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ABSTRACT This work investigates the deployment of unmanned aerial vehicles (UAVs) as access points
to provide wireless services to users in a green field. Three fundamental deployment designs are studied
under practical air-to-ground (ATG) channel models, namely the minimum number of UAVs, their optimal
deployment locations and the optimal transmit power allocation. Since these three design goals are coupled,
a particle swarm optimization (PSO)-based scheme is proposed in conjunction with the balanced Signal to
Interference plus Noise Ratio (SINR) transmit power allocation. By exploiting the closed-form expressions
of the SINR-balanced optimal power allocation and the resulting SINR, the proposed PSO-based scheme
iteratively optimizes the UAV number and subsequently, their locations until the resulting SINR of each
user meets its required minimum value. To improve the convergence behavior of the proposed scheme, two
schemes are devised to provide an initial estimate on the minimum number of UAVs by analyzing the system
sum-rate capacity before using a K-means clustering technique to initialize the UAV locations. Finally,
a power fine-tuning scheme is developed to further reduce the total transmit power. Extensive simulation
is performed to confirm the good performance of the proposed schemes.

INDEX TERMS Unmanned aerial vehicles, particle swarm optimization, radio resource management.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have been envisioned as
one of the most promising technologies to revolutionize the
future wireless network architectures [1]–[4]. Empowered by
their high mobility, UAVs can be deployed as aerial mobile
access points or relay nodes in response to real-time data
traffic surges. Hence, more comprehensive network cover-
age can be provided by UAV-assisted networks with flexible
network planning and deployment [5]–[14]. For instance,
UAV-assisted networks can be deployed as an aerial base
station for emergency service recovery when ground com-
munication infrastructure is destroyed by natural disasters
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such as earthquakes. However, substantial research work is
required to realize the benefits promised by UAVs in practice.

First of all, it is critical to optimize the UAV deploy-
ment location to improve the UAV’s coverage and through-
put. In addition to its high dimensionality, the optimization
problem incurred in general is non-deterministic polynomial-
time hard (NP-hard). In [8], a three-dimensional (3D) air-
to-ground (ATG) channel model was established before the
optimal altitude is derived as a function of the maximum
allowed pathloss and the environment parameters. Based
on the ATG channel model, [9] has developed a scheme to
determine the 3D locations of low-altitude quadcopter UAVs
for joint coverage area and lifetime maximization using the
circle packing theory. However, the scheme proposed in [9]
assumes non-overlapping coverage, i.e. interference-free
environment, which is an issue of concern for realistic
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UAV deployment. In the meantime, [11]–[14] proposed
heuristic algorithms to optimize the high-altitude UAV
deployment. For instance, [13] considered a UAV-assisted
heterogeneous network for public safety communica-
tions and optimized the UAV deployment by exhaustively
searching all feasible deployment locations. In contrast,
[12], [14] focused on the single-UAV scenario. More specif-
ically, [12] minimized the total pathloss between the UAV
and all users while [14] proposed a dynamic programming
approach for UAV trajectory planning by optimizing the
UAV’s velocity and height. Finally, [17] cast the UAV tra-
jectory design as a mixed-integer non-convex optimization
problem to maximize the minimum throughput of all ground
users.

Secondly, energy consumption is also a challenging prob-
lem forUAV-assistedwireless networks [5], [18]. SinceUAVs
are battery-driven, they are under very stringent power con-
straints. For the single-UAV networks, [19] designed schemes
to optimize UAV’s energy consumption for ground activity
detection while [20] investigated UAVs endowed with the
energy harvesting capability. In contrast, [18] studied a wire-
less network equipped with multiple UAVs with emphasis
on its energy efficiency and uplink transmission reliability.
Furthermore, [18] considered an interference-free scenario
by assuming that all UAVs operated in perfectly orthogonal
frequency channels. However, the more general interference-
limited environments were not fully explored in [18]–[20],
which can be an issue of concernwhenmultipleUAVs operate
in non-orthogonal frequency channels. Clearly, the amount of
inter-UAV interference generally increases with the number
of UAVs. Thus, it is desirable to deploy the minimum number
of UAVs for the benefit of lower cost and better interference
management.

In this paper, we focus on the problem of minimiz-
ing the number of deployed UAVs based on our previous
work [21], while optimizing their deployment locations and
transmission power, subject to a minimum SINR value for all
users. This task is very challenging as it includes three highly
coupled design goals, i.e. the minimum number of UAVs,
their optimal deployment locations and their optimal transmit
power.

To cope with this problem, we propose to jointly optimize
the UAV locations and their transmit power while first fixing
the number of UAVs. We increase the deployed UAV number
if the resulting SINR fails to meet the requirement. This
process is repeated until the required SINR is met while the
location and transmit power are jointly optimized at each
iteration. In sharp contrast to the existing particle swarm
optimization (PSO)-based algorithms that used pathloss
as the performance measure to direct the UAV location
update [12], SINR is explicitly used as the performance
measure in evaluating the performance of each UAV loca-
tion in our algorithms, which enables the proposed scheme
to compute the closed-form optimal transmit power and
the resulting optimal SINR in a more straightforward
manner.

The main contributions of this papers are summarized as
follows:
• We develop a computationally efficient PSO-based scheme
to jointly optimize the minimum number of UAVs, their
deployment locations and their transmit power in an
interference-limited UAV-assisted wireless network. To the
best of our knowledge, this is the first study to demonstrate
such joint optimization is feasible with some simplified
assumptions such as perfect knowledge of user locations;

• To further reduce the computational complexity of the
proposed PSO-based scheme, we establish a scheme to
estimate an initial value for the minimum number of
UAVs by analyzing the system sum-rate capacity. Further-
more, a K-means clustering-based scheme is proposed to
select the initial UAV positions for the PSO-based scheme
intelligently;

• To better preserve the UAV battery power, a sub-optimal
power fine-tuning scheme is developed to reduce the total
transmit power by carefully reducing the resulting mini-
mum SINR to the targeted minimum SINR.
Notation: Vectors and matrices are denoted by boldface

letters. AT stands for the transpose of matrix A while ‖a‖
the Euclidean norm of vector a. Furthermore, Ai,j denotes the
i-th row, the j-th column element of A while (A)k the k-th
row of the assignment matrixA. Finally, a superscript of (·)dB

indicates that the enclosed quantity is in decibel (dB) while
quantities without the superscript are real values.

II. REVIEW ON PARTICLE SWARM OPTIMIZATION (PSO)
The Particle Swarm Optimization (PSO) algorithm is one of
the most successful intelligent algorithms for solving com-
plex global optimization problems. Inspired by the group
behavior of social animals such as bird flocks and fish
schools, PSO was first proposed in [22]. It is well-known
that these social animals cooperate to increase their access
to food through information sharing among the group. This
observation has motivated the concept of random agents
interacting with each other to search for better solutions
cooperatively [22]. Each agent, also known as a particle
in PSO, adjusts its search velocity by taking into account
its best performance and the best performance of its group.
Several improvements on PSO have been proposed. In [23],
the original PSO algorithm was enhanced with the introduc-
tion of the inertia weight that adjusts the particle velocity
generation by generation. It has been shown that a large
inertia weight enables the particle to search the optimization
space more globally while a smaller inertia weight leads to
more local search [23]. Thus, an adaptive inertial weighting
strategy is commonly adopted in PSO to improve the particle
search. In addition, the shrinkage factor has also been pro-
posed to optimize the multidimensional objective functions.
Finally, increasing the number of particles has been shown
to improve the performance of PSO at the cost of higher
computational complexity.

In the context of UAV deployment optimization, the vari-
ables of the PSO algorithm are the possible locations
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of UAVs while the optimality of the locations are evaluated
by the resulting SINR values of all users. More specifi-
cally, the PSO algorithm starts from J initial 3D location
vectors, i.e. J particles, denoted by ω(0)

j of length 3, for
j = 1, 2, · · · , J . Then, the PSO scheme updates each of
the J location vectors iteratively along the direction leading
to improved objective function values. Mathematically, ω is
updated in the following two steps:

V (i+1)
j = wV (i)

j + c1ρj(ω
(i)∗
− ω(i))+ c2φj(ω∗g − ω

(i)),

ωj
(i+1)
= ω

(i)
j + V

(i+1)
j , (1)

where V (i)
j is the velocity at the i-th generation while w is

the inertia weight. ω(i)∗ and ω∗g stand for the locations corre-
sponding to the best performance in the i-th generation and
the best particle’s location over all iterations so far, respec-
tively. Furthermore, c1 and c2 are two learning coefficients
that control the influence of local and global components,
respectively. Finally, ρj and φj are positive random variables
uniformly distributed over [0, 1].

III. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a scenario of deploying K UAVs to serve N
single-antenna users in a given field as shown in Fig. 1.
In this system, k ∈ K = {1, 2, · · · ,K } UAVs are deployed
to maintain the service for the users. The 3D locations of
UAV k ∈ K is denoted by `k = {xuk , y

u
k , h

u
k}. Furthermore,

we assume that all users are on a horizontal ground with the
location of the n-th user being rn = {xrn, y

r
n}, for n ∈ N =

{1, 2, · · · ,N }. Thus, the distance between the k-th UAV and
the n-th users is given by

dk,n =
√
(xuk − x

r
n)2 + (yuk − y

r
n)2 + (huk )

2. (2)

FIGURE 1. Illustration of the deployment scenario.

In this work, we use the low-altitude platforms (LAPs)
developed in [8] as the path loss channel model. LAPs are
particular suitable for our UAV-assisted emergency commu-
nications network in which we assume multiple low-profile
and low-altitude UAVs are to be deployed swiftly in the emer-
gency area. A more comprehensive review on the existing
UAV communication channel models proposed for various
UAV deployment scenarios can be found in [15] and the refer-
ences therein. Capitalizing on the establishment of a channel

model below the stratosphere, LAPs are particularly attractive
for applications based on multi-wing UAVs considered in this
paper. It is worth noting that small-scale fading effects are
not considered in the sequel as the main focus of this work
is signal coverage. Given the assumptions above, the ATG
pathloss between the k-th UAV and the n-th user can be
written in dB as [8]

LdB
k,n =

ηLoS − ηNLoS

1+ ae−b(θk,n−a)
+ 20 log

(
dk,n

)
+ τ, (3)

where

θk,n =
180
π

sin−1
(
huk
dk,n

)
, (4)

τ = 20 log f + 20 log(4π/c)+ ηNLoS, (5)

with a, b, ηLoS, ηNLoS being the environment parameters and
θk,n the elevation angle. Furthermore, f is the transmitted
radio frequency and c is the speed of light.

Assuming that each user can only attach to one UAV,
we model the user-UAV association with the following
function:

A(n) = k, (6)

with n ∈ N and k ∈ K.
Let p be the power allocation strategy p = [p1, p2, · · · ,

pN ]T with each element pn being the transmit power of the
n-th user where n ∈ N . Then, the SINR of the n-th user is
given as follows:

0n =
pn · L−1A(n),n

In + σ 2 , (7)

where Lk,n = 10
LdB
k,n
10 . Furthermore, In is the total inter-

ference that the n-th user receives from all UAVs and
given by

In =
N∑
m=1
m 6=n

αA(m),n ·
pm

LA(m),n
, (8)

with αA(m),n being the damping factor between the
A(m)-th UAV and the n-th user arisen from the non-
orthogonality between communication channels [24].
In addition, σ 2 is the thermal noise power of the
user.

Finally, we assume that each user is assigned to the UAV
with the smallest path loss calculated from the ATG model.
We denote byA the user-UAVs association matrix and define
its element as

Ak,n =

{
1 if A(n) = k,
0 otherwise,

(9)

for k ∈ K and n ∈ N .
Now, we present our UAV deployment problem to jointly

optimize the number of deployed UAVs, their locations, and
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their transmit power, subject to the SINR requirement for
each user. It can be written as

P1 : min
p,{`k }

K (10)

Subject to : min
n∈N

0n ≥ 00, (C1)∑
n

Ak,n · pn ≤ Pk,max, ∀k ∈ K (C2)

`k ∈ D, ∀k ∈ K (C3)

||`j − `k ||2 ≥ ds, ∀j, k ∈ K (C4)∑
k

Ak,n = 1, ∀n ∈ N (C5)

where Pk,max is the maximum transmit power of the
k-th UAV, ds is the safety distance. Furthermore, 00 and
D are the minimum required SINR and the set of feasible
UAV locations, respectively.

In the first constraint C1 of the optimization problem
above,00 is the SINR requirement that all users must achieve.
It represents the SINR constraint. In the second constraintC2,
it shows the maximum transmission power Pk,max for each
UAV as the power constraints. In the third constraint C3,
the locations of UAVs must reside in the feasible area set.
The constraint C4 aims to prevent any two UAVs from hover-
ing in the same 3D location, which effectively avoids UAV
collision. It should be pointed out that the UAV collision
mentioned above is different from the collision caused by
two UAVs’ flight trajectories intersecting each other. Finally,
C5 requires that each user can only be attached to one UAV.

Clearly, the optimization problem in (10) is non-convex in
the high-dimensional space. Therefore, it is difficult to analyt-
ically find its optimal solution. In the following, we propose
a highly computationally efficient scheme as shown in Fig. 2,
which leads to a sub-optimal solution to (10).

IV. PROPOSED PSO-BASED DEPLOYMENT SCHEME
Our approach is inspired by the following intuition: Starting
fromKinit UAVs, a joint optimization on the UAV positioning
and transmit power is performed according to (10); If any
of the resulting SINR fails to meet the required 00, we then
increase the number of UAVs by one; This process is repeated
until the minimum SINR of all users exceeds or is equal
to 00; When the process is terminated, the minimum number
of deployed UAVs K∗ is also found. In practice, a computa-
tion center in the emergency area will first collect all user
locations before running the proposed PSO-based scheme
offline to design the number of required UAVs as well as their
3D hovering locations and transmit power allocated to each
user.

Clearly, if K∗ is the minimum number of UAVs, then
K∗ iterations are required for the proposed scheme initial-
ized with Kinit = 1. Thus, it is highly desirable to have a
more accurate Kinit to reduce the number of PSO iterations.
In Sec. IV-B, a more accurate Kinit is generated by approx-
imating the sum-rate downlink capacity of the multi-UAV
network.

FIGURE 2. Flowchart of the proposed PSO-based scheme.

A. PSO-BASED DEPLOYMENT SCHEME
To cope with the high-dimensional searching space for the
optimal UAV locations, we propose a PSO-based scheme.
More specifically, the PSO algorithm utilizes a population
of particles each of which represents a UAV location vector.
Then, each particle’s movement is influenced by its local best
known position as well as its best known positions that are
updated by other better performing particles over all existing
iterations.

1) K-MEANS CLUSTERING INITIALIZATION
It is well-known that good initialization of the first-generation
particles is vital for the PSO algorithm. In contrast to random
initialization, an initialization method based on the K-means
clustering technique is proposed to generate the horizon-
tal positions of the first-generation particles. More specifi-
cally, the proposed initialization method groups N users into
K clusters by minimizing the following error.

ε =

K∑
k=1

N∑
n=1

δk,n ‖rn − sk‖2 , (11)

where sk is the centroid of the k-th cluster on the ground (also
used as the horizontal location of the k-th UAV) and

δk,n =

{
1 n ∈ Ck ,
0 otherwise,

(12)
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with Ck being the user index set for all users grouped into the
k-th cluster, for k = 1, 2, · · · ,K .
Recalling that {sk} only contains (x, y), we will have to

append a randomly generated height to each sk to produce s̃k .
Then, we initialize

ω
(0)
j =

[
s̃T1 , s̃

T
2 , · · · , s̃

T
K

]T
, (13)

for j = 1, 2, · · · , J .
Finally, the above K-means clustering iteration is repeated

for J times before J sets of ω(0)
j are obtained as the initial

positions for the first-generation UAV locations to be input
into the proposed PSO-based scheme. In the sequel, the
PSO-based scheme with the K-means clustering initialization
is referred to as PSO-KMeans while the random initialization
is referred to as PSO-Rand.

2) PSO-BASED UAV LOCATION OPTIMIZATION
In the proposed PSO-scheme, it starts from the first-generation
location vectors ω(0)

j , for j = 1, 2, · · · , J , as the ini-
tial UAV locations. Then it iteratively updates each of the
J position vectors in the direction that leads to improved
SINR values. For each position vector in its i-th generation,
the proposed scheme implements an SINR balanced power
control algorithm to optimize the transmission power allo-
cated to each user. More information on the transmit power
control algorithm will be provided in the next section.

In sharp contrast to [12] in which the PSO algorithm is
used to minimize the total pathloss from one single UAV
to all users by optimizing the UAV location, we consider
optimizing the locations of multiple UAVs to improve the
users’ SINR values. We denote by ω the UAV location vector
of K UAVs as

ω =
[
`T1 , `

T
2 , · · · , `

T
K

]T
. (14)

Then, the proposed scheme updates each of the J location
vectors iteratively along the direction leading to improved
user SINR. More specifically, let ω(i)∗ and ω∗g stand for
the location vector corresponding to the best SINR in the
i-th generation and over all generations, respectively. After
obtaining the resulting SINR for each location vector ω(i)

j in
the i-th generation, the proposed PSO algorithm then ranks
all J location vectors, for j = 1, 2, · · · , J , based upon their
corresponding SINR values before updating ω(i)∗ and ω∗g.

3) SINR-BALANCED POWER ALLOCATION ALGORITHM
In this part, we elaborate on the transmit power allocation
algorithm for a given set of UAV locations. Most existing
power allocation algorithms are computationally expensive,
which renders them impractical as the PSO scheme iteratively
updates the UAV locations generation by generation. Rather
than directly minimizing the total transmit power, we propose
to focus on the transmit power allocation to achieve an iden-
tical SINR (also known as balanced SINR) for all users by
exploiting the balanced SINR method proposed in [25]. The
advantage of the proposed approach is that the transmit power

and the resulting SINR can be derived analytically by solving
the following equation.

1
0n
· pn=

N∑
m=1
m 6=n

αA(m),n ·
LA(n),n

LA(m),n
·pm+σ 2

·LA(n),n. (15)

To solve (15), we first define G ∈ CN×N as:

Gn,m =

αA(m),n ·
LA(n),n

LA(m),n
if n 6= m,

0 otherwise,
(16)

for n,m ∈ N .
If we set the target SINR the same for all users, i.e. balanced

SINR 0n = 0 for n ∈ N , then (15) can be rewritten in the
following matrix form [25]:

1
0
·
[
p1 p2 · · · pN 0

]T
= B · y, (17)

where we define

y = [p1, p2, · · · pN , 1]T , (18)

and

B =
[

G hN×1
01×N 0

]
, (19)

with

h = σ 2
·
[
LA(1),1,LA(2),2, · · ·LA(N ),N

]T
. (20)

Next, we define matrix C of size (N + 1)× (N + 1) as

C =
[
IN×N 0N×1
(A)k −Pk,max

]
, (21)

where (A)k is the k-th row of the user-UAV association
matrix A defined in (9).
Since C is a lower triangular matrix, C−1 can be found in

a straightforward manner as

C−1 =

 IN×N 0N×1

−
(A)k · IN×N
Pk,max

−
1

Pk,max

 . (22)

Pre-multiplying C−1 on both sides of (17), we have

1
0
· C−1

[
p1 p2 · · · pN 0

]T︸ ︷︷ ︸
y

= C−1 · B︸ ︷︷ ︸
D

y, (23)

1
0
· y = D · y, (24)

where

D = C−1 · B =

 G hN×1
(A)k · G
Pk,max

(A)k · h
Pk,max

 . (25)

Inspection of (24) suggests that the optimal power alloca-
tion vector y∗ is given by the eigenvector of D corresponding
to the largest eigenvalue λ∗ with the resulting SINR shown
below [25]

0∗ =
1
λ∗
. (26)
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In our proposed PSO-based scheme, 0∗ is then employed
to direct the UAV location updates in each generation.
If 0∗ dervied from multiple PSO generations cannot meet
the target value 00, then the PSO-based scheme determines
that the current number of UAVs is insufficient. Subsequently,
the proposed scheme will be repeated after one more UAV
is added to provide services. In contrast, for the case of
0∗ ≥ 00, the PSO-based scheme will be terminated before
further power fine-tuning proposed in the next section is
performed.

4) POWER FINE-TUNING
It should be pointed out that 0∗ is achieved above 00, i.e.
0∗ ≥ 00, by allowing each UAV to transmit at its maximum
transmit power. Motivated by this observation, we can per-
form fine adjustments on the UAV transmit power to make the
resulting SINR barely exceed the target SINR. In this section,
we would like to find the sub-optimal y that satisfies 0∗ ≥ 00
and has the smallest total transmit power. This problem can
be reformulated as searching for a scaling factor β:

P2 : min β (27)

Subject to : min
n∈N

0n ≥ 00, (C1)∑
n

Ak,n ·pn≤βPk,max, ∀k ∈K, (C2)

0 < β ≤ 1. (C3)

Clearly, the minimum β∗ is restricted by the UAV that has
the tightest transmit power constraint. Assuming that the k-th
UAV transmits at its maximum power, we have∑

n

Ak,n · pn = β∗ · Pk,max.

Using (17)-(25), it is straightforward to show that the new
matrix D′ is given by

D′ =

 G hN×1
(A)k · G
β∗ · Pk,max

(A)k · h
β∗ · Pk,max

 . (28)

As a result, P2 in (27) is simplified to the derivation of the
largest eigenvalue of D′. Since 0 < β ≤ 1, we propose to
use exhaustive search to find β∗. Starting from β = 1 −1β
where1β is a pre-defined step size, we can repeatedly reduce
the current β value by 1β until the largest eigenvalue of D′

is less than 00. Then, we can find β∗ equal to the sum of the
current β value and 1β.

5) COMPLEXITY ANALYSIS
As discussed above, the proposed algorithm first employs the
PSO algorithm to iteratively optimize the resulting balanced
SINR, transmit power as well as the UAV locations. For
a given number of UAVs, the computational complexity of
this process per generation is estimated as O

(
J · itotol · N 3

)
,

where N is the number of users, J is the total number
of particles and itotol is the total number of PSO genera-
tions. Furthermore, assuming the worst case in which the

PSO algorithm starts from Kinit = 1, K iterations are per-
formed. Thus, the total computational complexity is given
by O

(
K · J · itotol · N 3

)
. In addition, the power fine-tuning

requires computation of O
(
1−β∗

1β
· N 3

)
. Therefore, the total

computational complexity of the proposed PSO-based
scheme is given by O

(
K · J · itotol · N 3

+
1−β∗

1β
· N 3

)
.

B. INITIALIZATION OF K
As shown in the complexity analysis above, K∗ PSO itera-
tions are required if the proposed PSO-based scheme initial-
izes Kinit = 1, where K∗ is the minimum number of UAVs
that can provide an SINR larger than or equal to 00 to all
users. To reduce the computational complexity, it is desirable
to have a more accurate Kinit. In this section, we will derive
a more accurate initial value for K by approximating the
sum-rate downlink capacity of a multi-UAV network.

Since the minimum SINR 00 is required for each of the
N users, the minimum total data rate required can be
expressed as

Creq = N · log(1+ 00). (29)

Clearly, the sum-rate capacity of the resulting K -UAV net-
work has to be larger than Creq. In principle, if the sum-rate
capacity of any K -UAV networks could be derived as a func-
tion of K , we could easily find an appropriate initial value
for K . Unfortunately, the sum-rate capacity of a multi-UAV
network remains an open research question. In the sequel,
we will first analyze the sum-rate capacity provided by a
single-UAV network before proposing a heuristic scheme to
estimate a more accurate Kinit. As a result, the improved Kinit
will help reduce the PSO iterations and subsequently, the total
computational complexity.

1) SUM-RATE FOR SINGLE-UAV NETWORKS
We begin with a network comprised of one UAV and N users.
The sum-rate capacity of such a single-UAV network can be
expressed as a function of N in the following form:

CSingleUAV(N )

=

N∑
n=1

log (1+ 0n)

=

N∑
n=1

log



N∑
m=1

αm,n ·
pmLA(n),n

LA(m),n
+9n · LA(n),n

N∑
m=1
m 6=n

αm,n ·
pmLA(n),n

LA(m),n
+9n · LA(n),n


=

N∑
n=1

log
[(G+ I) · p]n + hn

[G · p]n + hn
, (30)

where [·]n denotes the n-th element of the enclosed vector.
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Thus, the problem of finding the maximum sum rate of a
single UAV network can be written as follows:

P3 : max
p

N∑
n=1

log
[(G+ I) · p]n + [h]n

[G · p]n + [h]n
(31)

Subject to :
N∑
n=1

pn ≤ P1,max, (C1)

pn ≥ 0, ∀ n ∈ N . (C2)

Clearly, P3 is a non-convex and non-trivial optimization
problem. Following the approach developed in [26], we will
develop a heuristic method to solve P3 via the successive
convex approximation. We begin with defining F as [26]

F = G+
1

P1,max
· h · 1T . (32)

After some straightforward algebraic manipulations,
we can rewrite P3 as

P4 : min
p

N∏
n=1

[F · p]n
[(F+ I) · p]n

(33)

Subject to :
N∑
n=1

pn ≤ P1,max, (C1)

pn ≥ 0, ∀ n ∈ N , (C2)

Recalling (16), we have Gn,m ≥ 0 for n,m ∈ N , i.e.
each element of G is non-negative. Thus, it is straightforward
to show that F defined in (32) is a non-negative matrix by
exploiting the fact that each entry of h defined in (20) is non-
negative. As shown in [27], there exists a quasi-inverse of a
nonnegative square matrix denoted by F̃ for the nonnegative
square matrix F with the following properties:

(I + F)(I − F̃) = I, (34)

F̃(I + F) = F. (35)

Next, we define

z = (I + F) · p, (36)

ξ = log z. (37)

Using (35)-(37), we can show that

F · p =
[
F̃(I + F)

]
· p = F̃ · z = F̃ · eξ . (38)

Furthermore, since I + F is non-singular, (36) can be
rewritten as

p = (I + F)−1z = (I − F̃) · eξ , (39)

where the last equality is derived from (34) and (37).
Finally, P4 can be transformed into a convex optimization

by utilizing (36) and (38).

P5 : min
ξ

N∏
n=1

[
F̃ · eξ

]
n[

eξ
]
n

(40)

Subject to : 1T (I − F̃) · eξ ≤ P1,max, (C1)

Subject to :

[
F̃ · eξ

]
n[

eξ
]
n

≤ 1, ∀n. (C2)

Since P5 has the same form as those problems shown
in [26]–[28], we can solve P5 using the same approach
developed in [26]–[28] and deriveCSingleUAV for any givenF.

2) SUM-RATE FOR MULTI-UAV NETWORKS
Next, we consider an interference-limited network comprised
of K UAVs and N users with each user being served by
only one UAV. Denote by Ck and rn the sum-rate capacity
of the k-th UAV and the required data rate for the n-th user,
respectively. To support all N users, the sum-rate capacity of
such a K -UAV network must satisfy the following inequality:

K∑
k=1

Ck ≥ Creq. (41)

We can approximate (41) as follows:

K∑
k=1

Ck ≈ K × CSingleUAV(N ) ≥ Creq, (42)

or

K ≥
Creq

CSingleUAV(N )
. (43)

Thus, we can initialize K as

Kinit =
Creq

CSingleUAV(N )
. (44)

Since CSingleUAV(N ) is a function of N , the initial value
of K can be alternatively found by solving the following
fixed-point equation derived from (44).

Kinit =
Creq

CSingleUAV

(
N
Kinit

) . (45)

In the sequel, the initialization schemes in (44) and (45)
are referred to as ‘‘Init.K LBND’’ and ‘‘Init.K FixedPt’’,
respectively.

V. SIMULATION RESULTS
In this section, we will conduct extensive simulation to con-
firm the performance of the proposed PSO-based scheme.
In our simulation, N users are randomly and evenly dis-
tributed within a geographic area of size 500 × 500 m2.
As suggested in [15], [16], the radius of the service area
of the low-altitude UAVs is on the order of magnitude of
100 meters. Each UAV has a maximum transmit power of
Pmax = 100 mW, i.e. 20 dBm. While the UAV height is
limited to be within [10, 100] meters. Furthermore, the ATG
models corresponding to the urban environment are used in
modeling the pathloss with a = 9.60, b = 0.16, ηLoS = 1.0
and ηNLoS = 20. Finally, the intra-cell and inter-cell damping
factors α0 and α1 are set as 0.01 and 10−4, respectively.
Unless specified otherwise, we set σ 2

= 10−10 mW and
the target SINR value 0dB

0 equal to 0 dB in the following
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experiments. Clearly, the proposed scheme is applicable to
systems of any practical 0dB

0 values.
Fig. 3 shows the balanced SINR value (in dB) of the

proposed PSO-based scheme with the PSO-Kmeans initial-
ization, where the deployed UAV number K is set to be 3, 4
and 5. When a few users are scattered in the given area, i.e.
N ≤ 50, three UAVs can cover all users, and the SINR of each
user is higher than 0 dB. However, as the number of users
increases from 51 to 65, the final balanced SINR gradually
decreases to 0 dB. This is because the interference grows as
more users share the same spectrum and a fixed maximum
transmit power Pk,max. When N increases above 50, four
UAVs are required to provide the target SINR of 0 dB to all
users. Similarly, for N ≥ 65, as shown by the yellow curve
on the far right, five UAVs are required.

FIGURE 3. Achievable balanced SINR performance as a function of user
and UAV numbers.

Fig. 4 shows the PSO algorithm iteratively updates the
3D locations of K = 3 UAVs based on the particle swarm

FIGURE 4. PSO updates of UAV 3D locations for K = 3 UAVs.

optimization. Examination of Fig. 4 shows that the UAV’s
position converges quickly only after a few generations.

Next, we compare the performance of PSO-Rand and
PSO-KMeans with K = 5. Fig. 5 shows the average SINR
achieved by PSO KMeans and PSO-Rand over 200 runs.
First, the curve labelled as ‘‘KMeans only’’ shows the per-
formance of positioning the UAVs at the cluster centroids
derived from the standard K-means clustering technique.
Fig. 5 indicates that both the PSO-based algorithms, namely
PSO-Rand and PSO-KMeans, outperform ‘‘KMeans only’’,
which indicates that the cluster centroids derived from the
standard K-means clustering technique without PSO iter-
ations are not proper UAV deployment locations. Finally,
investigation of Fig. 5 shows that PSO-KMeans outperforms
PSO-Rand over all user numbers tested, which confirms that
the K-means clustering method provides better initial points
leading to higher balanced SINR values.

FIGURE 5. SINR performance comparison as a function of users for
K = 5 UAVs.

Fig. 6 shows the SINR convergence behavior as a function
of generations with K = 5 and N = 80. While PSO-KMeans
outperforms PSO-Rand in terms of the achievable balanced
SINR, Fig. 6 suggests that their convergence behavior is very
similar.

Next, we set K = 3 and 1β = 0.01 to evaluate the
performance of the proposed power fine-tuning algorithm.
Fig. 7 shows the total power sent to all users, i.e.

∑N
n=1 pn,

as a function of the total number of users. In Fig. 7, the blue
curve with asterisk markers and the red curve with trian-
gle markers stand for the total power with and without the
proposed power fine-tuning algorithm, respectively. Clearly,
Fig. 7 shows that the power fine-tuning process significantly
improves the power efficiency, especially when N is small.
This result can also be confirmed from Fig. 3 where the SINR
achieved by PSO KMeans is about 0∗dB = 3 dB for K = 3
andN = 40. Therefore, the transmission power can be further
optimized while keeping the SINR of all users barely higher
than 0dB

0 = 0 dB.
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FIGURE 6. Convergence behavior as a function of the PSO generation
number.

FIGURE 7. Total transmit power as a function of users for K = 3 UAVs.

Finally, we evaluate the performance improvement pro-
vided by the K -initialization schemes proposed in Sec. IV-B.
Fig. 8 shows the single-UAV sum-rate CSingleUAV(N ) given
in (30) numerically derived by solving P4 defined in (40).
By exploiting Fig. 8, we initialized K using ‘‘Init.K

LBND’’ and ‘‘Init.K FixedPt’’ defined in (44) and (45),
respectively, for N = 40, 80, 120, 160 users. Fig. 9 compares
the initial K value derived from ‘‘Init.K LBND’’ and ‘‘Init.K
FixedPt’’ as compared to the optimal K∗ found by the pro-
posed PSO scheme.

It is evident from Fig. 9, the ‘‘Init.K FixedPt’’ scheme
has initialized K to a value much closer to the optimal K∗

in all four test cases. As a result, only (K∗ − Kinit) PSO
loops are required, which represents a significant reduction in
computational complexity as compared to the case of setting
Kinit = 1.

An alternative way to demonstrate the effectiveness of the
proposed initialization schemes is shown in Fig. 10. In this

FIGURE 8. The single-UAV sum-rate capacity as a function of user
numbers N .

FIGURE 9. Initial K values estimated by the two proposed initialization
schemes as compared to the optimal K∗ found by the PSO scheme.

FIGURE 10. The sum-rate capacity as a function of the UAV number for
N = 120 users.

experiment, we consider a system of N = 120 users with
the minimum required SINR of 00 = 0 dB. As a result,
the required sum-rate Creq is given by 120 bits-per-second-
Hertz (bps/Hz) according to (29) as shown in the green
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line with the cross markers in Fig. 10. Furthermore, the red
curve with triangular markers indicates the sum-rate actually
achieved by the proposed PSO scheme with the given number
of UAVs. Clearly, the system cannot support Creq if K is
small. Inspection of Fig. 10 suggests that the minimum of
UAVs that can achieveCreq = 120 bps/Hz isK∗ = 8. Finally,
the blue curve with the asterisk markers shows the sum-rate
K×CSingleUAV( 120K ). According to (45), the ‘‘Init.K FixedPt’’
scheme sets Kinit = 7 that is reasonably close to the optimal
value K∗ = 8.

VI. CONCLUSION
In this paper, we have developed a PSO-based UAV deploy-
ment scheme for interference-limited UAV-assisted wire-
less networks by optimizing three fundamental deployment
issues, namely the minimum number of UAVs, their optimal
deployment locations and the optimal transmit power alloca-
tion to satisfy a given SINR requirement. In order to derive
the optimal locations and the optimal transmit power, we have
adopted an SINR-balanced power allocation approach in
updating each PSO generation. Furthermore, since the com-
putational complexity of the proposed PSO-based scheme
heavily depends on the initial estimate of the UAV number,
two schemes have been proposed to accurately estimate the
initial value of the UAV number by analyzing the network
sum-rate capacity before the PSO iteration starts. In addi-
tion, we have proposed a K-means clustering-based initial-
ization algorithm to initialize the UAV locations in the first
PSO generation. Finally, a power fine-tuning scheme has
been developed to further reduce the total transmit power.
Extensive simulation results have confirmed the impressive
performance of the proposed PSO-based schemes.

In our future work, we will consider relaxing some of
the stringent assumptions employed in deriving the proposed
schemes in this work. For instance, wewill extend our work to
the scenario where the user locations are not perfectly known
and users are distributed in a larger area of different altitudes.
In addition, we will consider more practical implementation
constraints such as random wind gusts and network synchro-
nization. As shown in [29], random wind gusts could lead to
UE-UAV beam misalignment and subsequently, degrade the
system performance. Furthermore, the synchronization issue
among multiple UAVs can incur network capacity degrada-
tion [30]. We will explore more robust deployment schemes
to combat such practical implementation challenges.
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