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ABSTRACT In this paper, we study the problem of euclidean distance matrix (EDM) recovery aiming to
tackle the problem of received signal strength indicator sparsity and fluctuations in indoor environments
for localization purposes. This problem is addressed under the constraints required by the internet of things
communications ensuring low energy consumption and reduced online complexity compared to classical
completion schemes.We propose EDM completion methods based on neural networks that allow an efficient
distance recovery and denoising. A trilateration process is then applied to recovered distances to estimate
the target’s position. The performance of different deep neural networks (DNN) and convolutional neural
networks schemes proposed for matrix reconstruction are evaluated in a simulated indoor environment, using
a realistic propagation model, and compared with traditional completion method based on the adaptative
moment estimation algorithm. Obtained results show the superiority of the proposed DNN based completion
systems in terms of localization mean error and online complexity compared to the classical completion.

INDEX TERMS Convolutional neural networks (CNN), deep neural networks (DNN), indoor localization,
matrix completion, received signal strength indicator (RSSI), trilateration.

I. INTRODUCTION
With the wide-scale proliferation of wireless communication,
location-based services (LBS) are attracting a high interest
especially related to internet of things (IoT) applications.
The most fundamental common need for these LBS appli-
cations is to accurately estimate the target’s position, based
on the collected environmental data by a network of sen-
sor nodes [1], [2]. The wide variety of LBS services and
applications can include both outdoor and indoor situations.
The global positioning system (GPS) can guarantee accu-
rate and precise localization information in the outdoor area.
However, its performance suffers from a drastic degradation
in indoor environments due to the attenuation and the block-
age of satellite signals. Consequently, the location demand for
indoor positioning scenarios is more challenging than that in
outdoor scenarios [3], [4]. Thus, LBS brings new challenges
for developing promising high accuracy indoor localization
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techniques while respecting time-critical and energy effi-
ciency constraints, in order to satisfy IoT requirements.

The majority of existing indoor localization works
focus on the 2-dimensional (2-D) or 3-dimensional (3-D)
coordinates [5], while some other works provide different
location information (floor identification, zone identifica-
tion, moving status, etc) [6], [7] [8]. The recently devel-
oped indoor localization techniques are essentially based
on radio frequency (RF) technologies (e.g. Wi-Fi [9], [10],
Bluetooth [11], radio frequency identification (RFID) [12],
ultra wide-band (UWB) [13]) and emerging technologies
(e.g. visible light [14], ultrasound [15], magnetic field [16]).
Themost popular among these techniques are theWi-Fi based
localization methods operated through software implementa-
tions and firmware upgrades on Wi-Fi based communication
systems. Existing Wi-Fi based indoor positioning systems
are mainly based on geometric mapping methods [17], [18]
or on location fingerprints [19]. For geometric map-
ping schemes, spatial parameters like distance or direc-
tion, are derived from physical measurements essentially
angle of arrival (AoA) [20], time of arrival (ToA) [21] and
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received signal strength indicator (RSSI) [22]. The target’s
position is then provided using geometric algorithms
(triangulation or trilateration). The localization performance
of such algorithms is heavily affected by the limitation of
communication range and multipath and shadowing effects
caused by reflectors such as walls and other obstacles result-
ing from human movement [23] for example. These indoor
propagation conditions complicate propagation modeling,
and consequently, the relation between the measured received
signal parameters and distances is perturbed. Therefore,
pairwise sensor-node distances are noisy and only partially
known, which makes accurate indoor localization challeng-
ing. To provide a reliable and efficient distance information
for localization aims considering radio signal fluctuations
and sparsity, the distance matrix completion and correction is
proposed to recover the complete euclidean distance matrix
(EDM) from a small number of noisy measured distance
entries.

Several algorithms and approaches have been proposed
and studied to recover the EDM approximating its missing
entries and minimizing the noise on the observed entries
from its noisy version, for RSSI based schemes. The classical
matrix completion problem is formulated as a rank minimiza-
tion problem solved by advanced optimization algorithms as
described in [24]. When providing such recovering method,
approximated and calculated data still needs enhancement,
which can be achieved by means of a refinement process.
In addition, a fully connected wireless network is required
such that all nodes communicate with each others (refer-
ence nodes (RN) and unknown nodes to be localized), and
the completion preprocessing step needs to be performed
online. Online multi-decision making schemes have been
used in [25]–[27], to solve a related problem. However,
indoor localization systems require low energy consumption
and low computational complexity to meet the IoT con-
straints. Therefore, several deep learning methods have been
explored recently to shift the online complexity to an offline
phase. The convolutional neural networks (CNN) have been
used to overcome noise and uncertainty during RSSI-based
localization by developing localization frameworks using
CNN-based data augmentation [28], [29]. Authors in [30]
deploy a cascade of multiple deep neural networks (DNN)
to recover the original EDM from the noisy observed matrix
which can achieve an accurate reconstruction performance of
the EDM. Special types of neural networks (NN) have been
explored, essentially autoencoders [31], [32] and generative
adversarial networks (GAN) [33], to regenerate the complete
noise-free original data in several fields. Currently, such
deep learning (DL) methods are widely applied to reconstruct
clean data from its noisy version for image denoising [34],
diagnosis improvements of ECG signals [35], text correc-
tion and completion [36] and EDM or RSSI completion
and denoising for localization accuracy improvements [37].
Authors in [38] tackle the problem of RSSI fluctuation and
the sparsity of Wi-Fi signals in dynamic environments to
improve the localization accuracy using a stacked denoising

autoencoder to extract RSSI measurements based on Wi-Fi.
Authors in [39] and [40] explore GAN to deal with the limited
RSSI samples resulting from non-covered spaces or irregu-
lar RSSI distributions in complex indoor environments. The
different mentioned existing DL-based methods, which are
dedicated for data completion and correction to improve
the indoor localization accuracy, are based on unsupervised
learning and require a full connection between sensor nodes
(communication between all unknown nodes to be localized
and all RN) which increases the energy consumption and the
time-response. To perform localization, authors in [41] apply
a factorization process to the recovered distances matrix in
order to obtain the estimated coordinates of unknown nodes.
This factorization requires that the matrix is semidefinite pos-
itive (SDP). However, if the matrix is not SDP, the problem
can also be solved by introducing semidefinite relaxations
(SDR) [42]. The computational complexity of SDR-based
localization techniques is closely related to the problem size.
Therefore, it is only suitable to medium size networks due to
the high required running time. The localization task can be
also ensured by the fingerprinting technique. The main draw-
back of such technique is that an offline radio map should be
constructed and frequently updated due to the environmental
changes.

To overcome the aforementioned challenges, this paper
addresses the matrix completion and correction problem
under the constraints required by IoT communications.
We propose to deploy supervisedDL basedmethods for EDM
completion as a preprocessing step for indoor localization.
Consequently, we shift the online complexity to an offline
phase ensuring a real-time response even for large networks,
while achieving a centimeter-level accuracy. Thus, an offline-
construction and designing of a generic and representative
model is required. Such learned model is applied online to
get the predicted complete data. We propose different archi-
tectures of DNN and CNN to ensure accurate distance regen-
eration in order to efficiently reconstruct distances data used
for localization. Simulation results show that the proposed
DL based schemes achieve higher localization accuracy than
state-of-the-art methods that consider classical data comple-
tion schemes. Moreover, the different proposed schemes are
compared in order to find the best recovery method taking
into account the trade-off between localization accuracy and
online complexity.

Thus, we design recovery schemes that exploit the cor-
relations between measurements in order to fill the miss-
ing information and minimize the error on observed noisy
measurements. After distance recovery, the localization is
performed by means of trilateration technique using the com-
plete pairwise inter-sensor nodes distances instead of only
relying on a partial number of pairwise distances derived from
measured RSSI. Applying this localization method does not
need any extra requirements to be used once the EDM is
completed. This technique provides the nodes’ coordinates by
combining measurements from different RN nodes and can
be applied if we have at least three detected RN. By using
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FIGURE 1. System model mentioning different system’s steps.

the recovered EDM, we aim to improve the localization
accuracy of trilateration. From the numerical experiments,
we demonstrate that using CNN and DNN-based recovery
schemes achieves 62% and 79% reduction in the localiza-
tion mean error over the conventional completion approach,
respectively. Moreover, DL-based completion schemes are
associated with a low online complexity and require a partial
inter-nodes connection (communication between unknown
nodes to be localized and RN only) in order to be adapted
to indoor localization for an IoT context, where the energy
consumption is limited.

The remainder of this paper is organized as follows: In
Section II, we give a detailed description of the system model

and the considered scenarios. We present the proposed DNN
and CNN schemes used for data completion and denoising in
Section III and Section IV, respectively. Obtained simulation
results are presented and discussed in Section V. Finally,
we conclude our work in Section VI.

II. SYSTEM DESCRIPTION
We consider an indoor environment where U sensor
nodes are deployed, including M RN with known posi-
tions and N unknown nodes to be localized, such that
U = M + N . As depicted in Fig. 1, the localization
scheme is performed through three steps; (i) data acqui-
sition, (ii) data preprocessing, and (iii) node localization.
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We consider two studied inter-nodes communication
scenarios:

• Full inter-nodes communication: all sensor nodes com-
municate with each other.

• Partial inter-nodes communication: unknown nodes to
localize communicate only with RNs.

The RSSI measurements are sent to a central unit, which
performs data preprocessing and localization. Afterwards,
the estimated coordinates are sent to the considered sen-
sor nodes periodically or only when requested. Therefore,
the complexity is shifted to the central unit to meet the IoT
energy constraints at the devices. In this section, we explain in
details the system model and the inter-nodes communication
conditions for two studied scenarios.

A. DATA ACQUISITION
Let Prij be the RSSI measured at the i-th sensor of the signal
transmitted by the j-th sensor. It can be expressed as

Prij = Pt − PLij + Bσ [dBm], (1)

where Pt refers to the transmitted power, which is considered
constant for all sensors, Bσ is a Gaussian random variable
representing the shadowing effects, and PLij is the pathloss
calculated using the model

PLij = PL0 + 20 log10(f )+ 10µ log10(
dij
d0

), (2)

where PL0 denotes the pathloss value at a reference distance
d0, f the carrier frequency, µ the pathloss exponent, and dij
the distance between the sensor pair (i, j).
When considering the first communication scenario, i =

1, 2, . . . ,U and j = 1, 2, . . . ,U . Considering the shad-
owing effects, T RSSI measurements are collected by each
sensor node received from all other nodes following (1).
However, when considering the second scenario, we work
with a partially connected network. T RSSI are measured by
each unknown node of signals received only from RN. Thus,
i = 1, 2, . . . ,N and j = 1, 2, . . . ,M .

B. DATA PREPROCESSING
Collected data is transferred to a central unit which performs
three preprocessing tasks, namely, EDM construction, EDM
completion, and EDM refinement.

1) EDM CONSTRUCTION
We consider two indoor propagation scenarios with different
inter-nodes communication conditions.

• Full inter-nodes communication: This scenario is con-
sidered when we apply classical approaches to complete
the EDMcontaining squared pairwise distances between
all sensor nodes D(t), t ∈ {1, 2, . . . ,T },

D(t)
=

[
D(t)
11 D(t)

12
D(t)
21 D22

]
, (3)

where D(t)
12 ∈ R+N×M and D(t)

21 ∈ R+M×N represent
the distances between the unknown nodes and RNsmea-
sured at the unkonwn nodes and the RNs, respectively.
Moreover,D(t)

11 ∈ R+N×N denotes the distances between
unknown nodes, whereas D22 ∈ R+M×M contains the
distances between the RNs. Note that, D22 is exactly
known i.e. it is fixed. That is why we remove the index t ,
since it is the same matrix for each t . Whereas D(t)

12,
D(t)
21 and D(t)

11 are computed based on the RSSI values,
replacing (2) in (1), and thus, they include noisy and
missing entries.

• Partial inter-nodes communication: This completion
scheme is applied when we consider the second com-
munication scenario. The EDM to be recovered S(t) =
D(t)
12 ∈ R+N×M , obtained from collected RSSI values

and applying (1), contains only distances between the
unknown nodes to localize and RNs at the t-th measure-
ment. It corresponds to the sub-matrix D(t)

12 considered
in the first scenario.

2) EDM COMPLETION
• Classical completion: This completion scheme is con-
sidered in the first inter-nodes communication scenario.
Completed matrix is denoted as D̂

(t)
. The completion

problem is formulated as an optimization problemwhich
aims to minimize the rank of the distance matrices
solved by the adaptative moment estimation (ADAM)
[43] advanced method. More details on the problem
formulation and used algorithms are presented in our
previous work [24].

• NN-based completion: The completion of each S(t),
denoted as Ŝ

(t)
is achieved based on a trained model

using DNN or CNN as detailed in Section III and
Section IV, respectively. Such scheme allows both dis-
tance completion and noise minimization on observed
distances, since we train the model considering real dis-
tances as outputs. Thus, our model allows to estimate
distances by applying completion if the distance is not
observed or correction for noisy distances.

3) EDM REFINEMENT
Completed distances are introduced to a proposed refine-
ment process. If the completed distances are still damaged
by noise, a refinement process is performed as explained
in Section IV-C. Finally, the central unit applies the trilat-
eration on obtained preprocessed distances contained on Ŝ
to provide the estimates of unknown positions. We notice
that Ŝ represents the output of the CNN-refinement process
when applied. If not applied, Ŝ refers to the mean of the T
completed distance matrices.

C. TRILATERATION FOR NODES LOCALIZATION
After completing and denoising the distances obtained
from the RSSI measurements using the signal propagation
model expressed in (1), the localization is performed using
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trilateration [44]. It is a geometric method that combines dis-
tances between the node to localize and RN, in order to accu-
rately estimate the target’s position. Trilateration explores
the equations of spheres centered at an unknown node to
determine its accurate position in 2-D or 3-D. In this paper,
we consider localization in a 2-D plane. For localization
purposes, only the sub-matrix D̂12 of D̂ is used concerning
the first communication scenario. Whereas the matrix Ŝ is
used for the second scenario. Let Ŝ be the matrix containing
pairwise distances between unknown nodes and RN, obtained
after the preprocessing task, we define:

• ĉn = [x̂n, ŷn]T , n = 1 · · ·N are the estimated coordi-
nates of the n-th unknown node.

• and (xm, ym), m = 1 · · ·M are the real known coordi-
nates of RN.

The coordinates ĉn are estimated as follows:

ĉn = (GTG)−1GT an. (4)

Here, v2m = x2m + y2m. an ∈ RM−1×1, G ∈ RM−1×2 defined
as:

an[m] =
1
2

(
v2m+1 − v

2
1 − d̂

2
m+1,n + d̂

2
1,n

)
G[m, :] = [xm+1 − x1 ym+1 − y1] . (5)

where d̂2m,n are the entries of the preprocessed squared dis-
tance matrix Ŝ expressed as:

d̂2m,n = Ŝ[n,m] = (xm − x̂n)2 + (ym − ŷn)2. (6)

III. PROPOSED DNN-BASED COMPLETION
In this section, we consider the second inter-nodes com-
munication scenario. We aim to exploit DNN to complete
unknown distances and correct observed noisy distances.
In the following, we explain in details different explored
DNN architectures.

A. OVERVIEW OF DNN
DNN, which can model complex problems using a deep-
layered structure, are capable of learning high-level features.
They have been widely investigated recently in different
fields due to its promising performance in many benchmark
problems. In this paper, we use such NN architectures to com-
plete partially known distances where distance data received
at the input layer is propagated to one or more middle layers
called hidden layers. The weighted sums from these hidden
layers are propagated to the output layer, which presents
the estimated complete distance data. The weights of such
network are updated iteratively by error back-propagation
using an optimization algorithm. Determining the weights
and biases of the network means training the network. Once
trained and validated, the DNN model can perform comple-
tion by computing the output of the network using the weights
determined during the training phase.

In order to perform completion using a DNN, we introduce
an incomplete distance vector (N0 × 1) as input while the

FIGURE 2. Structure of DNN at test phase for correction and completion
distances matrix.

DNN’s output corresponds to the complete associated dis-
tance vector (NL+1× 1), as illustrated in Fig. 2. Let Nl be the
number of neurons for the l th layer, 0 ≤ l ≤ L+1 where L is
the number of hidden layers. bl ∈ RNl×1 andW l ∈ RNl×Nl−1

denotes the biases and the weights matrix, respectively. The
input incomplete vector is denoted by i(0) ∈ RN0×1 and the
output estimated vector is o ∈ RNL+1×1. The output vector of
the l th layer can be expressed as

o(l) = gl(b(l) +W (l)i(l−1)), i(l) = o(l), (7)

where the input vector i(l) undergoes a linear transformation
represented by W (l), a bias vector b(l), and then a nonlinear
activation function g(l) is applied elementwise. The activation
function used in this paper is Relu, which is defined as

gl(x(l)) [n] = max
(
x(l) [n] , 0

)
. (8)

The gap between the ideal correct distances and the esti-
mated complete distances computed by the generated DNN
based on its current weights is referred to as the loss. The
loss function loss(λ) = loss(W ,B) measures the difference
between o(P)(L+1) and o(R)(L+1) denoting predicted outputs and
real outputs, respectively. It corresponds to the normalize
mean square error between o(P)(L+1) and o

(R)
(L+1). Thus, the goal

of training DNN is to find a set of weights to minimize the
average loss over a large training set using a back-propagation
method. To minimize the loss, optimization algorithms are
used to iteratively update λ. Then, the model is validated
using a validation data set. For evaluation aims, the algorithm
must accurately complete the unknown components of the
distance vector in a test set of incomplete distance vectors.
The obtained output estimated distances are then considered
by our system to perform trilateration.

When working with DNN, the online complexity repre-
sents the number of mathematical operations (multiplications
and summations) needed to activate neurons in all DNN
layers. We can neglect the cost of summations since it is not
complex compared to multiplications. The number of such
multiplication operations Nmul,DNN required to transit from
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the 1st layer to the output layer can be given by:

Nmul,DNN =
L+1∑
l=1

Nl−1Nl . (9)

B. DNN SCHEMES FOR DATA COMPLETION
In this part, we aim to exploit DNN to complete and denoise
the distance information contained in {S(t)}. First, given a set
of observed incomplete distance matrices which are used for
training, amodel is built to predict complete correct distances.
During training, we aim to find the best DNN architecture
which allows a good distance recovery. Thus, the trained
model is used to complete and denoise distances and we
compare the recovered distances to the accurate distances.
Once verified, we give as input the observed distances cor-
responding to an unknown node to localize and as output we
receive the estimated complete and denoised corresponding
distances.Matrices to be completed can be reorganized in two
different ways to construct the inputs and the outputs of the
DNN model.
• DNN for a single node distance completion: The
matrices {S(t)} are reorganized in NT vectors of size
M × 1. These vectors are introduced to the DNN input.
Note that each vector represents distances between all
RN and a given unknown node at a given t . We obtain
NT estimated distance vectors of size M × 1, as model
outputs. Considering (7), we have i(t,n)0 [m] = S(t)[n,m].
In this case, N0 = M and NL+1 = M .

• DNN for all nodes distance completion: The matrices
{S(t)} are reorganized in T vectors of sizeNM×1. These
vectors are introduced to the DNN. Note that each vector
represents distances between all unknown nodes and all
RN at t . As outputs, we obtain the completed vectors rep-
resenting Ŝ

(t)
. Considering (7), we have i(t)0 [1 : N0] =

vec
{
S(t)
}
, where vec {·} is the vectorization operation.

In this case, N0 = NM and NL+1 = NM .

IV. PROPOSED CNN-BASED COMPLETION
AND REFINEMENT
In this section, we exploit CNN to reconstruct partially known
and noisy distances considering the second inter-nodes com-
munication scenario. We also propose a CNN-based com-
pleted distances refinement process which can be applied
after completion in the two mentioned inter-nodes commu-
nication conditions. In the following, we explain in details
different explored tools and architectures.

A. OVERVIEW OF CNN
CNN are a variant of NN that have been widely used in
different promising domains, for classification and regression
problems. The architecture of such networks is composed
essentially of:
• A feature extraction module which can contain
one or many convolutional layers and one or many pool-
ing layers. The convolution operation aims to extract

the inputs’ features using filters initialized randomly
with a predefined size. The pooling layers sub-sample
the outputs of the previous convolutional layer reducing
their resolution, by pooling over local neighborhood,
to reduce the complexity. The use of sub-sampling layers
is not mandatory, it depends on the studied problem and
on the size of used data.

• Fully connected layers which are responsible of deter-
mining the network’s outputs based on an appropriate
activation function.

A variety of CNN architectures can be derived. In this part,
we describe a 2-D CNN architecture and we remove the
pooling layers since we aim to save all extracted features.
In this CNN architecture, we first apply 2-D linear convo-
lution with a bank of Ql filters each of size Pl × Pl to
construct feature maps as convolutional layers outputs. The
input matrices to the l-th layer where 1 ≤ l ≤ L + 1 are
denoted as I (rl−1), rl−1 = 0 · · ·Rl−1 − 1. Here, Rl−1 and Rl
denotes the number of input and output matrices of the l-th
layer, respectively. It can be computed with relation to Ql as

Rl = QlRl−1, where R0 = 1. (10)

Each input matrix I (rl−1) ∈ RNl−1×Ml−1 is convolved with a
filterW (ql ) ∈ RPl×Pl , ql = 0 · · ·Ql−1, to produce the matrix
Ōql+rlQl = W (ql ) ∗ I (rl−1) ∈ RNl×Ml defined by

Ōql+rlQl [m, n]=
Pl−1∑
u=0

Pl−1∑
v=0

W (ql )[u, v]·I (rl−1)[m− u, n− v].

(11)

Accordingly, Nl × Ml is the size of output matrices and it
can be calculated from the input size N0 × M0 using Ml =

max(Ml−1 − Pl + 1, 1) and Nl = max(Nl−1 − Pl + 1, 1),
l = 1 · · · L. We notice that when convolving the matrix
by the filter, it slides across the image by a stride = 1.
Thus, the obtained outputs of the l-th convoluitonal layer are
smaller than its inputs. When the input size is smaller than
the filter, the problem cannot be handled. In this case, a zero
padding process can be introduced (it is the case of the CNN
used for refinement), and the output of the corresponding
dimension is of size 1. After adding a bias term B(l), an acti-
vation function is used to get the output such that

O(ql+rlQl ) = g(W (ql ) ∗ I (rl−1) + B(l)),

I (ql+rlQl ) = O(ql+rlQl ), l = 1 · · · L + 1. (12)

The ReLU activation function is used and it is defined by

g (X[m, n]) = max (X[m, n], 0) . (13)

The outputs of the last convolutional layer, i.e. the entries of
the matrices {OrL ∈ RNL×NL+1} are flattened in a vector i0 of
size RLNLML × 1. Afterwards, a fully connected (FC) layer
similar to DNN, as given by (7), with only one hidden layer
of ZL+1 neurons is used to obtain the output of size NL+2
elements.
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FIGURE 3. Structure of generic CNN at test phase for distance recovery or refinement considering L convolutional layers and one fully
connected layer.

The online complexity of CNN includes themultiplications
required by the convolutional layers Nmul−conv,CNN given by

Nmul−conv,CNN =
L∑
l=1

Rl−1P2l QlMlNl, (14)

in addition to the number of multiplications at fully con-
nected layers Nmul−fc,CNN , which can be calculated using
(9) considering the corresponding input vector i0 with N0 =

RLNLML × 1, namely,

Nmul−fc,CNN = RLNLMLNL+1 + NL+1NL+2. (15)

B. CNN SCHEME FOR DATA COMPLETION
In this part, we use CNN to recover inter-nodes pairwise
distances contained in {S(t)} andwe remove the pooling layers
since we aim to save all extracted features. During training,
features are extracted to build a CNN model, based on a set
of incomplete distance matrices, that predicts the complete
correct distances. Once trained, we validate the model using
a validation dataset. Then, the trained model is applied to
recover the whole distance information. To evaluate the per-
formance of such model, we compare the predicted distance
information to the correct ones.

A set of incomplete distance data is generated to construct
a 2-D CNN model conceived for data completion mission.
From each, 80 % of data is considered for training to which
we associate the corresponding real distance vectors as out-
puts. The remaining 20% of data is used for model validation,
where we forward the distances with missed entries and
we receive as outputs the corresponding estimated entirely
known vectors. Estimated outputs are compared to real out-
puts in order to evaluate the trained model and choose a
suitable one. Once trained and validated, we introduce the
T successive incomplete distance matrices N × M corre-
sponding to the target to be localized, to the CNN model
as inputs, where the outputs represent the estimated corre-
sponding complete real distances. Considering (12), I(0) =
S(t) ∈ RN×M , OL+2 ∈ RNM×1, thus N0 = N , M0 = M

and NL+2 = NM . Obtained completed distances are then
forwarded to a refinement process which aims to improve the
estimation of complete distances.

C. CNN SCHEME FOR DATA REFINEMENT
After the completion, a combination of the T cleaned-up
measurements is applied to get the final estimate before the
trilateration. This refinement can be performed by averaging
T corresponding measurements which work well when the
cleaned measurements correspond to the complete clean dis-
tances. But, when the cleaned measurements are still noisy,
a CNN-based refinement process is able to improve the accu-
racy obtained by simple averaging. In this part, we describe
the CNN applied on completed distances for distance refine-
ment aims. Only the sub-matrix D̂

(t)
12 considered in the first

inter-nodes communication scenario or Ŝ
(t)

regenerated in
the second scenario, to be used for localization, are consid-
ered by the refinement process.

The completed matrices {Ŝ
(t)
} are reorganized in a matrix

I0 of size T ×MN , such that

I0[t, :] = vec
{
Ŝ
(t)}

, (16)

where vec {·} is the vectorization operation, and I0[t, :] is the
t-th row of I0. Note that each column of I0 represents T suc-
cessive distances between a given unknown node and a given
RN. During the training phase, we associate at the output of
the CNN, to each input vector which corresponds to a column
from I0, the corresponding accurate distance. For the testing
phase, we obtain the predicted distances. Corrected distances
obtained at the output of the CNN are used for localization
based on trilateration. Once predicted, location coordinates
can be sent to nodes periodically or when requested. In this
case, N0 = T , M0 = 1 and NL+2 = 1.

V. SIMULATION RESULTS
In this section, we evaluate our proposed DL based localiza-
tion schemes (denoted as method 3, 4, 5, 6, 7, 8) and compare
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FIGURE 4. Configuration of the wireless sensor network considering
N = 25.

them with the classical trilateration (denoted as method 1)
as well as with the analytical approach of matrix completion
based localization (denoted as method 2). The performance
is assessed in terms of distance matrix regeneration error
and localization accuracy. Thus, we define the following two
metrics:
• Internode distance recovery: it measures the error in
estimating the distance, and it is given by:

MSEdis =
1
MN

N∑
n=1

M∑
m=1

E
[∣∣∣S[n,m]−Ŝ[n,m]∣∣∣2], (17)

where S and Ŝ denote the exact and estimated pair-
wise distances between the unknown nodes and the
RNs, respectively. If the CNN-based completed dis-
tances refinement is applied, Ŝ is the output of such pro-
cess. Otherwise, it is obtained by averaging T recovered
matrices Ŝ

(t)
over T measurements.

• Localization accuracy: it measures the average error in
the coordinate estimation and it is defined by:

MSEloc =
1
N

N∑
n=1

E
[
‖cn − ĉn‖2

]
, (18)

where cn and ĉn are the exact and estimate coordinates
at the n-th node.

A. ENVIRONMENTAL SETUP AND DL ARCHITECTURES
To evaluate the performance of the proposed schemes in
terms of distance matrix recovery and localization accuracy,
we have a set of sensor nodes placed randomly in the studied
environment of 400 m2. These nodes include M = 10 RN
and N = 25 nodes to be localized as depicted in Fig. 4.
The number of measurements used for localization is set

to T = 10 such that, T RSSI values are collected at each
position (reference positions and unknown positions) for the
first communication scenario and T RSSI values fromM RN
are collected at each unknown position considering the sec-
ond communication scenario. These values are collected

TABLE 1. Details of the trained networks.

following (1). In this paper, we use realistic propagation
parameters obtained from measurements conducted in our
laboratory, which have been verified and validated. These
experiments are performed using Pt = 20 dBm, d0 = 1
m, f = 2.4 GHz and µ = 3.23. The results presented in
this paper are obtained when working in a noisy environment
considering E [Bσ ]2 = 2. The data collected from the sensors
are simulated data on Matlab.

Based on intensive experiments, the proposed CNN and
DNN architectures satisfy a good trade-off between the
obtained performance and the online computational complex-
ity. Identifying the optimal values of the NN parameters and
best architectures is defined by an empirical process requiring
several experiments. Data were trained with different archi-
tectures, varying the number of layers and the number of
neurons in each layer, to find the best architecture. Table 1,
summarizes the chosen architectures and the online complex-
ity in terms of number of multiplications per input without
considering the number of calls. CNN(N0 × M0,NL+2) and
DNN(N0,NL+1) refer to the chosen architecture with the
corresponding input and output sizes. The terms convl(Q,P)
denotes the l-th convolutional layer with Q filters of size
(P,P) and FC(Z ) referees to a fully-connected layer with Z
neurons. The notation ‘−’ means there is another following
layer. We present the architectures of six NNmodels, namely.
• CNN1: CNN architecture for completed data refinement
when using classical matrix completion.

• CNN2: CNN architecture for completed data refinement
when using DNN-based matrix completion.

• CNN3: CNN architecture for completed data refinement
when using CNN-based matrix completion.

• CNN4: CNN architecture for matrix completion and
error minimization.

• DNN1: DNN architecture for matrix completion and
error minimization based on a single node distance
completion.

• DNN2: DNN architecture for matrix completion
and error minimization based on all nodes distance
completion.
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TABLE 2. Hyper-parameters corresponding to each NN model.

We consider ADAM as an optimization algorithm to obtain
convergence for CNN and DNN. The other hyper-parameters
such as the mini batch size, the number of epochs and
the learning rate were optimized for each model during the
training phase to retain the best configurations illustrated
in Table 1. Experimentally, the use of a dropout rate is not
beneficial, thus, we did not use it. We use full batch training,
e.g, we consider the whole training data for each optimization
step because it has been verified experimentally based on
our training data, that the full batch training significantly
outperforms the mini batch training. In Table 2, we present
the learning rate and the max epochs corresponding to each
NNmodel. Note that when using DNN, the number of epochs
is not fixed in the beginning. The algorithm keeps running
until convergence.

B. DISTANCE RECOVERY PERFORMANCE
We investigate the distance recovery performance for the two
inter-nodes communication scenarios, exploring proposed
recovering methods adapted to each scenario. The first sce-
nario is considered when applying the classical completion
and the second scenario is considered when using NNmodels
for completion. We present in Table 3, the error of distances
prediction corresponding to each recovery method.

As first step, we begin by investigating the performance in
terms of distance matrix recovery when only using the clas-
sical completion matrix and then when adding the proposed
CNN-based refinement process to completed distances. The
different results are shown in Table 3. It can be noticed
that the reconstruction accuracy is better when correcting
distances using a CNN model. Instead of having 14.59 m
as matrix recovery error, the deployment of CNN improves
the precision of distances prediction by 2.92 m. Such results
demonstrate and prove the benefits of the integration of such
refinement process in order to accurately estimate distances
considering the first inter-nodes communication scenario.

Considering the second studied scenario when we have a
partial inter-nodes communication, we deploy aDLmodel for
distances regeneration. We easily notice that such methods
are associated to a better recovery rate even when apply-
ing the simple average to completed distances instead of
the CNN-based refinement process. Among these methods,
the performance of CNN is worse than DNN. In order to
improve the 9.39 m RMSE distance recovery, the deploy-
ment of another CNN for distance refinement improves

FIGURE 5. The CDF when using 10 RN and 25 unknown nodes with sigma
shadowing equal to 2.

FIGURE 6. Localization median errors and localization max errors
corresponding to each method with sigma shadowing equal to 2.

considerably the precision of distances prediction by 3.43 m.
When using DNN for a single node distance completion, for
distance reconstruction combined with a CNN-based refine-
ment process, we obtain 4.89 m as a matrix recovery error.
The best distance recovery rate 3.1 m is obtained when
exploring DNN for all nodes distance completion. This is due
to the fact that DNN considers the correlation between data
to complete and it also corrects observed data.

C. LOCALIZATION ACCURACY
A summary of the localization accuracy performance of eight
schemes is given in Table 3 presenting the localization mean
errors. The CDF of the localization error which is given by

CDF(x) = P(errorloc ≤ x), (19)

is shown in Fig. 5. Where errorloc is the localization error.
Fig. 6 presents the localization median errors and the local-
ization max errors. 50% of unknown nodes have an error
less than the localization median error, which is determined
considering CDF(q) = 0.5 and projecting on the x-axis in
order to find the corresponding error value q. The localization
max error refers to the maximum reached localization error.
This value is also determined based on CDFs.

It is clear that relying on available measurements only
achieves the worse localization accuracy compared to the
other methods that explore completion. In this case, the mean
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TABLE 3. Comparison of algorithms’ performances when considering 25 unknown nodes placed in an indoor area of 400 m2 .

error is about 4.7 m and it can achieve 9.94 m. Obtained
results validate experimentally the beneficial use of distance
matrix recovery and it ensures the localization of all unknown
nodes even if we have less than three detected RN. The
completed distances refinement with CNN correction process
reduces the localization mean error introduced by the classi-
cal completion to 0.5 m, which is about 10% of the error of
the first method. These results validate the gain of combining
the classical completion and CNN-based refinement.

We can easily notice that reconstructing distances based
on DL methods is always better than the classical comple-
tion even with a simple average for refinement, except for
CNN-based completion which achieves 0.74 m as a mean
error, which is about 0.19 m higher than the third method.
This is due to the fact that DLmethods approximate unknown
matrix entries and correct the known noisy entries. When
using CNN-based completion, the localization error can reach
1.42 m and 1.09 m with simple average based refinement and
with CNN-based refinement, respectively.

The best localization accuracies are obtained when using
DNN methods for distance recovery. The DNN for a single
node distance completion with simple average based refine-
ment is associated to 0.47 m as a localization mean error
which is equal to the one achieved by CNN when followed
by the CNN-based refinement module. The use of CNN
correction process reduces this localization mean error to
0.34 m. But, the best accuracy 0.26 m is obtained when using
DNN for all nodes distance completion, is about 20% of the
mean error of the second method. Moreover, all unknown
nodes placed in the studied area have a localization error less
than 0.5 m and 50% of the targets have a localization error
less than 0.22 m. These results confirm that DL methods
especially DNN architectures are potential candidates for
distance information recovery for localization improvement.

D. ONLINE COMPLEXITY OF DL-BASED MATRIX
RECOVERY SCHEMES
In this section, we analyze the computational complexity of
the proposed DL-based distance reconstruction schemes. The
use of DL methods for matrix completion aims to minimize
the computational cost. As mentioned before, all of them

achieve a good localization accuracy and the choice of which
method to explore depends on our computational and storage
capacities. For this, we evaluate the online computational
complexity. The complexity corresponding to eachNNmodel
used for matrix completion or matrix refinement is given
in Table 1. We notice that we consider the preprocessing of
only one input when presenting the number of multiplications
without intervening the ‘‘calls’’ number.

We present in Table 3 the online complexity decrease of the
NN-based distance recovery schemes in terms of number of
multiplications, per T measurements, relative to the complex-
ity of the classical completion (method 2), which is calculated
directly as provided in [24]. It is expressed as follows:

Nmul,MC = I × (6U3
+ 9U2), (20)

where I the number of iterations required by the optimization
algorithm ADAM to reach the convergence. U is the total
number of sensor nodes U = N + M . Using (20), the clas-
sical completion complexity, in terms of multiplications for
a single distance matrix considering T = 1 is equal to
207913.125× 103.

Considering the classical completion, method 3 which
includes a distance’s refinement based on CNN is better
than a simple average based refinement, requiring 1.17
multiplications instead of 1 multiplication, which increases
the complexity by 17%. Considering the trade-off between
localization accuracy and online complexity, all NN-based
schemes outperform the classical completion for all refine-
ment methods used. The cascade of CNN4 and CNN3 used
for distance completion and refinement, respectively, is ben-
eficial in terms of distance recovery and localization accu-
racy with an additional low-complexity compared to simple
refinement. However, DNN-based recovery schemes is still
better in terms of localization accuracy and online complex-
ity. We can easily notice that DNN2 with averaging is asso-
ciated with the best localization accuracy and a significant
low online complexity decreasing the classical complexity
by 99.98%. Thus, even without CNN based refinement, such
recovery scheme outperforms the others since this DNN
model make use of all distances correlation.
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VI. CONCLUSION
In this paper, we investigate the challenging distance com-
pletion issue for indoor localization. To perform localization,
we use the trilateration based on collected RSSI measure-
ments. For several indoor propagation conditions, these mea-
surements as well as the derived distances are partially known
and cannot serve efficiently for localization. Consequently,
we have proposed to complete and correct distances con-
sidering two different inter-nodes communication scenarios
namely full sensor network connection and partial sensor
network connection. We have proposed different recovery
schemes using classical matrix completion scheme based on
ADAM optimizer and DL methods. Assuming that all nodes
communicate between them, the classical matrix completion
performs well, especially when combined with a CNN-based
completed distances refinement module. However, a full
inter-nodes communication is required and the whole pro-
cess is online. Thus, we have proposed to shift the online
recovering complexity and respect the requirements of IoT
devices and real-time responses, using DL supervised meth-
ods. The gain of using such methods for distance recovery
in a noisy indoor environment has been verified experimen-
tally, especially DNN. This efficient completion introduces
an important improvement of localization accuracy. The best
localization accuracy equal to 0.26 m is obtained when
using DNN with averaging, represents only 5% of the error
obtained by the classical trilateration without completion.
This recovery scheme is also associated with a low online
complexity requiring only 1.08×10−4multiplications instead
of 1 for classical completion.
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