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ABSTRACT As an extension and novel category of the Internet of Things (IoT), the Internet of
Underwater Things (IoUT) attracts growing interest in sensing and exploiting ocean. Underwater Sensor
Networks (UWSNs) are the existing application to support the concept of IoUT but faced with many
challenges in information acquisition as well. To tackle these issues, this paper proposes an autonomous
underwater vehicle (AUV) assisted hierarchical information acquisition system composed of a marine
stationary sensor layer and an AUV motion layer. Different from the most existing data-gathering schemes
that ignored the energymanagement of underwater sensor nodes and the angle control in AUV operation, this
work designs an energy-aware clustering protocol based on the improved K-Means algorithm (ECBIK) to
achieve energy efficiency of sensor nodes and proposes a novel Ant Colony (ACO) algorithm integratingwith
Markov Reward Process (R-ACO) to optimize the distance and angle in AUV path planning. Specifically,
in the sensor layer, we first calculate the accurate number of clusters according to the Elbowmethod, and then
introduce a cluster head dynamic conversion mechanism by considering energy load and node survival rate.
In the AUVmotion layer, we establish a reliable AUV trajectorymodel to quantify the angle change during its
operation. Meanwhile, we apply far-sighted feature of MRP to path optimization. Finally, simulation results
validate the performance of our designed algorithms. Compared with the traditional clustering methods of
K-Means and LEACH-L, the node survival rates of the proposed ECBIK are increased by 26% and 129.1%
respectively. And in the aspect of path planning, the distance and angle under R-ACO are reduced by 4%
and 18% respectively compared with ACO.

INDEX TERMS Internet of Underwater Things (IoUT), Underwater Sensor Networks (UWSNs),
autonomous underwater vehicle (AUV), hierarchical information acquisition, clustering, AUVpath planning.

I. INTRODUCTION
In the last few decades, the Internet of Things (IoT) plays
an increasingly important role in many fields [1]–[3]. More
and more physical objects are interconnected with the Inter-
net to satisfy the wide-ranging applications in our daily
lives. Nowadays, with the skyrocketing demands for marine
detection and exploitation, the researchers set out to explore
the possibility of applying the IoT technology underwa-
ter. As response, the concept of the Internet of Underwater
Things (IoUT) was first discussed in 2010s [4] and defined as
an extension and novel category of the IoT, which promises
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to establish intelligent interconnection of underwater objects
[5], [6] and realize the smart ocean [7], [8]. Due to the unique
characteristics of the ocean, the Land-based IoT technology
cannot be applied directly. Additionally, the low transmis-
sion quality of underwater acoustic communication in the
vast ocean area has posed considerable challenges to reliable
information acquisition for IoUT [9]. In fact, Underwater
Sensor Networks(UWSNs) have been verified as promis-
ing paradigm for the application of IoUT. As the primary
component of UWSNs, the cable-connected sensor networks
are still frequently-used in underwater communication due
to its easy operation [10]. However, the wired communica-
tions have been criticized for its costly deployment. Further-
more, multi-hop relaying transmission technique has been
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proposed as an optimized alternative for underwater data
collection by using buoy floating at the specific depth [11].
Although this method achieves long-range underwater acous-
tic communication from the seabed to the surface, the unsta-
ble communication links and weak robustness still exist
obviously. Thus, the demand for applying a mobile sink
appears [12]. As a typical model, an autonomous underwa-
ter vehicle (AUV) sails to visit anchored sensor nodes and
establishs a short-range stable communication link, finally
offloads the retrieved information back to the designated
location [13].

Currently, AUV is expected to build a bridge between
the sea surface and the seabed for sensing the ocean [14].
Especially in AUV assisted IoUT, AUV and underwater
sensor nodes construct a hierarchical architecture and use
variety technologies to transmit the gathered information
to the surface for data mining. In such case, sensor nodes
are clustered according to certain properties, and a part of
them are chosen as cluster heads (CHs), which are mainly
engaged in aggregating and fusing data originating from the
common nodes (CNs). As a dynamic node, AUV only needs
to visit these few CHs rather than all the nodes to save the
traversal time and energy overhead. However, there remains
two challenges: Firstly, the energy management of sensor
nodes is essential in such model, since the energy storage
of node is seriously restricted and batteries cannot be read-
ily recharged due to bottleneck of ocean pressure and ero-
sion [15], [16]. Considering the selected CHs undertake more
tasks, they have more energy consumption than other nodes.
Hence, the efficient energy management must be adopted
for such hierarchical information acquisition especially for
CHs. Secondly, AUV cruise path selection imposes directly
influence on the performance and efficiency of the system.
The common practice is to formulate the path length as a pri-
mary indicator when tackling such problem. Actually, under
the influence of various underwater forces, the movement
of AUV is complicated and consists of at least six actions
including traverse, heel, heave, turn, trim as well as advance
and retreat. For these actions, angle control is crucial [17].
In [18], it is mentioned that the US Naval Research Institute
found that AUV in motion has huge moments of inertia and
requires much energy to change its direction of movement,
which verifies the significance of angle control. Accordingly,
considering the impact of heading angle is also essential in
AUV path planning. In addition, we should fully consider the
obstacle avoidance during AUV movement in the complex
and varied underwater environment.

In summary, the wired communications are too expensive
to be widely used, and the underwater acoustic multi-hop
transmission is subject to link instability and large delays
in long distances communication. A promising solution to
address these issues is to use a highly mobile AUV as
dynamic node to transmit with certain CHs anchored on
the seafloor. However, most AUV assisted schemes not only
neglect the energy management of underwater sensor nodes,
but also omit the angle control during AUV movement.

Therefore, we designed an energy-aware clustering proto-
col based on the improved K-Means algorithm (ECBIK)
for UWSNs, which achieves energy balance by adding
CH Dynamic Conversion (CHDC) mechanism. Meanwhile,
to solve the Traveling Salesman Problem (TSP) with obsta-
cles, we introduceMRP in the ACO algorithm to optimize the
patrol distance and angle in AUV path planning. We summa-
rize the main contributions of our work as follows:
• We design an autonomous underwater information
acquisition for AUV assisted IoUT based on hierarchical
framework. To be specific, we construct a realizable
scene for portraying the characteristics of the sensor
nodes and AUV, as well as the unique communication
conditions with obstacles.

• For the problem of energy management of underwater
sensor nodes, we propose an energy awareness cluster-
ing protocol based on improved K-Means algorithm for
UWSNs. Specifically, we design the CHDC mechanism
by considering the node location and its residual energy,
which can balance the energy load effectively to extend
the life of the network.

• We utilize the kinematic equations to indicate the AUV
trajectory for executing trackable analysis of the path
planning problem, which is the first time that the AUV
control theory is applied in the information acquisi-
tion. Additionally, the rotation-angle of AUV and its
influence has been quantified based on its dynamic
characteristics.

• For AUV path planning, we propose a novel ACO algo-
rithm based on MRP, namely R-ACO algorithm, which
aims at optimizing the patrol distance and angle with
faster convergence speed in TSP scenario.

The remainder of this paper is organized as follows.
Section II reviews some typical works in this field, Section III
establishes the system model and problem formulation. The
energy aware clustering algorithm and the AUV path plan-
ning scheme are detailed in Section IV. The simulation ver-
ification on the proposed algorithms has been carried out in
SectionV, and all the conclusions are presented in SectionVI.

II. RELATED WORKS
In recent years, more and more researches focus on stable
underwater data collection and reasonable path planning of
AUV in UWSNs [19]. Current mainly researches have gener-
ally been divided into two categories. The first type is that the
trajectory of AUV is fixed. Such as in [20]–[22], the authors
assumed that the trajectory was ellipse. In [20], the fixed
Gate Nodes (GNs) were used to collect data from member
nodes (MNs), while transmitting data to the moving AUV
to strengthen the network performance, especially in data
delivery ratio and energy consumption. However, the rapid
energy exhaustion of GNs leaded to a shortened network life.
In [21], a new clustering protocol was designed based on the
Received Signal Strength Indicator (RSSI) value.Meanwhile,
the Shortest Path Tree (SPT)was established to assignMNs to
GNs.Moreover, the role of the gatewayswas varied according
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to the residual energy for balancing the energy consump-
tion. However, this approach did not constrain the number
of MNs communicated with GNs, resulting in data flooding
and excessive energy consumption. As an improvement of
[21], [22] proposed a GN selection scheme based on dynamic
data acquisition time, and a MILP model was formulated to
restrict the assignment of MNs. Authors in [23] regarded the
magnetic-induction as a significant standard for reduction of
energy consumption in the AUV data collection and designed
a distributed algorithm to select sink sensor sets in informa-
tion collection. However, due to the fixed trajectory of AUV
motion, the nodes for data transmission with AUV remained
unchanging, leading to increasing their burden and shortening
the network life. On the other hand, from the perspective
of practice, the dynamic advantages of AUV were not fully
exploited.

AUV path planning is another hot topic in UWSNs. Gener-
ally, most works take distance as the object of optimization.
In [24], the authors utilized the classical Dijkstra algorithm
to solve the single-source shortest path problem. Further-
more, as an essential metric of Quality of Information (QoI),
the transmission delay was taken into account in [25]–[27].
The authors solved the possible delay problem during AUV
traversal through different schemes to achieve the target
of path optimization. Apart from the above, the Value of
Information(VoI) in [28]–[30] has been used as a signifi-
cant indicator to measure QoI from the perspective of event
importance. Usually, the approaches were to treat this ques-
tion as ILP problems and sought a heuristic answer, such
as in [28]. Under different scenarios, the authors considered
the timeliness of VoI in the AUV data collection process.
Especially in [29], the event significance and promptness
were treated as a linear combination for VoI while solving the
AUV path optimization problem through a dynamic program-
ming protocol. In [30], Duan et. al, enriched the definition of
VoI and proposed an effective information collection system
for UWSNs based on the importance, timeliness, and their
relationships of the event. But these works did not take into
account the angle control in the AUV movement. Moreover,
the authors in [31] paid attention to this issue by qualita-
tively demonstrating the importance of angle for the AUV
path selection. Nevertheless, this work did not clarify how to
calculate the angle, so this problem has not been fully solved.

In order to efficiently complete the energy management of
sensor nodes to extend the life of the network, and give full
play to the dynamic characteristics of AUV to achieve the
goal of path optimization in the underwater obstacle envi-
ronment, this work designs an energy-awareness clustering
algorithm by introducing CHDC mechanism. Meanwhile,
a novel heuristic algorithm with considering the traversal
distance, angle and obstacles is proposed based on MRP.

III. SYSTEM MODEL
We first illustrate the proposed system, including the overall
architecture and network energy consumption. For the sake
of clarity, we make the following hypotheses:

• The AUV has infinite resources, such as energy, storage
space, and computational ability. Moreover, its velocity
is constant.

• The anchored sensor nodes are randomly distributed
on the seabed, and their positions can be known. Fur-
thermore, they have the same initial energy and data
processing capabilities.

A. NETWORKS STRUCTURE
As shown in Fig. 1, we depict the system framework and oper-
ational mode.We establish an information acquisition system
which consists of a sensor layer anchored on flat seafloor
and an AUV motion layer above the seafloor. The sensor
layer is comprised of multiple sensor nodes anchored on the
seabed, and the sensor nodes are divided into several clusters
to collect underwater information. Each cluster contains a CH
and a set of CNs. CNs are responsible to collect underwa-
ter information and transmit the collected data to the CH.
Meanwhile, the CH is in charge of aggregating the data and
forwarding them to the AUV. In AUV motion layer, an AUV
moving in uniform motion periodically communicates with
CHs to retrieve the collected information on the plane which
is hmeters above the seabed. AUV starts from the base station
and returns to discharge the collected data after traversing all
the CHs, and then by way of maritime wireless transmission
or satellite transmission, the base station sends the data to
the shore-based processing center. The algorithms for the
clustering sensor nodes and the AUV path planning scheme
will be introduced in detail in Part IV.

FIGURE 1. A paradigm of the hierarchical information acquisition for AUV
assisted IoUT. Sensor nodes anchored on the seafloor are clustered for
collecting underwater information. The white nodes are MNs, and the red
nodes are CHs. On a plane which is h meters above the seabed, an AUV
moving in uniform motion communicates with CHs, and finally retrieves
the collected information back to the base station.

B. UNDERWATER ACOUSTIC CHANNEL MODEL
In this paper, we adopt the underwater acoustic channelmodel
based on [32]. Assuming that the power required by a node
to receive a single message is at least p0, to ensure the node
at a distance of x can receive the data, the transmission power
should be at least p0A(x, f ), where A(x, f ) is an attenuation.
Therefore, we can deduce when sending T bits of data to the
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destination, the power consumption is at least Et (T , x), which
can be expressed by:

Et (T , x) = TpoA (x, f ) . (1)

The attenuation A(x, f ) is given by [33]:

A(x, f ) = xkax , (2)

where k is the energy propagation coefficient associated with
underwater acoustic propagation (k = 1.5 represents the
actual underwater acoustic propagation model), and a =
10a(f )/10 is the term associated with frequency and derived
from the absorption coefficient a(f ). According to Thorp’s
expression [34], a(f ) is calculated by:

10 log(a(f )) = 0.11
f 2

1+ f 2
+ 44

f 2

4100+ f 2

+ 2.75× 10−4f 2 + 0.003. (3)

The ambient noise in underwater acoustic channel can be
modeled by four basic sources as follows:

N (f ) = Nt (f )+ Ns(f )+ Nw(f )+ Nth(f ), (4)

where Nt (f ), Ns (f ), Nw (f ) and Nth (f ) represent the main
underwater noisy sources: turbulence, shipping, waves, and
thermal noise respectively. Besides, these noise in dB re µPa
per Hz can be expressed by the following empirical formulae:

10 logNt (f ) = 17− 30 log f , (5a)

10 logNs(f ) = 40+ 20
(
s−

1
2

)
+ 20 log f

− 40 log(f + 0.4), (5b)

10 logNw(f ) = 50+ 7.5w
1
2 + 20 log f

− 40 log(f + 0.4), (5c)

10 logNth(f ) = −15+ 20 log f , (5d)

where s is the shipping activity factor in range of [0, 1],
and w denotes the wind speed in m/s. Actually, the nominal
signal-to-noise ratio (SNR) is affected by the attenuation
A (x, f ) and the noise N (f ), it can be formulated as:

ζ (x, f ) =
1

A(x, f )N (f )
. (6)

Note that the underwater transmitter and receiver are nar-
rowband applications, we can use the optimal frequency fo (l)
and the corresponding SNR ζo (l) to donote the definition
of the narrow-bandwidth in the underwater acoustic channel.
Moreover, we define the frequency range as [fL (x) , fU (x)],
and the corresponding narrow-bandwidth B = fU (x)− fu (x).
For short distance transmission systems, the transmission
distance is less than 1 km, and the practicable 3-dB frequency
range is dozens of KHz. Therefore, we calculate the lower
bounds function of SNR for underwater acoustic channel as
follows:

ζ̃ (x)=

{
min

{
ζ
(
x, fc− B

2

)
, ζ
(
x, fc+ B

2

)}
f ∈B

0 Otherwise,
(7)

where ζ̃ (x) is the replacement of the true SNR function
ζ (x, f ) for idealized, and fc represents the center frequency.
Based on additive white Gaussian noise (AWGN) channel,
the capacity of the underwater acoustic channel can be for-
mulated by:

R(x) = B log2

(
1+

Psl ζ̃ (x)
B

)
, (8)

where Psl is the transmitted power in dB re µPa. For the sake
of translating the electrical powerPt inWatt to the underwater
acoustic power Psl , the empirical relations are applied as
follows:

Ptr =
2π
σ
× H × IT , (9)

Psl = 10
IT

1µPa
, (10)

where σ denotes the overall efficiency of the electronic cir-
cuitry, and H represents the depth of water, 1µPa = 0.67 ×
10−18 Watts/m2 while IT is the intensity at the reference
distance of 1m from the source.

C. SENSOR LAYER
We assume that N nodes are randomly anchored in the des-
ignated area to detect underwater environments. During the
information gathering process, all nodes are classified into
several clusters according to certain properties, which are
composed of CHs and CNs. As mentioned above, each node
has the equal initial energy denoted by E0. Besides, it will
consume the energy of nodes when transmitting, receiving,
and processing data.

In view of the diverse operating modes of CHs and
CNs, we can calculate their energy consumption respectively.
We take a cluster as an example for illustration. Firstly,
we analyze the energy consumption of the single CH, which
composed of the following four parts. The first part of
energy consumption is caused by CH broadcasting informa-
tion including its location and ID. As such the nodes adjacent
to the CH in the same cluster will take notice of the CH’s
existence at the initial phase of data collection. The other
three parts are the energy consumption of receiving original
data, fusing original data, and sending the processed data to
AUV during the data transmission phase.We define the above
four energy consumption as Ebr , Er , Ef , and Es separately.
According to (1) and (2), Ebr can be given by:

Ebr = lbp0db1.5adb , (11)

where lb is the broadcast packet size of CH, and db indicates
the broadcast distance. The energy consumption of receiving
data Er can be expressed as:

Er =
j∑

i=1

Ti × Pr , (12)

where Ti = R(di)ti represents data size received by the CH
from the i-th CN in the cluster, and di represents the distance
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from i-th CN to CH. ti is the transmission time, which can be
calculated as:

ti =
Vs
di
, (13)

where Vs is the underwater sound velocity, and it is usually
equal to 1500 m/s. Pr is a constant depending on the property
of the sensor itself.

In most current researches, the energy consumption of
sensor data fusion is regarded as a constant or simply ignored,
which is quite different from the actual condition. Therefore,
this work adopts the weighted-average fusion method men-
tioned in [35].

Considering that there are j CNs in the cluster collecting
information from the underwater environment independently,
the size of data they collected is Ti. The CH will aggregate
these data and process them to avoid the conflicts of redun-
dant data. We define the size of all data after fusion as Tf , and
it can be given by:

Tf =
j∑

i=1

wiTi, (14)

where Tf represents the size of the fused data by CH, and wi
is the weighted coefficient andmeets the following condition:

j∑
i=1

wi = 1. (15)

We assume that the weights of data collected from each CN
are approximately equal, and according to (15), we can find
wi = 1

j so that it can be updated by:

Tf =
1
j

j∑
i=1

Ti. (16)

Therefore, Es can be calculated by:

Es = Tf p0h1.5ah, (17)

where h is the height difference. And the data processing
energy consumption Ef can be expressed as:

Ef = EDA ×
j∑

i=1

Ti, (18)

where EDA represents the energy consumption of the sen-
sor when processing one single data, it can usually be set
as 5 nJ/bit.

Given the above assumptions, the energy consumption of
the CH in a cluster can be calculated as:

Ech = Ebr + Er + Ef + Es. (19)

Regarding to the energy consumption of a CN, it is mainly
consumed while transmitting the collected data to CH and
receiving the broadcast beacon from CH in the cluster.
We define it as Ecn, which can be expressed as:

Ecn = Tip0d1.5i adi + lbPr . (20)

Consequently, the energy consumption of all CNs in a cluster
can be expressed as E tcn, and it can be calculated by:

E tcn =
j∑

i=1

Tip0di1.5adi + jlbPr . (21)

D. AUV MOTION LAYER
As a dynamic relay node, the AUV travels from a base station,
patrols all CHs to retrieve, transport, and offload the collected
data. When the AUV reaches and hovers over one CH in a
corresponding position, an underwater acoustic communica-
tion link is immediately established to receive information
from the CH. After the assignment, the AUV will navigate
to the next CH and implement the information gathering
process recurrently. Meanwhile, we also need to tackle the
obstacle avoidance issue of AUV in traversal. Therefore,
we first denote the environment with obstacles based on a grid
map, as shown in Fig. 2. The black object indicates that the
position cannot be traversed directly by AUV, and the red dot
indicates the corresponding position where the AUV and CHs
communicate with each other. Specifically, we employ E to
depict the environment. When Eij is equal to 1, it means there
is an obstacle between position i and position j. Conversely,
0 means no obstacles.

FIGURE 2. Map of the AUV environment. The black object indicates the
obstacle, and the red dot indicates the corresponding position where the
AUV and CHs communicate with each other.

In such AUV motion layer, we consider the AUV path
planning in the horizontal direction and establish a kinematic
model to indicate the movement of AUV, as shown in Fig. 3.
The position vector η and velocity vector υ are utilized to

denote the trajectory of the AUV:{
η = [x, y, ϕ]T ,
υ = [u, v, ω]T ,

(22)

where x and y are coordinates of the AUV position, ϕ is
its direction of travel. While u, v, and ω represent the
surge velocity, sway velocity, and yaw velocity, respectively.
We define θ to be the angle between the vector −→ı and the
horizontal direction. Additionally, we call the angle between
ϕ and θ as the rotation-angle of AUV in position i to position j,
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FIGURE 3. The motion of AUV in the horizontal direction.

which indicates the degree of the changed corner in AUV
motion, and it can be expressed as:

rij = ϕ − θ = ϕ − arctan

(
yj − yi

)(
xj − xi

) . (23)

The trajectory of AUV can be calculated by [36]:

ηt+1 = J (η)υ, (24)

where ηt+1 is the location of the next moment, and J (η) is
the kinematic transformation matrix related to ϕ, it can be
expressed as:

J (η) =

cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 . (25)

Since we have assumed that the value of AUV velocity is
constant, we can easily calculate the position of AUV at the
next moment based on its speed and current location. Hence,
the path planning problem can be formulated as:

min
∑

i,j∈route

dij + ξ
∑

i,j∈route

(
ϕ − arctan

(
yj − yi

)(
xj − xi

)) , (26)

where ξ is a constraint factor to represent the weight of the
rotation-angle, dij indicates the distance between position i
and position j, and route is the path of AUV travel.

IV. ALGORITHM DESIGN
In our model, CHs are not only responsible for aggregating
and fusing underwater information, but also need to commu-
nicate with the AUV. At the same time, the selected CHs are
still the inevitable position in the subsequent AUV cruise. The
key steps of our proposed technique are explained as Fig. 4.

A. CLUSTERING ALGORITHM
K-Means algorithm is a compelling clustering technique and
widely used in practical applications [37], [38] and the K is
a hyper-parameter that usually needs to be optimized to get
the best results and performance for learning [39]. Usually,
K-Means algorithm chooses the number of clusters randomly.
However, in our model, the number of clusters is crucial.

FIGURE 4. The flowchart of AUV assisted IoUT technique.

If the number is too small, excessive underwater nodes will be
divided into a cluster, resulting in a large amount of redundant
information and increasing the burden of CH. If the number
is too large, it means that the mobile node needs to perform
data transmission with more CHs, resulting in more energy
overhead and system latency. In view of the above, we deter-
mine the number of cluster k based on the Elbowmethod [40].
For a set of n objects, we add the number of clusters from 1
to n one by one, and record the corresponding Sum Squares
Error (SSE) value simultaneously, which is the sum of the
Euclidean Distances from each object to its corresponding
cluster centroid. It can be calculated by:

SSE =
k∑
i=1

∑
x∈Ci

‖x − xi‖22, (27)

where Ci indicates the set of all objects in the cluster, x and xi
are the coordinate vectors of an object and the centroid, k is
the amount of clusters. In addition, we define1S as the differ-
ence of SSE produced by two adjacent k . When the difference
value between two adjacent1S changes drastically and forms
an obvious corner, then the inflection point is exactly k . This
process can be given by:

k = argmax
k

1S(k)−1S(k + 1). (28)

After determining the number of clusters, we use the value
of SSE as the standard measure function, and constantly
update the centroid to achieve clustering the nodes until
satisfying the convergence condition. The centroid update
function can be given by:

xi =
1
|Ci|

∑
x∈Ci

x, (29)

and the convergence condition can be expressed as:

|SSE1 − SSE2| < ε, (30)
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where ε is a minimal value, SSE1 and SSE2 indicate the
current measure function value and the preceding measure
function value respectively. After that, we select the node
closest to the centroid as the initial CH, which is respon-
sible for information collection and transmission to AUV.
To avoid CHs becoming invalid rapidly, we introduce the
CHDC mechanism. After the first round of data collection,
we reselect the new CHs for clusters at the initial phase of
each subsequent round. We define the probability of node s
becoming the CH as T (s), whose range is (0, 1), and it can be
calculated by:

T (s) =


1

1+ e−(w1ds+w2Ej+λ)
, if s ∈ G,

0, otherwise.
(31)

G represents the set of nodes which are not selected as CH in
the previous round, w1 and w2 are the weighted coefficients,
ds is the reciprocal of the distance between the node and
the centroid, Ej indicates the ratio of the residual energy to
the initial energy of the node, and λ is the bias constant.
As we can see, when ds and Ej approach infinity, T (s) is
approximate to 1, that is, the node which is closer to the
centroid with more residual energy will be selected as the
new CH. Therefore, it manifests that the proposed clustering
protocol has energy-awareness. The above clustering process
is performed periodically.

The clustering algorithm is detailed in Algorithm 1.

B. PATH PLANNING ALGORITHM
The ACO algorithm is a heuristic algorithm inspired by
the actual foraging behavior of ant colony [41], and it is
often used to tackle path planning problems in TSP model
because of its strong robustness, easy implementation, and
convenient combination with other algorithms to improve
performance [42]. However, the traditional ACO algorithm
only considers the pheromone in the current state and neglects
the influence of pheromones in subsequent states. Therefore,
the ACO algorithm has the drawback of low solving effi-
ciency and is prone to a local optimum. Moreover, conven-
tional path planning problems usually overlook importance of
angle optimization. To address the above issues, we propose
a novel ACO algorithm based on the MRP, namely R-ACO
algorithm, which owns far-sighted evaluation compared with
traditional ACO.

TheMRP is introduced byHoward [43], which is aMarkov
chain with values [44]. Specifically, when the system trans-
forms from a state s to another state s′, it can obtain a timely
expected reward and the discounted value of the subsequent
states. This process aims to maximize the expected cumula-
tive reward to guide the system in making optimal decisions,
and it can be expressed as:

v(s) = Rs + γ
∑
s′∈S

Pss′υ
(
s′
)
. (32)

The tuple of (S, υ,R,P) is utilized to depict the properties
of MRP, where S, υ, R, P are the set of states, the value,

Algorithm 1EnergyAware Clustering Protocol BasedOn the
Improved K-Means Algorithm
1: Initialize the maxround , n, D, ld , lf , E0, Ef , Ti, pr , p0,
w1, w2, f , w and s.

2: for each k ∈ [1, n] do
3: Calculate K-Means SSE slop S by (27) then
4: Record S list [S1, S2, · · · , Sn].
5: for each k ∈ [1, n− 1] do
6: Calculate 1Sk = S(k)− S(k + 1) then
7: Record 1S list [1S1,1S2, · · · ,1Sn−1].
8: Calculate the value of k by (28).
9: Use k as the cluster number.

10: end for
11: end for
12: Cluster nodes by (27), (29), and (30), then find the node

closest to centroid as CH.
13: for each round ∈ [1,maxround] do
14: Calculate each alive CNs energy consumption by (21).

15: Calculate CH energy consumption by (19).
16: Refresh CH candidate list.
17: for each node in head candidate list do
18: Calculate head reselect threshold T (s) by (31).
19: if random number ≤ T (s) then
20: Set node as CH.
21: Remove node from CH candidates.
22: end if
23: end for
24: end for
25: End.

the reward, and the state transition probability respectively.
γ is a discount factor in range of [0, 1), which determines the
importance of future rewards. When γ closes to 0, it leads
to myopic evaluation, namely the result may only be local
optimum rather than the global optimum.When γ closes to 1,
it leads to far-sighted evaluation. However, the future rewards
cannot be estimated accurately. Therefore, the typical value of
γ is within [0.5, 0.99] [45]. In this paper, we set it to 0.6.

Afterwards, we assume that there are n patrol locations
and Nant ants. Let τij (t) denote the remaining intensity of
pheromone between position i and position j at time t . There-
fore, at time t , the transfer probability of ant k can be calcu-
lated by:

pkij(t) =


[
τij(t)

]α [
ηij(t)

]β∑
s∈n(i)

[τis(t)]α [ηis(t)]β
, j ∈ n(i)

0, others.

(33)

n (i) is the set of neighbors at position i, α denotes the weight
of pheromone, and β denotes the weight of heuristic factors
which can be formulated as:

ηij (t) =
1
dij
+

1
rij
. (34)
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Algorithm 2 ACO Based On Markov Reward Process Algo-
rithm
1: Initialize the maxround , τij, ant_count , α, β, ρ, γ , Q1,
Q2.

2: for each generations ∈ [1,maxround] do
3: for antk ∈ [1, ant_count] do
4: Set the ban set C as the position node of ant k , and

set it to null.
5: while C is not full do
6: Calculate the probability of ant k moving to posi-

tion j by (33).
7: Add location j to C and move the next location.
8: end while
9: Revise the pheromone table pursuant to (35), (36),

and (37).
10: end for
11: end for
12: End.

After all ants traverse for once, the pheromone on each path
can be updated as follow:

τij (t + 1) = (1− ρ) τij (t)+1τij, (35)

where ρ is the volatilization coefficient in the range of (0, 1),
which determines the amount of reduction in pheromone
concentration over time, 1τij represents the amount of
pheromone increase after once iteration, which can be cal-
culated by:

1τij =

m∑
k=1

1τ kij , (36)

where 1τ kij is the contribution of an ant k to 1τij. Then,
we consider both distance and angle in the pheromone update
equation and combine the properties of MRP. As such,
the 1τ kij can be expressed as:

1τ kij =
Q1

dij
+
Q2

rij
+ γ

∑
s∈n(j)
s6=i

Pjs1τ kjs, (37)

where Q1 and Q2 are the constants, and the state transition
probability Pjs is equal to the probability that ant k moves at
next time, γ is the discount factor in range of [0, 1), which
depicts the importance of pheromone concentration in the
future state. The detailed algorithm is shown in Algorithm 2.

V. SIMULATIONS AND ANALYSIS
This part presents the numerical results to validate the perfor-
mance of our algorithms.

First, we set the parameters of the experimental scenario.
We assume that a total of 120 nodes are distributed in a square
area of 500m × 500m under shallow water. The base station
is located above the area. The height difference between the
sensor layer and the AUV motion layer is 20m. The under-
water transmission frequency f = 25kHz. The remaining
parameters are detailed in Table 1.

TABLE 1. Detailed System Parameters.

To proceed, We evaluate the impact of different weighted
coefficients on the performance of the algorithm. Specifi-
cally, for each group, (w1,w2) = (0,0), (100,0), (0,100),
(100,100) correspond to cases that the node, which is con-
sidered neither the position nor residual energy, which is only
considered the position, which is only considered the residual
energy, which is considered both the position and residual
energy, is selected as CH respectively. The node survival rate
is shown in Fig. 5 (a). As we can see, at the initial stage,
the number of dead nodes in the first and second cases are
obviously higher than that in the two other cases. This is
because the node’s own energy is not taken into account for
the first and second cases. But in the final stage, the position
prioritized cases actually have fewer dead nodes than the
energy prioritized cases, which proves that the CH selection
ignored position leads to more energy consumption and node
failure. Therefore, the survival rate of node is affected by its
own energy and also related to its position.

The energy consumption is shown as Fig. 5 (b), in which
we observe that the second case achieves the best perfor-
mance in terms of energy consumption. Additionally, the first
case has the lowest residual energy at the beginning, but in
the later period, the residual energy of the first case is more
than the third and fourth cases. This is because the node
with a good position has been preferentially selected as CH
while its energy is quickly consumed, and then the node with
poor position and high residual energy is selected as the new
CH, so that the subsequent energy consumption increases
rapidly. Therefore, the energy consumption of a node is only
determined by the position and not affected by its own energy.
In view of the above, we need to set a balanced combination
of weighted coefficients to ensure the performance, and we
set it to (103, 10).

Subsequently, we make a comparison respectively with
LEACH-L [46] and K-Means algorithms to evaluate the per-
formance of our proposed ECBIK. The node survival rate of
the three protocols is shown as Fig. 6 (a). We can observe
that the times of the first dead node appear in 176r, 65r,
and 350r, and the times of all nodes died are in 561r, 765r,
and 1232r. Compared to LEACH-L and K-Means, ECBIK
extends the first node death time by 98.9% and 438.5%
respectively. Meanwhile, ECBIK increases the node survival
rate by 129.1% and 26% respectively. Since K-Means is not
adaptive, it appears the dead node at the earliest. Moreover,
LEACH-L randomly selects the CHs without considering
the properties of the nodes, so that its node survival rate is
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FIGURE 5. Influence of different weighted coefficients on algorithm performance.

FIGURE 6. Performance comparison of different algorithms.

the lowest among three algorithms. As a result, benefiting
fromCHDCmechanism, ECBIK has outstanding energy load
balancing performance.

Energy consumption is a significant index to mea-
sure protocol performance, which is demonstrated in
Fig. 6 (c) and (b). As it is shown, the energy consumption of
ECBIK is the lowest. Although both ECBIK and LEACH-L
are adaptive, the stability of ECBIK is significantly better.
This is because the CH selection of LEACH-L only considers
the node’s energy ignoring the location. Due to the more
scientific and comprehensive CH selection methods, ECBIK
has excellent energy saving and adaptive abilities.

Load Balance Factor (LBF) is defined as the inverse of
MNs number’s variance in the cluster, which measures the

balance of the CH load. Hence, the larger the LBF is, the bet-
ter the network load balancing degree is. And it can be
calculated as:

LBF =
k∑k

n=1 (xn − u)
2
, (38)

where k is the value of clusters, xn is the number of nodes
in nth cluster, and the average number of neighbor nodes per
CH is u = N−k

k . The LBF is shown in Fig. 6 (d). We can
observe that the LBF of LEACH-L is a floating broken line,
and the LBF of ECBIK and K-Means are straight lines,
which manifests that the nodes are clustered only once under
ECBIK and K-Means, while the nodes are re-clusters each
round under LEACH-L. In addition, the LBF of ECBIK and
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FIGURE 7. Comparison on the performance of two algorithms in P2P
model.

K-Means are 0.232, 0.050 respectively, and the mean value of
LEACH-L’s LBF is 0.032. Obviously, our proposed ECBIK
has advantages in balancing the cluster load compared with
the other two algorithms.

When there are obstacles in the environment for AUV
path planning, the ACO algorithm can usually be utilized to
calculate the shortest distance between two points to avoid
obstacles, and then this shortest distance can be used to find
a global optimal traversal path [47]. Fig. 7 (a) and Fig. 8 (a)
depict the snapshots of the optimal paths in the Point to Point
(P2P) and TSP models. The specific results in P2P model are
shown in Fig. 7 (b) and 7 (c). The lengths of the paths are
both approximately equal to 40.3m, and the sum of the rotated
angles are equal to 157.3◦ and 163◦ respectively, which
demonstrate that both algorithms can solve the shortest path

FIGURE 8. Comparison on the performance of two algorithms in TSP
model.

problem in P2P experiment. But R-ACO has better stability
and faster convergence speed than ACO.

Fig. 8 (b) and 8 (c) portray the results of global optimiza-
tion. The sum of distances obtaining from the two algorithms
are 167.7m, 173.6m, and the sum of angles are 537.7◦,
637.9◦. Concluded from the above, the distance and angle
under R-ACO are reduced by 3.4% and 18% respectively
compared with ACO. Therefore, R-ACO can achieve the
purpose of reducing the traversal distance and decreasing the
rotation angle simultaneously with faster convergence speed.

In summary, our proposed adaptive ECBIK algorithm
improves the efficiency of underwater clustering by accu-
rately determining the number of clusters and establishing
a CH re-cycle selection mechanism based on location and
energy. Subsequently, the selected CHs will be necessary
cruise destinations of the AUV to affect the path selection.
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Meanwhile, the R-ACO algorithm with a global perspec-
tive can select reasonable path based on distance and angle.
Therefore, our designed underwater clustering algorithm and
the AUV path planning scheme have effectively improved the
performance and efficacy of the entire system.

Finally, concluded from Table 2, the time complexity of the
proposed algorithms is the same as that of the traditional algo-
rithms. However, the solution time of the proposed algorithms
is slightly longer. Actually, we often apply these algorithms
in a small scale scenario (i.e., when there are not too many
anchored sensor nodes underwater), which means that the
solution time is acceptable and tolerable, so our algorithms
are practical and feasible.

TABLE 2. Comparison of algorithms time complexity and solution time.

VI. CONCLUSION
In this paper, we proposed a hierarchical information acqui-
sition system for AUV assisted IoUT. Firstly, We designed an
adaptive K-Means algorithm with energy awareness to solve
the problem of excessive energy consumption for underwater
nodes. Then, we utilize the kinetic equations to characterize
the motion trajectory of AUV and quantify the rotation-angle.
Meanwhile, we put forward a novel ACO algorithm based on
MRP in AUV path planning. As a support, simulations and
analyses validated the effectiveness of our proposed proto-
cols.
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