (4)

where log2(N ) is the maximum entropy of the system.
We can define decentrality in terms of min-entropy [50],

[51] as,

H∞ = −log(max(pi)). (5)

Here, Shannon’s entropy and Min-entropy are different
instances of Renyi-entropy of order q [52], i.e.,

H =
1

1− q
ln(

N∑
i=1

(pqi )). (6)

3) GINI COEFFICIENT
The Gini coefficient aims at measuring the degree of inequal-
ity in a distribution [53], [54]. It is most often used in eco-
nomics to measure how far a country’s wealth or income
distribution deviates from a totally equal distribution.Gini
coefficient is defined as,

G =

∑N
i=1

∑N
j=1

∣∣pi − pj∣∣
2 ∗ N

∑N
j=1 pj

(7)

where pi is the fraction total wealth or income of the ith
individual. In the most equal society, every person receives
the same income (G = 0); and in the most unequal society,
a single person receives 100 percent of the total income and
the remaining N − 1 people receive none (G = 1− 1/N ).

4) DISTANCE MEASURES
We can use Euclidean distance to compare the resource distri-
bution with the best case scenario [55], [56]. Here, Euclidean
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distance is defined as:

Euclidean_dist =

√√√√ N∑
i=1

(pi − si)2 (8)

where si = 1
N (the best case scenario). Similarly, we can use

Minkowski Distance, which is a generalization of Euclidean
Distance. Minkowski Distance [57], [58] with parameter r is
defined as:

Minkowski_dist = (
N∑
i=1

(| pi − si |)r )(
1
r ) (9)

When r = 1, Minkowski distance is considered as City
block (Manhattan, taxicab, L1 norm) distance. A common
example of this is the Hamming distance, which is just the
number of bits that are different between two binary vectors.
When r = 2, Minkowski distance becomes Euclidean dis-
tance. Similarly, when r→∞ ‘‘supremum’’ (Lmax norm, L∞
norm) distance. This is the maximum difference between any
component of the vectors.

5) SIMILARITY MEASURE
We can also use Cosine Similarity to define decentrality [59],
[60]. Cosine Similarity is defined as:

cos(P, S) =

∑N
i=1(pi ∗ si)∑N

i=1 pi ∗
∑N

i=1 si
(10)

We can also use Kullback–Leibler divergence (KL diver-
gence) to quantify decentrality [61], [62]. KL divergence is
used to compare two distributions. It is defined as

DKL(P||S) =
N∑
i=1

pi ∗ log(
pi
si
). (11)

C. NETWORK LAYER
The main concern with centralization is trust. If there are
only a few entities capable of running validating nodes or full
nodes, then those entities could conspire to allow invalid
transactions for their own gain, and there will be no way
for other users to know without processing the block for
themselves. Fairness among the nodes suffers when large
miners have an advantage over small miners by controlling
the network topology and bandwidth. This anomaly leads to
centralization, where the mining power tends to be concen-
trated under a single controller, breaking the basic premise of
the decentralized crypto currency vision [19], [63].

1) NETWORK ANALYSIS
We can model the block generation and dissemination among
other nodes using stochastic processes. First, we model the
time period T (pi) for a miner i with hardware capable of
performing pi operations per second to find a valid block is
distributed exponentially with rate pi in an interval 0 to t [64],

Pr[T (pi) < t] = 1− exp(−pi ∗ t) (12)

Consider n miners with hash power rate p1, p2, . . . , pn. the
time to find a block in time T is equal to the minimum value
of random variable T (pi) assuming that the miner publishes a
found block and it reaches other miners immediately. Accord-
ing to the properties of the exponential distribution, T is also
distributed exponentially [64]:

Pr[T = min(T1,T2, . . . ,Tn) ≤ t] = 1− exp(−t
n∑
i=1

pi)

(13)

Now let’s consider another random variable X , which
denotes the number of blocks mined within a time interval
(t1, t2) and is independent of other non-overlapping intervals.
The number of blocks mined within time interval t follows
a Poisson distribution as (for complete analysis kindly see
[65]):

Pr[X = k] =
exp(−

∑n
i=1 pi ∗ t)(

∑n
i=1 pi ∗ t)

−k

k!
(14)

2) EFFECT OF NETWORK TOPOLOGY
From equations 12,13 and 14, we can see that the time taken
by a node to generate a block and the delay induced due to
the data transmission play an important role in Blockchain
systems. Hence, the centrality of the nodes should be studied
from a networking perspective also.

Network topology analysis will help us understand the
ability of various nodes to propagate transactions and blocks.

Centrality in a network measures the importance, influ-
ence, or power of a node in the network and is widely applied
in social network analysis. Important metrics to calculate cen-
trality of a network are: Degree centrality, Betweenness cen-
trality, and Closeness centrality [16], [66], [67]. Betweenness
and closeness centrality count only geodesic paths assuming
that messages or transactions in a network flow only along
the shortest possible paths. The Eigenvector measure counts
walks, which assumes that trajectories can also revisit nodes
and edges multiple times (see [68] for more network analysis
related metrics).

a: DEGREE CENTRALITY
The degree centrality is a measure of the number of direct
links, or connections that one node i has with others, which
captures a local property [16]. To compare the degree central-
ity among networks of different size, one has to normalize,
dividing the measure by the maximum possible number of
adjacent connections N − 1. Nodes with higher degree cen-
trality tend to have more influence on others.

CD(ni) =

∑n
i=1 aij
N − 1

(15)

where aij is the direct link between node i and node j,
i.e., aij = 1, if i and j are adjacent nodes, otherwise aij = 0

b: BETWEENNESS CENTRALITY
The betweenness centrality is based on the number of shortest
paths passing through a node, which captures global property.
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Nodes with high betweenness play a central role in connect-
ing different groups in a network [16]. Nodes with the highest
betweenness centrality measure result in the largest increase
in a typical distance between others when they are removed.

CB(ni) =

∑N
j=1

∑N
k>j

gjk (i)
gjk

1
2N (N − 1)

, (16)

where gjk (i) is all geodesics linking node j and node k which
pass through node i, and gjk is the geodesic distance between
nodes j and k .

c: CLOSENESS CENTRALITY
The closeness centrality emphasizes the distance of a node to
all other nodes in the network by focusing on the geodesic
distance from each node to all others [16]. Closeness cen-
trality can be regarded as a measure of how long it will take
information to spread from a given node to others in the
network. The most central node in the network is that with the
minimum costs or time for communicating with all others.

Cc(ni) =
N∑

j=1,j6=i

N − 1
d(ni, nj)

, (17)

where Cc(ni) is the closeness centrality and calculated by the
sum of inverse distances d(ni, nj) between two nodes in the
network.

D. STORAGE LAYER
Location of a node running a Blockchain system plays an
important role while defining decentrality. A permissionless
Blockchain enables any node to join the network, keeping it
as decentralized as possible without knowledge of the hard-
ware the nodes are running on [63]. This problem does not
really exist in permissioned Blockchains since the endorsers
that execute the contracts are known. They rely on the fact that
everyone has a membership and can therefore be identified.
If an application misuses the resources, appropriate action
will be taken on the developers.

Three roles exist on Blockchain systems that interact with
the storage layer. The Miner role or transactor role is one in
which the software and hardware participate in the consensus
process. This role proposes transactions and participates in
voting, mining, staking, and any other tasks required by the
protocol of a participating peer. The most commonly used
role would be on a client or a user that interacts with the
Blockchain system. This role often comes from a wallet
application that stores credentials or cryptographic content
required for the user to communicate and interact with the
Blockchain system. The last role is not much talked about,
but is potentially the most important. This is the role of the
auditor, and involves software and hardware that downloads
and verifies the ledger of the Blockchain system to ensure that
all actors participating are following the rules. It is important
that the auditor role be operational and run by independent
parties to the system to ensure that expectations of the system
are met.

All of these roles could be run on a variety of storage
platforms including physical hardware, virtual hardware, and
cloud based run systems. In Blockchain, many nodes run
on cloud service provider, hence the cloud service provider
becomes a crucial point of centrality. For example, if more
than half of the miner nodes are being hosted on a single
cloud service providers, and the cloud service provider starts
to behave maliciously, or is hacked, or coerced by the govern-
ment, then the Blockchain can be modified or disrupted [69].
This can also occur if the auditing roles are not able to
independently audit the system due to the masking of a cloud
based service provider. The best form of decentralization
is when the users run software locally on their machines
providing them full control. A more centralised approach is
when all the users run their software on a single cloud service
provider [12].

Based on the location of a node running, we can define
three types of nodes:

• Individual nodes: These are the nodes who are run-
ning the instances of the Blockchain on different sys-
tems [70], [71].

• Cloud based nodes: These are the nodes which are run-
ning the Blockchain system at cloud service providers.
Here, the nodes can use a particular cloud service
provider to run the Blockchain instances or they can
use various cloud service providers. Here, cloud based
service providers essentially act as a single physical
machine in a logical sense. Technically, it is distributed
but it is run by a single owner.

• Wallet-based nodes: Wallets plays an important role for
the centrality of the Blockchain. As users use wallets
to store their private keys, any attack on the wallet
can make Blockchain unavailable to the users. Hence,
the number of wallets used by the users to store their
private keys is crucial. Each user can have their own
private wallets. However, users find it hard to maintain
their wallets and do not want to download the entire
Blockchain during client installation. They prefer to
use the services of wallet providers, who store wallets
online, regardless of how the mining is done. [27], [28]

The Blockchain system can be considered storage-wise
decentralized if each and every node runs their code on
individual machines, and centralized if all the nodes run their
services at a single cloud service provider. The notion of
a single machine or single cloud service provider should
always be considered as the owners and controllers of the
machine. If one owner can manipulate (turn off, re-configure,
access data, upgrade) the machines then it doesn’t matter if
individual organizations or people control them.

In [72], Zhan et al., used the Shannon-Wiener index,
which is an evenness indicator, to measure if each disk drive
accommodates the same number of file blocks in a distributed
storage system. Distribution index, a part of Diversity index,
has been used in ecological research [73], which is the
quantification of equality of abundance in a community,
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TABLE 2. Six cases of synthetic resource distribution from the decentralized (Best case, S1) to centralized (Worst case, S6) for governance layer.

i.e., when there are similar proportions of all species within
a community, then the distribution index tends to be one; but
when the abundances are very dissimilar then the distribution
index decreases. For example, suppose, we have n blocks
which we want to distribute across c number of disk drives
where each disk i stores xi, then the distribution index (E) is
calculated as follows

E =
−
∑c

i=1(
xi
n ∗ log2(

xi
n ))

log2(n)
(18)

When the cloud servers evenly distribute all n blocks on
exactly c drives, i.e., x1 = x2 = . . . = xc = n/c, then the
distribution index will be log2(c)

log2(n)
.

Hence, we can calculate distribution index for individual
nodes, cloud servers based nodes and wallet-based notes to
quantify centrality. In the context of storage centrality, n
represents the total number of blockchain nodes, c represents
the total number of servers where data is stored, xi is the
number of nodes using server i. Here, when each node uses
its own server, i.e., c = n, E becomes 1, and when all the
nodes run at a single cloud server, i.e., c = 1, E becomes 0.

IV. RESULTS
In this section, we discuss the results for governance layer,
network layer and storage layers of Blockchain systems.
In each of these layers we compare Bitcoin and Ehtereum
network with synthetic configuration.

A. GOVERNANCE LAYER DECENTRALITY
To achieve decentrality in the governance layer the compu-
tational power is considered. In a true decentralized system,
computational power of all the nodes should be the same,
i.e., in the Blockchain context, the hashrate should be the
same at all miner nodes. We first consider synthetic networks
to set the framework to measure different metrics, evaluate
Bitcoin and Ethereum networks, and compare them.

1) SYNTHETIC DATA
Here, we consider six scenarios where 100 blocks are mined
by 10 mining nodes. In the best-case scenario, each node
mines 10 blocks, thus this scenario signifies a true decen-
tralized system. In the worst-case scenario, only one node

mines all the blocks, which represents a centralized system.
We also consider four more cases where blocks are mined
randomly. Table 2 shows six cases of resource distribu-
tions, from the best-case to the worst-case. The columns in
the table represent from S1 (best-case) to S6 (worst-case).
The rows represent the blocks mined by nodes in differ-
ent scenarios. For example, in S1 column, each nodes has
mined 10 blocks, i.e., Node 1 through Node 10 have each
minded 10 blocks. In S5 column, only Node 1 and Node 2
have mined 50 blocks each, and others haven’t mined any
blocks.

Table 3 shows different metric measurements for the six
scenarios discussed in Table 2. Here, the columns in the table
represent from S1 (best-case) to S6 (worst-case). The rows
represent different metrics. The observations are following:

• Fairness: The fairness value (see equation 1) decreases
from 1 to 0.1 as a system goes from S1 to S6. That means
fairness decreases with centrality.

• Entropy and normalized entropy: As we know,
the entropy (shown in 3rd row in Table 3) is high
when the randomness in the system is high, i.e., in
Blockchain system the probability of generating the
block is equiprobable (see equation 3). Hence, we can
observe the entropy in S1 is the highest, i.e., 3.32, among
the given scenarios, and it decreases with centralization.
We can observe that in the worst-case scenario, scenario
S6, it is zero. The same can be observed in case of
normalized entropy (see equation 4) in the 4th row.

• Gini Coefficient: As discussed in equation 7, the Gini
coefficient is zero when nodes generate the block
equally. We can observe the same in S1 (5th row), where
the Gini coefficient is zero, and it increases with central-
ity.

• Euclidean distance, and Minkowski Distance with r =
1 and r = ∞: As we see, Euclidean and Minkowski
distances (see equation 8 and 9) are zero for S1 (7th and
8th rows) and increase with centrality.

• Cosine similarity and KL Divergence: We can see both
Cosine similarity and KL Divergence (equations 10
and 11) are zero (column S1 and 9th and 10th rows)
when ndes generate blocks equally, and increase with
centrality.
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TABLE 3. Governance layer metric measurements for the six cases of resource distribution mentioned in Table 2.

2) BITCOIN DATASET
In Bitcoin, the hash rate of the node is a proxy for the number
of blocks mined by a node. We collected Bitcoin hashrate
for the following period: the entire chain, last 1 year, last
3 months and last 1 month (Dated April, 2, 2020, from
btc.com). Fig. 5 shows the number of pools and blocks mined
in Bitcoin. In Fig 5.a, x-axis shows the time and y-axis shows
the number of pools. Similarly, in Fig 5.b, x-axis shows the
time and y-axis shows the number of blocks mined. In both
these figures, we can see that in the short-term only a few
nodes are contributing blocks for the Blockchain.

Fig. 6, 7, 8, and 9 show Hashrate distribution of entire
Bitcoin, for last 1 year, last 3 months and last 1 month,
respectively, where x-axis shows the name of the mining
pools and y-axis shows the hashrate. In Fig. 6, it may be
observed that 36 percent of the hashrate belongs to unknown
miners and the rest is distributed among the other pools. In the
decentrality measurements, in this article, we have ignored
the unknown pool of miners, as we do not know the exact
number of miners, and only considered named pools. Here,
in Fig. 7, 8 and 9, we can notice only a few pools, like,
BTC.com, F2Pool, have more hashrate shares than others.

Table 4 shows different metric measurements of centrality
of the Bitcoin network. Here, the columns in the table repre-
sent the four duration of data collection, i.e., the entire chain,
the last 1 year, last 3 months and last 1 month, respectively.
The rows represent different metrics. The following observa-
tions may be made from Tables 3 and 4.

• Fairness: The fairness index (see equation 1) of the
entire chain is 0.159. When we compare that with
Table 3, we can see that the bitcoin network is very
centralized. However, when we observe the fairness
index for the last 1 year, last 3 months and 1 month,
we notice that during this period the Bitcoin network is
more centralized among those pools.

• Entropy and normalized entropy: In both entropy (see
equation 3) and normalized entropy (see equation 4) we
see, the entropy decreases with period, which signifies
that the network is more centralized among a few pools.

• Gini Coefficient:When we compare the Gini coefficient
(see equation 7) of Bitcoinwith Table 3, we see the entire

Bitcoin network is very centralized. And the network is
well distributed among a few pools, as we see it over
1 year, 3 months and 1 month.

• Euclidean distance, and Minkowski Distance with r = 1
and r = ∞: Similar to above observation, we can notice
all these metrics (see equation 8 and 9) are away from
zero, hence they all show the sign of centrality. However,
as seen in previous cases, the data over 1 year, 3 months
and 1 month show that the network is governed by only
a few pools.

• Cosine and KL Divergence:We observe that both cosine
similarity and KL divergence (equations 10 and 11)
show that the Bitcoin network is highly centralized in
case of the entire network and over other periods they
are governed equally by only a few pools.

3) ETHEREUM DATASET
We collected Ethereum hashrate for the following period: the
whole chain, the last 1 year, last 3 months and last 1 month
(Dated April 07 2020 from eth.btc.com). Fig. 10 shows the
number of pools and blocks mined in Ethereum. In Fig 10.a,
x-axis shows the time and y-axis shows the number of pools.
Similarly, in Fig 10.b, x-axis shows the time and y-axis shows
the number of blocks mined. In both these figures, we can see
that in the short-term only a few nodes are contributing blocks
for the Ethereum.

Fig. 11, 12, 13 and 14 show Hashrate distribution of Com-
plete Ethereum, for 1 year, 3 months and 1 month, respec-
tively. Here, x-axis shows the name of the mining pools and
y-axis shows the hashrate. In Fig. 11, it may be observed
that most of the hashrate belongs to Ethermine miners, while,
in Fig. 12, 13 and 14, we can notice only a few pools, like
SparkPool, SparkPool_3, have more hashrate shares than
others. Like Bitcoin, here also we can see that in short-term
only a few nodes are contributing for the Blockchain.

Table 5 shows different metric measurements of Ethereum.
Here, the columns in the table represent the four duration
of data collection, i.e., the entire chain, the last 1 year, last
3 months and last 1 month. The rows represent different
metrics. The observations are as follows:

VOLUME 8, 2020 178381



S. Prasad Gochhayat et al.: Measuring Decentrality in Blockchain Based Systems

TABLE 4. Governance layer metric measurements of Bitcoin for entire time period, last one year, last three months and last one month.

FIGURE 5. Number of mining pools and blocks mined in Bitcoin for entire
time period, 1 year, 3 months and 1 month (collected from
https://btc.com/stats/pool?pool_mode=month dated April 2 2020).

• Fairness: The fairness index (see equation 1) of the
entire chain is 0.159. When we compare that with
Table 3, we can see the Ethereum network is very cen-
tralized. However, when we observe the fairness index
for the last 1 year, last 3 months and 1 month, we notice
that during this period the Bitcoin network is more
centralized among those pools, hence 0.104 0.097, and
0.095. We can see this difference compared to Bitcoin,
because of the number of pools involved here, i.e., in
Bitcoin the number of pools is around 100 while in
Ethereum it is around 6000.

• Entropy and normalized entropy: In both entropy and
normalized entropy (see equation 3 and equation 4) we
see, the entropy decreases with period, i.e., 4.514 for

FIGURE 6. Hashrate distribution of entire Bitcoin collected from
https://btc.com/stats/pool?pool_mode=all dated April 2 2020.

FIGURE 7. Hashrate distribution of Bitcoin for the last 1 year collected
from https://btc.com/stats/pool?pool_mode=year dated April 2 2020.

the entire network and 3.661, 3.567, 3.537 for 1 year,
3 months and 1 month. This signifies that the network is
more centralized among a few pools over a short-period
of time.

• Gini Coefficient:When we compare the Gini coefficient
(see equation 7) of Ethereum with Table 3, we see the
entire network is very centralized, i.e., Gini coefficient is
0.821. And a few pools control the network over 1 year,
3 months and 1 month.

178382 VOLUME 8, 2020



S. Prasad Gochhayat et al.: Measuring Decentrality in Blockchain Based Systems

FIGURE 8. Hashrate of Bitcoin for the last 3 month collected from
https://btc.com/stats/pool?pool_mode=month3 dated April 2 2020.

FIGURE 9. Hashrate of Bitcoin for the last 1 month collected from
https://btc.com/stats/pool?pool_mode=month dated April 2 2020.

• Euclidean distance, and Minkowski Distance with r = 1
and r = ∞: Here, all these metrics (equations 10 and
11) are greater than zero, hence they all show the sign of
centrality. However, as seen in previous cases, the data
over 1 year, 3 months and 1month show that the network
is governed by only a few pools.

• Cosine and KL Divergence: Both cosine similarity and
KL divergence show (equations 10 and 11) that the
Ethereum network is highly centralized (i. e., cosine
similarity and KL divergence are 0.601 and 2.070,
respectively) in case of entire network and over other
periods they are governed equally by only a few pools.

As we can see, both in Bitcoin and Ethereum networks,
they do show some sign of centrality. As shown in Table 7,
the number of pools combined with more than 51 percent
of total hash rate is significantly low compared to the to the
total number of pools (See Fig 5 and 10). Hence, only few
polls are controlling both Bitcoin and Ethereum networks.
In order to further find the extend of control, we can compare
the measurements of various metrics over a particular time
period, i.e., 1 month (see last column of Table 6 and 5) with
the six scenarios mentioned in Table 3. Although, there are

10 metrics on the table, we can only consider normalized fair-
ness index, normalized entropy, Gini coefficient, and cosine
similarity, as these measurements are independent of the
network size and their range is from zero to one. Here, we can
notice that these metrics for both Bitcoin and Ethereum is
similar to S3. This signifies that although there are many
miners, only a few control the whole network.

FIGURE 10. Number of mining pools and blocks mined in Ethereum for
entire time period, 1 year, 3 months and 1 month (collected from
https://eth.btc.com/miningstats dated April 07 2020).

FIGURE 11. Hashrate distribution of entire Ethereum collected from
https://eth.btc.com/miningstats dated April 07 2020.

B. NETWORK LAYER DECENTRALITY
In this case, the data are synthetic, as there is no data about
the network topology of the Bitcoin or Ethereum network. For
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TABLE 5. Governance layer metric measurements of Ethereum for entire time period, last one year, last three months and last one month.

TABLE 6. Network layer metric measurements, i.e., Degree centrality (DC), Betweenness centrality (BC) and Closeness centrality (CC), of Complete graph,
Path graph, Star topology and Random topology.

FIGURE 12. Hashrate distribution of Ethereum for the last year collected
from https://eth.btc.com/miningstats dated April 07 2020.

the purpose of pictorial illustration, we have only considered
10 nodes. However, the similar output can be observed with a
higher number of nodes. Here, we discuss the results from
the best case scenario to the worst case scenario. Fig. 15
shows topology of various cases. Table 6 shows degree (DC),
betweenness (BC) and closeness centrality (CC) (see equa-
tions 15, 16 and 17) of complete graph, path graph, star
topology and random topology. The columns represent DC,
BC and CC of complete graph, path graph, star topology and
random topology. The rows in the table show the DC, BC

FIGURE 13. Hashrate distribution of Ethereum for the last 3 months
collected from https://eth.btc.com/miningstats dated April 07 2020.

and CC nodes,i.e., from node 1 to node 10. Fig. 16, 17, 18,
and 19 show DC, BC and CC measurements of the complete
graph, path graph, star topology and random graph. Here, x-
axis show the nodes, and y-axis represent DC, BC and CC.

1) COMPLETE GRAPH (BEST CASE)
In the best case scenario, all nodes are connected with others
directly, forming a complete connected graph. In this case,
starting as a new node is the most difficult. The node having
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FIGURE 14. Hashrate distribution of Ethereum for the last month
collected from https://eth.btc.com/miningstats dated April 07 2020.

TABLE 7. Number of pools combined having more than fifty-one percent
of hash rate.

poor network connectivity will have issue becoming member.
In this topology, each node has high degree and closeness
centrality and low betweenness centrality. Fig. 16 shows
measurements of the complete graph.

BothDC andCC of all nodes in the complete graph is 1 (see
Table 6 as well as Fig. 16.a and 16.c). It signifies that when all
the nodes are connected to each other directly, they relay the
information quickly to others, hence, there is no centrality.
Similarly, BC value zero signifies no centrality, which can
be seen in Fig. 16.b (as the values are zero, the figure seems
empty).

2) PATH GRAPH
In this case, all nodes, except the last nodes, are connected to
only two nodes directly, forming a long chain. Here, starting
as a new node is easier, i.e., it has to connect only two nodes.
In this topology, every node, but the end nodes, has the highest
degree, betweenness and closeness centrality. Fig. 17 shows
measurements of the path graph.

The nodes at the center of the path graph play important
roles for spreading the information. Hence, BC and CC of
those nodes will be the highest among other nodes (see
Table 6 as well as Fig. 17.b and 17.c). We see centrality
arising in the path graph. Similarly, value zero signifies less
centrality at the end of the path graph.

3) STAR TOPOLOGY (WORST CASE)
In this worst-case, all nodes will be connected to only a
centralized directly forming a star topology. Here, if the

central node is down the whole network is down. It is the most
centralized system. Hence, the central node has the highest
degree, betweenness and closeness centrality. Here, starting
as a new node is very easy as a node can directly connect
with the central node. Fig. 18 shows measurements of the star
topology. Hence, DC, BC and CC of the central node is the
highest among other nodes (see Table 6 as well as Fig. 18.a,
18.b and 18.c). Hence, we observe centrality in star topology.

4) RANDOM TOPOLOGY
In random topology, different nodeswill have different degree
of connectivity with each other, which is normally found in
real life. In this scenario, a few nodes emerge as contributing
more, hence, the centrality emerges. Here, DC, BC and CC
of the most connected nodes are the highest among other
nodes (see Table 6 as well as Fig. 19.a, 19.b and 19.c). Bitcoin
and Ethereum would have more resemblance to the random
topology. Fig. 19 shows measurements of the Random graph.
As we can see here, node 1, node 4 and node 7 show highest
degree centrality; node 1 shows highest betweenness central-
ity; and node 1 and node 9 show highest closeness centrality.
Hence, node 1, node 4 and node 7 are the important nodes
where centrality arises.

C. STORAGE LAYER DECENTRALITY
To look at decentrality in the storage layer, we consider
the storage used by nodes/users for local Blockchains and
wallets. In a Blockchain system, a fully storage layer decen-
tralization is achieved when all nodes run their instances of
Blockchain on their own local physical machines. On the
other hand, a Blockchain system is fully storage layer cen-
tralized when all the nodes run their Blockchain on a single
server, which could be at a cloud service provider.

Similarly, storage layer decentrality could be defined for
wallets. Generally, users use wallets to store their private
keys. For example, if a node wants to offload their Blockchain
to some cloud service provider, they can store the public
and private keys locally or in a wallet. Hence, any attack
on the wallet service provider can result in an attack on the
Blockchain itself. In the context of storage layer decentrality,
a system where each node stores its public and private keys
locally (say in a wallet) is desirable to achieve full decentral-
ization.On the other hand, when all nodes employ a single
wallet provider, it contributes toward centrality at the storage
layer.

Both decentrality of storage of the Blockchain and wallet
can be quantified by using distribution index (See equa-
tion 18). Here, distribution index of 0 means complete cen-
trality, and distribution index of 1 means complete decen-
trality. To illustrate the relevance of this equation in mea-
suring storage decentrality, we consider a Blockchain sys-
tem with 100 nodes. Depending on where each node stores
its local Blockchain copy, we get a different distribution
index. We chose a 100 node Blockchain system because
we observed 97 minors in the Bitcoin network (see Fig. 5).
We analyze the impact of the number of servers on a distri-
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FIGURE 15. Topology of various cases.

FIGURE 16. Measurements of Complete Graph.

FIGURE 17. Measurements of Path Graph.

FIGURE 18. Measurements of Star topology.

bution index. Fig 20 provides the result of distribution index
versus number of servers on which the storage is distributed.
Here, X-axis represents the number of storage servers and
Y-axis shows the distribution index. For simplicity, here,
we assume that the storage is uniformly distributed across

the storage servers. With a single storage server(c = 1) used
by all 100 nodes, the distribution index is zero. The distribu-
tion index increases non-linearly with the number of storage
servers (c). The distribution index is maximum when each of
the 100 Blockchain nodes use a separate storage server (c =
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FIGURE 19. Measurements of Random Graph.

100). When the n node storage is not uniformly distributed
across the c servers, the distribution will be different.

In summary, we observed that decentrality can be mea-
sured at the governance layer, network layer and storage layer
using various metrics. For the governance layer, we con-
sidered synthetic data, Bitcoin network data and Ethereum
network data; and showed decentrality in terms of fairness,
entropy, Gini coefficient, KL divergence, etc. Similarly, in the
network layer, wemeasured decentrality by using degree cen-
trality, betweenness centrality and closeness centrality. At the
storage layer, we applied a distribution index to define cen-
trality. In summary, to achieve decentrality in a Blockchain
system, one needs to achieve decentrality at each of the
three layers. For example, a full distribution at governance
layer, with a partial decentralization at network layer, and
centralization at storage level will result in a system that is
close to a centralized system.

FIGURE 20. Change of Evenness Index with number of storage servers.

V. CONCLUSION AND FUTURE WORK
In this article, we discussed various metrics to quan-
tify decentrality in Blockchain using information theoretic
approach. In particular, we looked into the decentraliza-
tion problem by focusing on three different layers, namely,
the governance layer, network layer and storage layer.We dis-
cussed different metrics to evaluate decentrality in these
layers. Subsequently, we evaluated the decentrality in Bit-
coin and Ethereum networks and shared our observations.

We noticed, with time, decentralised systems tend to be gov-
erned by a few nodes, hence they become more centralized.

Although we covered most of the metrics, there are a few
more parameters which can introduce centrality which need
worth attention. Those are:

• The team members involved in protocol design and
upgrade.

• Company building Mining Hardware, i.e., the depen-
dency of Blockchain system on Hardware. For example,
PoW is hardware dependent, in which the success rate of
becoming a leader or generation of the block is directly
proportional to the hardware size.

Another interesting topic of interest would be to explore the
factors that drive centrality. For example, the effect of market
incentives, computing properties, demand for smoother user
experience, which steer decentralized protocols into central-
ization need to be investigated. It appears the community
discusses centrality as trade off in performance. To make
these systems better performing aspects of centrality is added
to them. Is the value of decentrality enough to justify the
costs? This type of question can only be addressed once
the measure of centrality/decentrality in the system can be
compared. We need to find how to use the metrics proposed
in the paper to quantify the centrality of the whole system.
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