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ABSTRACT Driving behavior analysis has diverse applications in intelligent transportation systems (ITSs).
The naturalistic driving data potentially contain rich information regarding human drivers’ habits and skills
in practical and natural driving conditions. But mining knowledge from them is challenging. In this paper,
we propose a novel approach for analyzing driving stability using naturalistic driving data. Our method can
extract features, based on the randommatrix theory, to reflect the statistical difference between actual driving
data and the data that would be generated by a theoretically ideal driver, and thus imply the skillful level of
a driver in terms of vehicle control in both longitudinal and lateral directions. The execution of our method
on a practical ITS dataset is conducted. Using the extracted features, a driving behavior analysis application
that partitions drivers into clusters to identify common driving stability characteristics is demonstrated and
discussed.

INDEX TERMS Driving behavior analysis, intelligent transportation systems, random matrix theory.

I. INTRODUCTION
With the ever-increasing number of vehicles on the road,
traffic accident and jam become serious issues in most mod-
ern countries. The problems cannot be completely solved
by conventional transportation engineering methods such as
urban design and traffic control [1], [2]. The rapid develop-
ment of information and communication technology (ICT)
in the past decades enables the promising concept of intel-
ligent transportation system (ITS). Equipping the trans-
portation system with advanced sensing, communication,
and computing capabilities can greatly enhance its capacity
[3]–[5].

Most ITS services and applications target providing drivers
with better knowledge regarding the driving environment to
help decision making. Understanding human drivers’ natu-
ral behaviors and habits is also important. Driver assistance
services with driving behavior analysis functions can help a
driver to be aware of the state of the vehicle, and of improper
operations of his/hers own as well as surrounding drivers’
[6]. Such high-level information is also beneficial to the
design of ITS [7]. Having the knowledge of human driving
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behaviors can further enable artificial intelligence (AI)
autonomous driving agents to learn from good drivers and
evolve to better ones that ensure both safety and comfort for
passengers [8].

Driving behaviors have been investigated from diverse
perspectives. The analysis is typically performed by
studying maneuvering actions (e.g., accelerating, turning,
car-following, and lane changing) using vehicle states
(including speed, acceleration level, steering angle, and yaw
rate, etc), represented by various vehicle sensor data. Control
skill serves as the basis for successfully taking proper driving
actions in complex traffic environments [9], and thus is also
important in driving behavior analysis. [10] points out that
driver evaluation should take both their operational control
actions and ability of understanding the environment into
consideration. The characteristics of the operational con-
trol are inherently determined by driver’s control skill [11].
Understanding such skill is valuable and can help develop
customized ITS services and applications [12].

Human drivers and many driving assistance applications in
general rely on predicting the future states of the ego-vehicle
and surrounding vehicles to ensure safety. For example, time-
to-collision (TTC) is a typical indicator used by active-safety
applications to ensure safety distance between vehicles [13].
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To estimate TTC, the target vehicles’ future states must
be predicted. Normally the future states of a vehicle in a short
period are assumed as constant. This simplifies the prediction
process, by assuming that drivers tend to keep the states of
their vehicles to be stable without abrupt changes. A driver
who cannot do this becomes unpredictable. Therefore, one
potential way of quantifying a driver’s control skill is to
measure the level to which he/she can maneuver the vehicle
to keep the states unchanged. In this paper, this is termed
driving stability. In general, the driving process can contain
two types of phases, i.e. smooth driving phases (vehicles
are controlled to have approximately fixed acceleration and
steering angle), and action phases (vehicles are controlled
to interact with surrounding vehicles, pedestrians, traffic sig-
nals, etc). Analyzing driving stability in both phases is of
importance.

Naturalistic driving data have great potential in driving
behavior analysis [14], since they contain the information of
drivers’ behaviors in natural driving conditions. One chal-
lenging task in data-driven driving behavior analysis is to
extract features that can reflect maneuvering patterns from
driving data. This requires properly tagging the data, i.e., par-
titioning the available driving data into segments, each of
which corresponds to, ideally, a single objective maneuver-
ing action. However, it is difficult to control the naturalistic
driving data collection procedure to provide such label infor-
mation. A number of existing works have proposed data parti-
tioning solutions based onmathematics and signal processing
techniques (e.g., see [6], [15]–[17]). But it is often difficult to
guarantee each data segment to be the consequence of only a
single complete maneuvering action. Using them to analyze
driving behavior may bias the results.

In this paper, we investigate the method to analyze drivers’
vehicle control skills without the need of partitioning natu-
ralistic driving data into individual segments. We propose a
novel algorithm tomeasure the driving stability level based on
randommatrix theory (RMT) [18], [19]. The data collected in
the Safety Pilot Model Development (SPMD) program [20]
are used to demonstrate the execution of our algorithm on
a real-world ITS dataset. Specifically, the raw acceleration
and steering angle data of each driver are first separated
according to the speed level to roughly distinguish driving
environments, and then respectively organized to matrices.
From each data matrix, a series of sub-matrices are gener-
ated by sliding windows. The mean spectral radius (MSR)
of every sub-matrix is calculated to reflect the distribution
characteristics of the matrix entries. The differentiation of the
MSR sequence, termed differential MSR (DMSR), is then
taken. The concentration interval and outliers’ dispersion
level of the DMSR sequence are obtained as features to
reflect the driving stability level of the driver, in the smooth
driving and action phases respectively. Finally, based on these
features, a density based spatial clustering of applications
with noise (DBSCAN) clustering algorithm [21] is applied
to partition all drivers into groups to summarize common
driving stability characteristics.

The main contributions of our paper can be summarized as
follows:
• We present a novel approach, based on RMT, to perform
driving stability analysis using naturalistic driving data.
Our method does not need to partition the data into
segments according to individual maneuvering actions.
Through synthetic data, we show that the output of the
proposed algorithm can evaluate the statistical differ-
ence between the driving data and the data that would be
generated by an ideally skillful driver who can maintain
constant vehicle states. Hence features can be extracted
from naturalistic driving data to reflect driver skills.

• We demonstrate the execution of the proposed method
on a practical dataset produced by ITS technologies.
Using the extracted features, a clustering algorithm
is employed. The results show that the majority of
drivers share a similar pattern of driving stability. But
some drivers exhibit notable differences from others.
Such observations can potentially be used to help
better understand human drivers and facilitate further
investigations.

The remainder of the paper is organized as follows.
Section II reviews related works. Section III describes the
dataset and pre-processing methods. Section IV presents the
mathematical background of our RMT-based driving stabil-
ity analysis algorithm. Section V discusses the results of
executing the algorithm. Finally, Section VI concludes the
paper.
Notations: Throughout the paper, Oa×b denotes an a × b

all-zero matrix. For matrix X, [X]i and [X]i,j respectively
denote the ith row and the element on the ith row and jth
column. XH denotes the conjugate transpose of X.

II. RELATED WORKS
In addition to detecting the occasions that a driver does
not fully concentrate on driving due to, e.g., sleepiness or
distraction [22], driving behavior analysis normally refers to
modeling drivers’ habit of maneuvering vehicle to maintain
the driving status (e.g., keeping the lane with constant
speed) or interacting with traffic environment (e.g., turning,
changing lane, or overtaking). Driver identification research
works show that patterns extracted from driving data can
be unique fingerprints. For instance, [23] extracts 12 fea-
tures from turning maneuvers such that a random forest
classifier can be used to distinguish drivers. Reference [24]
estimates the distribution of accelerating maneuvers to iden-
tify drivers. Since different drivers exhibit different behav-
ior characteristics, it is possible to distinguish abnormal
drivers or even predict maneuvering intentions. For example,
[25] uses random forest to classify drivers into low-risk,
moderate-risk, and high-risk groups based on the transi-
tion probability between maneuvers. The safety evaluation
method proposed in [26] measures driver risk by analyzing
accelerating maneuvers using linear regression, decelerating
maneuvers using Linde-Buzo-Gray algorithm, and turning
maneuvers with kinematics analysis respectively. Reference
[27] categorizes the performance of turning, accelerating
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and decelerating maneuvers into four levels using support
vector machine and topological anomaly detection. Refer-
ence [28] predicts driver maneuvering intentions using a
hidden Markov model. Hence, driving behavior analysis has
great potential in understanding human participants on the
road.

Analyzing driving behaviors is a sophisticated task, since
drivers’ maneuvering pattern can be affected by many factors
such as road environment (e.g., intersection or traffic con-
gestion) and driver categories (e.g., age). For example, [29]
applies kinematics analysis to extract features from driving
data of several driving school instructors, general drivers,
and elderly drivers when they drive passing urban intersec-
tions. It is shown that elderly drivers exhibit a common
pattern that is different from young drivers. Reference [30]
also proves this result by distinguishing elderly drivers with
linear discriminant analysis. Using support vector machines
and hidden Markov models, [31] suggests that the stopping
maneuvers at intersections can be used to classify drivers into
two categories, either compliant or violating. By clustering
drivers’ glance allocations, [32] points out that the behavior
pattern at signalized intersections can be quite different from
that at unsignalized intersections. Reference [33] shows that
a post-congestion condition can cause drivers to be more
aggressive.

Apart from simple control actions on the accelerator/brake
pedals and steering wheel, a number of works have also
studied relatively complex driving activities (such as car-
following, lane changing, and overtaking) that can be
deemed as the combination of multiple low-level maneuvers.
Reference [34] models human driving patterns by estimating
the distribution of parameters that describe the lane changing
maneuver, to accelerate the verification of automated vehi-
cles. Reference [35] uses one-class support vector machine to
detect dangerous lane changing maneuvers. Reference [14]
models the car-following maneuver with Gaussian kernel
density estimation to discuss the impact of data volume on
driving behavior analysis. Reference [36] identifies aggres-
sive and cautious car-following maneuvers by analyzing the
relationship between the vehicle’s dynamics and the distance
between the leading and the following cars with kinematics
model. In [37], the car-following and approaching maneu-
vers are considered for driving behavior analysis. It uses
the K-means algorithm to show that drivers can be parti-
tioned into clusters according to their similarity levels of
car-following time stability, prudence, conflict proneness,
or skillfulness.

Most of the above works require that the driving data can
be partitioned or tagged according to individual maneuvering
actions. This can be challenging if driving behavior analy-
sis is carried out on a large amount of naturalistic driving
data. In addition, individual maneuvering actions may not
fully reflect the control skills of drivers. In what follows,
we present a method to evaluate the driving stability, based
on RMT, to address these issues.

FIGURE 1. Flowchart of the proposed method.

III. DATASET AND PRE-PROCESSING
We apply our proposed method on an example naturalistic
driving dataset. The execution follows a data-driven research
framework which consists of four stages as shown in Fig. 1:
data collection, pre-processing, feature extraction, and data
mining. In this section, we introduce the dataset, explain the
pre-processing stage, and then define driving stability.

A. NATURALISTIC DRIVING DATASET
Driving simulator is a commonly considered data source in
driving behavior analysis (see, e.g., [12], [38], [39]). It is in
general straightforward to extract different control operations
so that individual targetmaneuvering actions can be analyzed.
Dangerous and extreme road conditions can also be studied.
The main drawback of using simulation data is that simula-
tors cannot fully reflect the true driving condition. To col-
lect driving data in practical traffic environments, carefully
designed field-experiments are conducted in [23], [29], [40].
However, one potential issue of such methods is that drivers
may be aware of the experiment purposes. Reference [41]
reports that there is a significant difference between drivers’
natural behavior and the behavior when they drive experiment
vehicles with measurement devices, especially in the first
50 hours.

The data that potentially contain the best knowledge
of drivers’ true behaviors are the naturalistic driving data
[41]–[44]. Naturalistic driving data are collected when the
vehicles are driven under natural conditions, and data collec-
tion lasts a long period of time [14] (e.g, 12 to 13 months in
the 100-Car Naturalistic Driving Study [41]). The long data
collection time makes drivers oblivious to the data collection
process so that the influence of data measurement devices on
drivers’ mental state and behaviors is minimized. One way
of attaining such data is to equip vehicles with devices that
can access the automobile bus through the OBD-II port, and
acquire the measurements of various in-vehicle sensors [23],
[24], [30]. Sensors of other devices, such as smartphones [27],
can also be considered as a cheaper solution, at the cost of
limited data types and measurement accuracy. Driving data
can be continuously collected when the vehicle is driven and
then analyzed after a certain period of time.

Large-scale naturalistic driving data collection is costly.
The recent development of the concept of Internet of vehi-
cles (IoV) [4] provides a feasible solution to this prob-
lem. IoV refers to using vehicle-to-anything (V2X) wireless
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communication technologies to connect vehicles, roadside
infrastructure, and other elements in the transportation sys-
tem. Sensing data collected by various devices at different
locations can be shared so that the environment awareness
level of each individual vehicle can be significantly enhanced.
A typical type of messages transmitted in IoV is the heart-
beat basic safety message (BSM) [45]. A BSM contains the
real-time status information of a vehicle and is broadcasted
normally at frequency 10 Hz [45]. Currently, the dedicated
short-range communication (DSRC) [46], LTE-V2X [47],
and 5G technologies [48] are warmly discussed in both
academia and industries as the V2X solutions. Large-scale
experiments and field tests have also been conducted to verify
the feasibility of IoV. It is expected that in the near future,
all vehicles on the road will be equipped with sensing data
collection and transmission devices. In addition to supporting
real-time active-safety ITS applications, the BSMs stored in
data centers may serve as the valuable naturalistic driving
data, from a large number of drivers, in a variety of traffic
environments, and over a long period of time.

To demonstrate the proposed algorithm, we use the data of
the SPMD program [43] as our naturalistic driving dataset.
The program was conducted to evaluate the performance of
DSRC and communication-based active-safety applications.
It was carried out inMichigan, USA, and lasted one and a half
years since August 2012. A number of vehicles participated
in the project and were equipped with data acquisition system
with sampling frequency of 10Hz. The datawere organized in
trips, each of which refers to one ignition cycle. The attributes
include vehicle states (acceleration, steering, speed, etc.),
road conditions (descriptions of lanes and intersections, etc.),
and weather. The data have already been used for driving
behavior analysis in, e.g., [14], [34].

Our method intends to summarize the driving skill of each
driver from a large amount of driving data. Hence from the
available dataset, we choose only the drivers who have suffi-
ciently many (more than 40 for each speed scenario) long trip
records (at least 6 minutes after pre-processing). This results
in a total of 42 drivers, denoted by driver_01, driver_02, · · · ,
driver_42. Finally, to demonstrate the unsupervised learning
nature of the considered driving behavior analysis, we ignore
the road condition and driving environment data, and use
only the speed (m/s), acceleration (m/s2), and steering angle
(o) readings. Acceleration is used for reflecting drivers’ lon-
gitudinal control, steering angle is used for lateral control,
and speed is considered to roughly infer driving condition,
as explained in the next subsection.

B. DATA PRE-PROCESSING
The data pre-processing consists of the following steps.

1) DATA CLEANSING
The first step of data pre-processing is the detection and
removal of missing and abnormal values through data cleans-
ing [49]. The basic idea behind the proposed driving behavior
analysis method is to quantify how much the statistical char-
acteristics of the driving data matrix deviate from that in an

ideal case. Occasional abnormal readings would not signif-
icantly affect the results. Sophisticated data cleansing algo-
rithms are unnecessary. Hence we use simple interpolation to
replace missing and abnormal readings.

If the speed data in a trip have continuous 0’s, the vehicle
might be immobile when these data were recorded. Since a
driver does not exhibit any control skill in this case, the data
should be removed from analysis. In our paper, when a speed
segment of at least 10 continuous 0’s (i.e., 1 second) is
identified, the vehicle is believed to stay at the same location
during that time. If the segment’s length is relatively small,
the associated data (including speed, acceleration, and steer-
ing angle) are removed. Otherwise, if a major portion of a trip
has zero speed, the whole trip is discarded.

2) DATA SEPARATION
A driver may have different ways of taking the same maneu-
vering action in different driving conditions (e.g., different
road types or traffic conditions). Identifying the driving sta-
bility level of each driver and comparing those of multiple
drivers would be more meaningful under the same condition.
Since the difficulty of controlling vehicle varies with speed,
we consider the speed level to be a main factor that influences
a drivers’ behavior. Two different driving conditions are taken
into consideration, i.e. low-speed scenario and high-speed
scenario. To distinguish them, for each trip data, we find
the median value of the speed. If the result is greater than a
pre-defined threshold, Vth, the data of the trip are assumed to
be collected in a high-speed scenario. A low-speed scenario
is assumed if the median speed is lower than Vth. Considering
that freeway and non-freeway are typical high-speed scenario
and low-speed scenario respectively, the choice of Vth can be
made according to the typical difference between the speed
limitations of different road types. In our work, we take the
speed limit policy in Michigan [50] as an example. There are
twomain types of road, freeway and non-freeway. The former
has minimum speed limit of 55 miles/hour (i.e. 24 m/s).
For non-freeway, different maximum speed limits are set for
different levels of road, in general smaller than 45 miles/hour
(i.e. 20 m/s). Therefore, we choose Vth = 20 m/s.

To further demonstrate themotivation of separating driving
conditions into two scenarios, we apply a data visualization
method, which was originally designed for discovering the
difference between human and robot users in social media
[51], to display the states of vehicle motion (speed, accel-
eration, and yaw rate) simultaneously. Fig. 2 illustrates the
plot of three example drivers in our dataset, i.e., driver_15,
driver_30 and driver_35. For each driver, we randomly select
three hours of data from the low-speed scenario, and three
hours from the high-speed scenario. The data of each hour are
plotted as a plate, with a circumference, a kernel, andmultiple
threads pointing outward. The circumference represents the
time information. For ease of illustration, we use the average
data value of each second to summarize the driving data of
that second. The one-hour data recording starts from the top
center (i.e., 12 o’clock) and proceeds clockwise, with a total
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FIGURE 2. Driving behaviors in (a) low-speed scenario and (b) high-speed
scenario.

of 3600 sample instants. The plate kernel represents the speed
information: its area denotes the average speed of the hour.

The threads represent the driving actions. Take acceleration
in the longitudinal direction as an example. When the dif-
ference between the (average) acceleration readings in two
consecutive seconds is larger than a certain threshold, it is
believed that the driver took a notable operation on the accel-
erator pedal. A green thread is plotted at the time instant
to denote this action, and the length of the thread is pro-
portional to the difference between the incremental readings
and the threshold. The same approach applies to decelera-
tion (blue threads), left turn (yellow threads), and right turn
(red threads).

Each row in Fig. 2 shows one driver’s behaviors. The
left hand side (LHS) data are collected from the low-speed
scenario and the data on the right hand side (RHS) are from
the high-speed scenario. Clearly each driver has a similar
pattern when the average speed is similar. But comparing the
two scenarios, it is seen that more frequent actions were taken
by the same driver in the low-speed scenario. Different drivers
can also have quite diverse patterns. Thus, it is reasonable to
carry out the data separation step so that driving behaviors
can be individually analyzed in each driving scenario.

3) DATA TRANSFORMATION
After separating each driver’s data according to the speed
scenario, we organize the driving data to matrix forms.
Specifically, four matrices for each driver are generated,
respectively denoted by Al, Ah, Sl, and Sh. We randomly
choose Ml trips from each driver’s data in the low-speed
driving scenario, and Mh trips from the high-speed scenario.
Let Tl and Th be two sufficiently large integers. The matrixAl
is formed by the acceleration data of a driver in the low-speed
scenario: Each row of Al is a segment of Tl acceleration
readings (with unit m/s2) chosen from the middle part of each
trip (to avoid data of the starting-up and full-stop operations).
Similarly, matrix Ah is formed by the acceleration data in
the high-speed scenario. Each row of Ah is a segment of Th
acceleration readings in each of the Mh trips. Sl and Sh are
steering angle data (with unit degree) matrices in the low-
and high-speed scenarios respectively. The former consists
ofMl trips, each of which has Tl readings. The latter consists

FIGURE 3. An example of naturalistic driving data in (a) acceleration
(m/s2) and (b) steering angle (◦).

of Mh trips, each of which has Th readings. In general, Ml
and Mh (resp. Tl and Th) can be different. For ease of pre-
sentation, we choose M = Ml = Mh = 40 and T =
Tl = Th = 3000. The proposed driving stability analysis
algorithm, to be introduced in the next section, is applied to
each of the four matrices. Therefore, we measure the control
skill of a driver in longitudinal and lateral directions, and
in low-speed and high-speed driving scenarios, respectively.
Let D = {Al,Ah,Sl,Sh} denote the set of data matrices.
Executing the proposed method on only one matrix X ∈ D is
discussed in the following sections.

C. DRIVING STABILITY
Before introducing the feature extraction stage, we present
the definition of driving stability considered in our paper.
In general, a human driver or a driving assistance system
perceives the surrounding driving environment and makes
maneuvering plans according to the observations of themove-
ments of the ego-vehicle and other vehicles, road condition,
and traffic rule. If a vehicle is driven to move in a relatively
stable way without abrupt changes, it is easier to predict and
can be considered to be safer. Hence the ability of controlling
vehicle in this way is deemed as driving stability.
Fig. 3 displays a sample row of the acceleration data matrix

and a sample row of the steering angle data matrix. It is seen
that a typical driving trip can roughly be divided into two
types of phases. The first corresponds to the period that the
data vary around a certain constant. This is termed smooth
driving phase. In this type of driving phase, a driver, without
being affected by surrounding traffic environment, intends
to maintain the same vehicle state in either the longitudinal
or lateral direction. We consider an ideally skillful driver
to be one who can keep the longitudinal force (represented
by acceleration) and lateral force (represented by steering
angle) on vehicle to be constant. In practice, the forces in
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both directions change continuously, the level of which may
reveal the driver’s skill. If the data change around an expected
value with relatively high variation, the driving stability level
is considered to be low, and the vehicle state is hard to predict.

Certainly, drivers have to interact with traffic environment
and carry out intentional operations to change the vehicle
state. This corresponds to the second type of driving phase,
termed action phase. It can be deemed as the transition
between two smooth driving phases. A more skillful driver
is able to maneuver vehicle and complete the transitions
prudently. If the transitions are often carried out abruptly with
rapid oscillations, the driver’s skill level in vehicle control
is considered to be relatively low. Hence, in action phases,
the average slope of the data statistics changes can be used to
reflect the control skill.

Assume that vehicle kinetic data collection using
in-vehicle sensors is always subject to measurement noise.
That is, the driving datamatrixX can bewritten asX = F+N,
in which F denotes the true force on the vehicle taken by
the driver, and N represents random noise. The measurement
noise of each trip is assumed to be a stationary Gaussian
process. For an ideal driver (who can keep the true force in
smooth driving phases to be constant and achieve extremely
small data statistics change slopes, i.e. 0, in action phases),
every row of F is a constant. The samples in each row of X
are identically distributed, and there is no correlation between
any two rows.We useX to denote the row-normalized version
of matrix X, i.e., the ith row vector [X]i is attained by nor-
malizing [X]i to consist of entries with zero-mean and unit-
variance. Then all entries ofX are independent and identically
distributed (i.i.d.). In practice, due to the driver’s skill and
complex driving environment, it is hard to maintain fixed
acceleration and steering angle, even for a limited period
of time. This causes the statistical characteristics of X to be
different from that in the ideal case. Therefore, we consider
using an i.i.d. matrix as a theoretic benchmark data matrix
(which is not practically achievable) and measuring how
much the intrinsic characteristics ofX generated by the driver
deviate from the ideal case as the driving stability level.

If the data segments corresponding to the two phases can be
accurately separated, one possible approach of evaluating the
driving stability in the smooth driving phases is to measure
the average variances of the acceleration or steering angle
data of multiple segments. That in the action phases may also
be evaluated by finding the average data changing slopes.
However, distinguishing the two phases from naturalistic
driving data is involved. In the following sections, we propose
our RMT-based algorithm to extract representative features
from the data matrix X without the demand for driving phase
separation.

IV. FEATURE EXTRACTION THROUGH RMT
In this section, we present an algorithm to extract features that
can describe driving stability. Since the row-normalized data
matrix of an ideally skillful driver has i.i.d. entries, we use
the statistical difference between the normalized matrix and

an i.i.d. random matrix to reflect the stability level of a real
driver. To this end, we first follow the RMT and present
indicators to reflect the statistical characteristics of an i.i.d.
random matrix.

A. RING LAW FOR i.i.d. RANDOM MATRIX
In RMT, the ring law [52] is a common property of i.i.d.
non-Hermitian random matrices. To explain the concept,
we consider l independent m × n non-Hermitian random
matrices R1, R2, · · · , Rl . All their entries, [Rs]i,j, ∀s ∈
{1, 2, · · · , l}, i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n}, are i.i.d.
with zero mean and unit variance. Define the singular value
equivalent matrix of Rs as [53].

R̃s =

√
RsRH

s U, s ∈ {1, 2, · · · , l}, (1)

where U is an m× m Haar-unitary matrix. Let

R =
l∏

s=1

R̃s. (2)

Denote the standard deviation of [R]i, the ith row of R, to be
σi. We can define anm×mmatrix R̂ such that the relationship
between the ith row of R̂ and the ith row of R is

[R̂]i =
1
√
m
[R]i
σi
, i ∈ {1, 2, · · · ,m}. (3)

Clearly, the variance of the entries of R̂ is 1
m .

The matrix R̂ has m (complex) eigenvalues. Since R̂ is a
random matrix, the eigenvalues are also random. If m→∞,
n → ∞, and limm→∞

m
n = c is a constant (0 < c ≤ 1),

the probability density function (PDF) of the m eigenvalues
converges to a limiting spectral density (LSD) [52]:

fR̂(λ) =


1
πcl
|λ|

2
l −2, (1− c)

l
2 6 |λ| 6 1

0, otherwise.
(4)

This is the ring law, which says that on the complex plane,
the eigenvalues are confined within a ring defined by an outer
circle with unit radius and an inner circle with radius (1−c)

l
2 .

The property applies to any l ≥ 1.
For instance, we generate a 40 × 80 synthetic random

matrixY1 with Gaussian i.i.d. random entries, row-normalize
it to Y1, and then calculate the matrix R̂ following (1)-(3)
by setting l = 1 and R1 = Y1. The eigenvalues of R̂ are
plotted on the complex plane as purple dots in Fig. 4(a),
together with the outer circle (with radius 1) and the inner
circle (with radius ( 12 )

1
2 = 0.707). Since thematrix size is suf-

ficiently large, almost all the 40 eigenvalues locate within the
ring belt.

If the condition that all entries in the matrices R1,
R2, · · · , Rl are i.i.d. does not hold, the ring law would
be violated. The eigenvalues tend to collapse to the origin
of the complex plane. For example, consider a 40 × 80
all-zero matrix Y = O40×80. We randomly select 10 rows
from the matrix. For the ith selected row, one position index
ji (20 ≤ ji ≤ 40) is randomly selected. Then we set the
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FIGURE 4. Eigenvalues of (a) three synthetic random matrices, and
(b) two naturalistic driving data matrices, with the ring belt defined by the
ring law.

elements [Y]i,j = j− ji for j ∈ {ji+1, ji+2, · · · , ji+10}, and
[Y]i,j = 10 for j ∈ {ji + 11, ji + 12, · · · , 80}. The resulting
matrix is added to Y1 to produce a new synthetic matrix Y2,
whose entries are now non-i.i.d. We normalize Y2 to Y2, and
follow the steps of generating matrix R̂ by setting l = 1 and
R1 = Y2. The eigenvalues of R̂ are plotted as red triangles
in Fig. 4(a), which clearly shows the violation of the ring
law. If more than 10 rows of Y2 have changes of the entry
statistics, the eigenvalues would tend to be even closer to the
origin.

Now we again randomly select 10 rows from Y = O40×80.
For each of these rows, one position index ji (20 ≤ ji ≤ 40)
is chosen. All elements in this row to the RHS of the position
ji+10 are set to 30, i.e., [Y]i,j = 30 for j ∈ {ji+11, · · · , ji+
80}. A linear increase is set between columns ji+1 and ji+10,
i.e., [Y]i,j = 3(j − ji) for j ∈ {ji + 1, · · · , ji + 10}. The
resulting matrix is added to Y1 to produce another synthetic
matrix Y3. Compared with Y2, the change of the statistics
of the entries occurs to a greater extent. Generate the matrix
R̂ by setting l = 1 and R1 = Y3 and plot eigenvalues of
R̂ as green asterisks in Fig. 4(a). It is seen that being more
different from the original i.i.d. matrix leads to characteristics
of eigenvalues farther away from that described by the ring
law. Therefore, comparing the statistical behaviors of the
eigenvalues of matrix R̂ can reflect how much a matrix is
different from an i.i.d. matrix.

Finally, we randomly choose two drivers from our dataset.
For each driver, a 40 × 80 sub-matrix is extracted from the
acceleration data matrix in the low-speed driving scenario.
Following (1)-(3), we calculate the matrix R̂ by setting l = 1
and R1 to be the row-normalized version of the sub-matrix.
The eigenvalues of R̂ are plotted in Fig. 4(b). Clearly, their
behaviors notably violate the ring law.

B. LINEAR EIGENVALUE STATISTIC (LES)
To statistically summarize the random behaviors of the m
eigenvalues of matrix R̂, we define the LES as [54]:

pLES =
m∑
i=1

ϕ(λi), (5)

where ϕ(λi) is a continuous function of the ith eigenvalue λi.
pLES is a statistic of the eigenvalues and is proved to satisfy
the law of large numbers and the central limit theorem [54].
According to the law of large numbers, whenm→∞, 1

mpLES

converges in probability to the expectation of ϕ(λ):

lim
m→∞

1
m
pLES =

∫
ϕ(λ)fR̂(λ)dλ, (6)

where fR̂(λ) is the LSD in (4). Based on the central limit
theorem, [55] proves that, when the entries in matrix Rs are
i.i.d., the samples of pLES have a small confidence interval.
One way of defining the function ϕ(λi) is to set

ϕ(λi) =
|λi|
m . The resulting LES is termed mean spectral

radius (MSR) [19] and is denoted by pMSR. It calculates the
mean distance between the origin of the complex plane and
the eigenvalues:

pMSR =
1
m

m∑
i=1

|λi|. (7)

When the PDF of eigenvalues converges to LSD in (4), we can
obtain the theoretical value of pMSR using (4) and (6) as:

p∗MSR = lim
m→∞

1
m
|λi| =

∫ 2π

0

∫ 1

(1−c)l/2
r ·

1
πcl

r
2
l −2 · rdrdθ

=
2
3cl
−

2(1− c)
3
2

3cl
. (8)

For instance, when l = 1 and c = m
n = 0.5, we have

p∗MSR = 0.8619. MSR describes the behaviors of the random
eigenvalues using a single value. Comparing the MSR of a
matrix with p∗MSR provides a measurement of the difference
between the matrix and an i.i.d. random matrix.

C. DIFFERENTIAL MSR (DMSR)
To describe the changes of statistics of each driver’s driving
data matrices, we follow [19] and separate the M × T data
matrix X ∈ D into a series of M × N (M ≤ N ≤ T )
sub-matrices, using T × N sliding-window matrices W[k]

=

[ON×(k−N ), IN ,ON×(T−k)]T , for 1 ≤ k ≤ T − N + 1:

X[k]
= X×W[k], k = {1, 2, · · · ,T − N + 1}. (9)

For each X[k], we can find its row-normalized matrix X
[k]
,

and then follow (1)-(3) by setting l = 1 and R1 = X
[k]

to attain matrix R̂. Since the entries of X
[k]

are non-i.i.d.,
the eigenvalues of R̂ tend to collapse to the origin of the
complex plane. Denote the resulting MSR by p[k]MSR. For each
k , p[k]MSR is a random value that is almost always less than
p∗MSR. The value p

[k]
MSR is likely to be smaller when the data

sub-matrix X
[k]

is more different from an i.i.d. matrix.
We use an example to show that the sequence of p[1]MSR,

p[2]MSR, · · · , p
[T−N+1]
MSR can be used to measure the strength

of driving operations. Let N0 be a 40 × 3000 syn-
thetic i.i.d. noise matrix with standard Gaussian entries.
Set Y = O40×3000 to be an all-zero matrix and ran-
domly select two rows. For these rows, we further set
[Y]i,j = 0 for columns j ∈ {1, 2, · · · , 700}, [Y]i,j =
0.4(j − 700) for j ∈ {701, 702, · · · , 800}, [Y]i,j =
40 for j ∈ {801, 802, · · · , 1400}, [Y]i,j = 40 − 0.2
(j − 1400) for j ∈ {1401, 1402, · · · , 1600}, [Y]i,j = 0
for j ∈ {1601, 1602, · · · , 2300}, [Y]i,j = 0.2(j − 2300)
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FIGURE 5. MSR and DMSR sequence for synthetic matrices (a) Y4, and
(b) Y5.

for j ∈ {2301, 2302, · · · , 2400}, and [Y]i,j = 20 for j ∈
{2401, 2402, · · · , 3000}. Define Y4 = Y + N0, and display
one of the selected rows ofY4 in Fig. 5(a) (red curve). We use
these rows to mimic three driving operations, i.e., change
of acceleration/steering angle from one constant value to
another. (The changes in the two rows lead to correlation and
significant deviation from i.i.d. matrix.) The first two changes
have the same magnitude, but the former is more rapid (with
a larger absolute value of the slope). The third change has the
same slope as the second, with a smaller magnitude.

Now, we set each sliding-window matrix W[k] to be a
3000 × 500 matrix, for k ∈ {1, 2, · · · , 2501}. Multiplying
W[k] by matrix Y4 generates a total of 2501 sub-matrices
with dimension 40 × 500, denoted by Y[1]

4 , Y[2]
4 , · · · ,

Y[2501]
4 , respectively. For each value of k , we derive the

row-normalized matrix Y
[k]
4 , and follow (1)-(3) using l = 1

andR1 = Y
[k]
4 to find the MSR, p[k]MSR, of the resulting matrix

R̂. The MSR sequence is plotted in Fig. 5(a) (black curve),
where the kthMSR and the (k+499)th element of the selected
row (i.e., the last entry selected by the window) are aligned.

It can be seen that when k increases from 1 to 200, the
values of p[k]MSR fluctuate around a constant. This is because

all the normalized sub-matrices Y
[k]
4 are i.i.d. matrices. The

MSR is then a random variable with expected value p∗MSR =

0.9797, attained using (8) with l = 1 and c = 40
500 = 0.08,

and a small confidence interval [55]. When k exceeds 200,
the sub-matrix Y[k]

4 starts to include the data corresponding

to the first change. Due to the data correlation and devia-
tion from an i.i.d. matrix, the eigenvalues begin to shrink
towards the origin of the complex plane. The resulting MSR
deviates from p∗MSR. As k increases, more entries within Y

[k]
4

exhibit different statistical characteristics, and Y
[k]
4 is more

different from an i.i.d. matrix. The value of p[k]MSR tends to
further reduce, until the change of data statistics occurs in the
middle of the windowed sub-matrix. Afterwards, p[k]MSR starts
increasing. When all the data regarding the first change leave
the sliding window, i.e., k > 800, the entries ofY

[k]
4 are i.i.d..

The values of p[k]MSR again variate slightly around p∗MSR =

0.9797. These lead to the first U-shape as shown in Fig. 5(a).
Similarly, when k continues to increase, the sliding window
passes the other two changes, which results in two more U
shapes in the figure.

From Fig. 5(a), it is seen that different types of data
statistics changes can lead to different U-shapes of MSR. The
first and second changes have the same magnitude. The asso-
ciated U-shapes have the similar depth. But since the second
change has a smaller slope, it demands more time to complete
the change. This causes a greater width of the U-shape. The
third change has a smaller magnitude compared with the sec-
ond change. A smaller depth of the U-shape is observed.
Therefore, by comparing the depth and width of the U-shapes
of the MSR sequence, one can roughly measure the magni-
tude and the time instant of statistical changes in a large data
matrix [19].

However, such a method demands the U shapes of MSR
to be isolated so that their depth and width can be identi-
fied. This means that each sub-matrix contains only a single
change of data statistics. Although this is possible, through
a proper selection of the window size, for data collected
from certain domains such as smart grid [19], it is difficult
to satisfy the requirement with naturalistic driving data due
to frequent operations of drivers. For instance, we generate
another synthetic matrix Y5, which has the same three data
changes as Y4. But the changes occur closer to each other,
as shown in Fig. 5(b), so that two changes can be included
in the same sliding window. The figure shows that this leads
to overlapped U shapes. Measuring the depth and width of
each U shape becomes hard to accomplish, especially if the
changes of data statistics appear frequently in different rows.

To address this issue, based on MSR, we propose a new
parameter, termed differential mean spectral radius (DMSR):

p[k]DMSR = p[k+1]MSR − p
[k]
MSR, k ∈ {1, 2, · · · ,T − N }. (10)

Essentially, the DMSR sequence measures the descending
or ascending speed of the U-shapes of the MSR. For two
U-shapes with the similar depth, the one that has a smaller
width is likely to have a steeper edge, i.e., some large values of
p[k]DMSR. For U-shapes with the similar width, a greater depth
is more likely to cause some large values of DMSR.

Fig. 5(a) illustrates the DMSR sequence ofY4 (blue curve).
It is seen that DMSR can clearly reflect the characteristics
of the U shapes of the MSR sequence. The DMSR exhibits
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a random behavior. But most realizations locate within a
certain interval, with frequent occurrence of large values cor-
responding to the edges of the U shapes. In addition, deeper
and narrower U shapes of MSR sequence (e.g., caused by
the first change) lead to DMSR values more significantly
deviating from common values. Since the DMSR sequence
exploits the information contained in only a small number
of MSR samples to measure the changing level of the data
statistics, identifying the complete U shape is not necessary.
In Fig. 5(b), we also show the DMSR of Y5. The pattern
shown in Fig. 5(a) can still be observed, even though the
U-shapes of the MSR have overlaps.

D. CASE STUDIES
To obtain features that reflect driving stability from the
DMSR sequence, we first use two case studies to explain
how the DMSR sequence contains driving stability informa-
tion in the two driving phases respectively. The data used
in our paper were collected from an IoV research project
and thus do not provide any label information on whether a
driver has a higher or lower driving stability level. Therefore,
the case studies are based on synthetic data that simulate the
characteristics of driving data. In a smooth driving phase,
a driver operates the vehicle in order to maintain a constant
state of the vehicle. Such operations in general occur fre-
quently, with limited strength. Consequently, each sub-matrix
attained using (9) has entries with multiple small changes
in data statistics. Drivers with good driving skills tend to
generate data matrices with less significant statistical changes
compared with drivers with poor skills. In an action phase,
a driver makes control operations that lead to changes of
statistics with much larger magnitude than those in smooth
driving phases. A skillful driver tends to make the operations
prudently and steadily. In what follows, we use simulated data
to explore the influence of these two kinds of changes on
DMSR respectively.

1) SMOOTH DRIVING PHASES SIMULATION
Generate a 40 × 3000 synthetic control data matrix Y. For
each row i (i ∈ {1, · · · , 40}), let the data have a step change
with random magnitude for every 5 elements to simulate fre-
quent operations in the smooth driving phases. Specifically,
for each row i, we sample 600 random values from a uniform
distribution between −0.5 and 0.5. Let the (5(j − 1) + 1)th
to the (5j)th elements, i.e., [Y]i,5(j−1)+1, · · · , [Y]i,5j, be the
jth sample. Finally, we set the synthetic driving data matrix
Y6 = Y+N1, whereN1 is a Gaussian noise matrix with mean
0 and standard deviation 0.5. By this means, we simulate
frequent changes of data statistics around constants.

Set the sliding-window matrices W[k] to be 3000 × 80
matrices. Apply (1)-(3) and (7) to the row-normalized sub-
matrices of Y6 to obtain the MSR sequence, and apply (10)
to obtain the DMSR sequence, as plotted in Fig. 6. Due to
the frequent changes of data statistics in each sub-matrix,
the U-shapes of MSR heavily overlap and thus no complete
U shape is observable. However, based on the results shown
in Fig. 6, the behavior of DMSR can still reflect the data

FIGURE 6. MSR and DMSR sequence for synthetic data matrix Y6.

FIGURE 7. DMSR comparison for synthetic data matrices.

statistics in the original data matrixY6. The frequent changes
in matrixY cause a large number of p[k]DMSR to be relatively far
from the center value 0. In other words, the observed DMSR
values would be dispersed compared with those attained from
ideal i.i.d. matrices. Larger changes of statistics would cause
even dispersed behavior of the DMSR.

To show this, we generate another datamatrixY7 following
the same way as Y6, except that the elements in the con-
trol data matrix Y are sampled from a uniform distribution
between −1 and 1. This reflects both larger magnitude and
speed of data statistical changes, compared withY6. In Fig. 7,
we use box plots to visualize the dispersion characteristics
of the DMSR sequence corresponding to the two synthetic
data matrices. The box size is determined by the interquartile
range (IQR). The boundaries are the positions whose distance
to the nearby box edge equals the IQR. Data samples outside
the boundaries are treated as outliers. Clearly, the concentra-
tion interval size, i.e. the box size, of the DMSR sequence
corresponding to Y6 is smaller than that corresponding to
Y7. Therefore, using the box size of the box plot of DMSR
can help reflect the driving stability levels in smooth driving
phases.

2) ACTION PHASES SIMULATION
To explore the influence of driving operations in action phases
on the DMSR, we further study two synthetic data matrices.
Let Z initially be an all-zero matrix O40×3000. For each row
i (i ∈ {1, 2, · · · , 40}) of Z, we first randomly find a position
index ri (1000 ≤ ri ≤ 2000). The next 50 elements on
the right side of [Z]i,ri , i.e., [Z]i,ri+1, · · · , [Z]i,ri+50, then
increase or decrease linearly from 0. The absolute values of
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slopes are randomly sampled from a Gaussian distribution
with mean 0.2 and standard deviation 0.1. The remaining
entries [Z]i,ri+j, ∀j ∈ {51, · · · , 3000 − ri} are set to be the
same as [Z]i,ri+50. By this means, each change simulates a
relatively large control operation. Finally, the synthetic data
matrix Y8 is attained by [Y8]i,j = [Y6]i,j + [Z]i,j when
j ≤ ri or j > ri + 50, and [Y8]i,j = [Z]i,j + [N1]i,j
when ri < j ≤ ri + 50. The data matrix contains both
long, significant changes and frequent, small changes of data
statistics compared with an i.i.d. matrix.

The second synthetic data matrix Y9, is generated
similarly, except that the absolute values of slopes of the
data changes in Z are sampled from a Gaussian distribution
with mean 0.4. Fig. 7 also shows the box plots of the DMSR
sequence corresponding to Y8 and Y9. We can notice that
their box sizes are almost the same. This is because both
matrices are generated using Y6, and have the same level of
frequent changes. However, the DMSR sequence of Y9 has
more outliers farther away from the box center. This is in line
with the observation made in Fig. 5: steeper changes of data
statistics lead to deeper U shapes ofMSR and possible DMSR
values significantly dispersing from the center. Therefore,
one can use the dispersion of outliers to reflect the driving
stability level in action phases.

E. DRIVING STABILITY FEATURE EXTRACTION ALGORITHM
As shown in the above case studies, we can use the concen-
tration interval and outliers’ dispersion level to summarize
the statistics of DMSR sequence, which reflects the driving
stability in two driving phases respectively. To facilitate a
quantitative analysis, denote qa the ath percentile of the
DMSR sequence. For a certain value of 0 < a < 50,
the feature for representing the concentration level of the
DMSR sequence can be defined by

CDMSR = q100−a − qa. (11)

In this paper, we let a = 25 and CDMSR is the IQR (the box
size) of the box plot in Fig. 7.
Outliers can be defined as those DMSR samples greater

than (α+1)q100−a−αqa or smaller than (α+1)qa−αq100−a
for some α > 0. In our paper, we choose α = 1 so that DMSR
samples whose distance from the median value, denoted by
p̃DMSR, is much lager than CDMSR, are deemed to be outliers.
Denote the set of outliers byPout. The feature to represent the
dispersion level of the outliers can be defined as the average
distance between the outliers and p̃DMSR, i.e.,

ODMSR =
1
|Pout|

∑
p∈Pout

(p− p̃DMSR), (12)

where |Pout| is the cardinality of Pout.
Now, for each driver, we can calculate the features CDMSR

and ODMSR. Small values of them show that the driving data
matrix (after normalization) is similar to an i.i.d. matrix,
which is attained by perfect skill of maintaining constant
vehicle state. Larger values of CDMSR and ODMSR imply
that the data matrix is more different from an i.i.d. matrix.

Algorithm 1 Extraction of CDMSR and ODMSR

Input: Driving data matrix X
1: For k = 1 : T − N + 1 do
2: Obtain sub-matrix X[k] using (9)
3: Calculate row-normalized matrix X

[k]
from X[k]

4: Set l = 1, R1 = X
[k]
, and calculate R̃1 using (1)

5: Calculate R using (2)
6: Calculate R̂ using (3) and find its eigenvalues
7: Calculate p[k]MSR using (7)
8: end for
9: Calculate p[1]DMSR, · · · , p

[T−N ]
DMSR using (10)

10: Calculate CDMSR using (11)
11: Calculate ODMSR using (12)
Output: Driving stability features CDMSR and ODMSR

Hence one can compare the features of two drivers to evaluate
their skills. The complete algorithm to derive these features
from the driving data is shown in Algorithm 1. Using such
features to describe the different levels of driving stability
can facilitate grouping drivers into clusters according to their
skills, to allow further investigations on driving behaviors.
In the next section, we apply the proposed algorithm to our
dataset. Each individual driver’s stability level can be mea-
sured, according to which the drivers are clustered into groups
to study the common driving stability pattern. Drivers isolated
from the majority can be identified and sent for additional
inspection.

V. NATURALISTIC DRIVING DATA ANALYSIS
A. INDIVIDUAL DRIVER ANALYSIS
We use the SPMD dataset to demonstrate the results. Only
the low-speed scenario is shown. For the acceleration data,
the mean value of CDMSR for all 42 drivers in our dataset
is 2.80 × 10−3, and the standard deviation is 2.28 × 10−4.
This leads to the coefficient of variation (CV) to be 8.13%.
Fig. 8 shows the acceleration DMSR box plots of four drivers.
A clear difference between the box size of driver_42 and
those of others can be observed. The average level of frequent
and small data statistical changes of driver_42 in smooth
driving phases is the smallest, which implies the highest driv-
ing stability in the longitudinal direction. Further, driver_11
has the largest CDMSR. But the difference between those of
driver_12 and driver_20 is not sufficiently large. Later we
will see that these three drivers can be clustered into the
same group according to the stability levels reflected by their
driving data.

The mean, standard deviation, and CV ofODMSR for all 42
drivers are 5.50×10−3, 5.11×10−4, and 9.28%, respectively.
From Fig. 8, it is seen that, although driver_12 and driver_20
have the similar box sizes, the outliers for driver_20 are
more dispersed and farther away from p̃DMSR than those of
driver_12. This leads to a larger value of ODMSR. The result
implies that the average level of long and large data statisti-
cal changes of driver_20 corresponding to action phases is
greater than that of driver_12.
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FIGURE 8. Acceleration DMSR characteristics of four drivers in the
low-speed scenario. The CDMSR values are respectively 3.30 × 10−3,
2.97 × 10−3, 2.97 × 10−3, 2.10 × 10−3, and 2.06 × 10−3. The ODMSR values
are 6.36 × 10−3, 5.27 × 10−3, 5.70 × 10−3, 4.10 × 10−3, and 4.18 × 10−3.

FIGURE 9. Steering DMSR characteristics of four drivers in the low-speed
scenario. The CDMSR values are respectively 2.95 × 10−3, 2.17 × 10−3,
2.83 × 10−3, and 3.97 × 10−3. The ODMSR values are 5.95 × 10−3,
4.36 × 10−3, 5.32 × 10−3, and 9.55 × 10−3.

The similar analysis can also be conducted for the control
in the lateral direction. We attain 42 different values of
CDMSR, with mean value 2.75 × 10−3, standard deviation
3.80 × 10−4, and CV 13.82%, and 42 ODMSR, with mean
value 5.53 × 10−3, standard deviation 9.36 × 10−4, and
CV 16.91%. Both CV values are larger than those derived
from acceleration data. This may imply that drivers tend to
behave more differently for lateral-direction operations. The
box plots of four example drivers’ steering DMSR are shown
in Fig. 9. Different levels of box size and outliers’ dispersion
can also be observed. The results imply that driver_25 has
higher driving stability in smooth driving phases. The steering
angle data of driver_41 exhibit large-magnitude variations
than other drivers, which presents a relatively lower level of
driving stability.

Finally, to illustrate the consistency of the proposed
features, we choose the driver, driver_42, who has a suf-
ficiently large number of data trips in the low-speed sce-
nario. Two acceleration data matrices are generated using
randomly sampled non-overlapping trips. The box plots of
DMSR of both matrices are shown in Fig. 8. Their charac-
teristics are very similar, since they reflect the behavior of
the same driver. All the above observations demonstrate the
effectiveness of our method.

B. DRIVING STABILITY CLUSTERING
The above driving stability analysis results can potentially be
adopted to facilitate further investigations on driving behav-
iors. Due to the lack of label information in naturalistic driv-
ing data that can be matched to the safety level, it is in general
hard to supervise a learning algorithm to determine the exact
knowledge that can distinguish safe and dangerous behaviors.

FIGURE 10. Clustering results with (a) [C l
acc, C l

ste], and (b) [Ol
acc, Ol

ste].

However, it is commonly accepted that if a driver’s behavior
is significantly deviated from that of the majority of normal
drivers (e.g., driving over-cautiously or over-aggressively),
he/she may become a dangerous factor to others and thus
should be identified for further inspection [26], [56]. There-
fore, we demonstrate a potential application of the proposed
features by applying the DBSCAN [21] to help find the com-
mon and uncommon driving patterns, from the perspective of
our driving stability analysis.

The basic idea behind the DBSCAN algorithm is to
partition data points into individual groups such that the den-
sity of data points inside a cluster is much higher than that of
points outside. Hence a cluster always contains at least a cer-
tain number (three in our experiment) of closely-located data
points. The algorithm can discover clusters of arbitrary shape,
without the necessity of determining the number of clusters
in advance. Data points that are not included in any cluster
are considered to be noise objects. Noise objects and clusters
far from the majority can be further studied.

We denote the DMSR concentration intervals for
acceleration and steering angle data in the low-speed scenario
as C l

acc and C
l
ste respectively. The DMSR dispersion degrees

are denoted by Olacc and Olste. In the high-speed scenario,
the corresponding features are represented by Ch

acc, C
h
ste,O

h
acc

and Ohste. For the ease of illustration, we separate the smooth
driving phases and action phases so that our DBSCAN
algorithm is applied individually to four two-dimensional
feature vectors, [C l

acc,C
l
ste], [Olacc,O

l
ste], [Ch

acc,C
h
ste], and

[Ohacc,O
h
ste]. More generally, one can execute an clustering

algorithm according to the 4 features in each speed scenario,
or even all 8 features to discover complicated patterns in the
high-dimensional space.

For instance, Fig. 10(a) shows the clustering result based
on [C l

acc,C
l
ste], which partitions the 42 drivers according

to the changing levels of data statistics for smooth driving
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FIGURE 11. Clustering results with (a) [Ch
acc, Ch

ste], and (b) [Oh
acc, Oh

ste].

phases in the low-speed scenario. We can see that the vari-
ation of C l

acc among the drivers is smaller than that of C l
ste,

which is in linewith the CV result. This implies that the lateral
control skill may be more distinguishable than the longitudi-
nal control skill. The majority of the drivers are partitioned
into two clusters, marked by yellow triangles and red circles
respectively. The main difference between the two groups is
the lateral driving stability level. The two drivers, driver_41
and driver_42, cannot be included in any group and hence are
labeled as noise objects (blue squares). Both drivers exhibit
notably smaller values of C l

acc but larger values of C l
ste,

comparedwith the others in the dataset. Further investigations
on these two drivers can be conducted to identify the causes
of such a pattern. The similar analysis can be conducted on
the clustering results using other feature pairs. Fig. 10(b)
illustrates the stability pattern of action phases. driver_41 and
driver_42 are again regarded as noise objects. The former
has a significantly larger value of Olste than other drivers, and
the latter has notably lower value of Olacc compared with the
majority. Other drivers are all in one group, because they do
not have significantly different driving stability levels, both
in the longitudinal and lateral directions.

Fig. 11 shows the results in the high-speed scenario.
Comparedwith the low-speed scenario, the difference of driv-
ing stability in the lateral direction becomes more notable.
In both phases, three drivers are identified to show clear
difference from other drivers. They may deserve additional
attention. Apart from finding uncommon drivers, the sum-
mary of the common driving stability patterns may also be
useful in optimizing future ITS applications, e.g., allowing
robot drivers to mimic human drivers.

VI. CONCLUSION
We have proposed a novel approach for analyzing driving
stability using naturalistic driving data. On the assumption

that sensor measurement noise is a stationary Gaussian pro-
cess and a theoretically ideal driver can maintain constant
vehicle states when the road condition is not taken into
account, our method can extract two features by evaluating
the statistical difference between the driving data and the
data that would be generated by the ideal driver. Specifically,
the acceleration and steering angle data of each driver have
been organized in matrix forms, to respectively represent
the control operations in the longitudinal and lateral direc-
tions. Based on RMT, we have presented an algorithm that
can derive a parameter termed DMSR according to the
LES. Through a number of case studies with synthetic data,
we have shown that the concentration level and outliers’
dispersion level of the DMSR can help measure the data
statistical changes in the driving data matrices and thus can
imply the driving skill of a driver in both smooth driving and
action phases. The execution of the proposed method on a
practical dataset produced by ITS IoV technologies has been
demonstrated. Using the extracted features, driver clustering
can be applied to discover patterns of drivers. The results
can potentially be used to help better understand human
drivers.
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