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ABSTRACT The ever increasing challenges posed by the science projects in astronomy have skyrocketed the
complexity of the new generation telescopes. Due to the climate and sky requirements, these high-precision
instruments are generally located in remote areas, suffering from the harsh environments around it. These
modern telescopes not only produce massive amounts of scientific data, but they also generate an enormous
amount of operational information. The Atacama Large Millimeter/submillimeter Array (ALMA) is one
of these unique instruments, generating more than 50 Gb of operational data every day while functioning
in conditions of extreme dryness and altitude. To maintain the array working under extreme conditions,
the engineering teams must check over 130,000 monitoring points, combing through the massive datasets
produced every day. To make this possible, predictive tools are needed to identify, hopefully beforehand,
the occurrence of failures in all the different subsystems. This work presents a novel fault detection scheme
for one of these subsystems, the Intermediate Frequency Processors (IFP). This subsystem is critical
to process the information gathered by each antenna and communicate it, reliably, to the correlator for
processing. Our approach is based on echo state networks, a configuration of artificial neural networks, used
to learn and predict the signal patterns. These patterns are later compared to the actual signal, to identify
failure modes. Additional preprocessing techniques were also added since the signal-to-noise ratio of the
data used was very low. The proposed scheme was tested in over seven years of data from 132 IFPs at
ALMA, showing an accuracy of over 70%. Furthermore, the detection was done several months earlier,
on average, when compared to what human operators did. These results help the maintenance procedures,
increasing reliability while reducing humans’ exposure to the harsh environment where the antennas are.
Although applied to a specific fault, this technique is broad enough to be applied to other types of faults and
settings.

INDEX TERMS Echo state networks, predictive maintenance, condition monitoring, fault detection, harsh
environments, observatories.

I. INTRODUCTION
In the last couple of decades, the complexity of ground
telescopes has increased exponentially. A new generation
of industrial-scale telescopes are being constructed, all of
which share similar operational difficulties: multiplicity of
instrumentation, high-levels of automation, multiple sensors
for metrology, and remote management. All of these parts are
continually generating massive amounts of operational data,
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which, although dwarfed in comparison to the scientific data
produced, can still be in the order of hundreds of gigabytes
every day. Due to the weather and sky requirements, most of
these telescopes are located in remote locations and suffer-
ing harsh environmental conditions, making their complexity
even more challenging. Severe dryness, extreme tempera-
tures, and high-altitudes (and thus low oxygen levels) are just
some of the conditions in which these instruments operate.

In order to ensure the high level of performance expected
from these telescopes, constant monitoring of the differ-
ent subsystems is required. Maintenance engineers generally
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made this task in the older telescopes since the number of
monitoring points was minimal. In contrast, the new genera-
tion of industrial-scale telescopes have hundreds of thousands
of monitoring points. Hence, they generate operational data
as never before, making previous monitoring efforts obsolete
or utterly impractical due to how time-consuming it would
be. To achieve the needed level of performance, automated
data processing techniques are required in modern instru-
ments, to comb through the gigabytes of data generated daily,
and detect possible failure patterns, implementing predictive
maintenance methodologies. These automated fault detection
systems help maintain the expensive infrastructure and pro-
tect the engineers from exposure to the harsh environment,
reducing the requirements of in-site revisions. Hence, sound
predictive maintenance systems are essential to make the new
scientific discoveries of these telescopes, feasible.

A. LITERATURE REVIEW
Fault detection systems have been developed since the early
1970s [1], [2], as an essential part of automatic control sys-
tems. In this work, we refer to fault detection as the process
of determining if a system or subsystem has entered a faulty
operationmode, i.e., a mode different from the normal operat-
ing conditions. This procedure is critical to ensure that things
are running correctly. Fault detection tools are particularly
useful in predictive maintenance systems to improve the use
of expensive equipment.

Fault detection procedures can be divided into three main
categories: signal processing techniques [3]–[6], model-
based techniques [7]–[9], and data-driven ones [10]–[16].
In this work we will focus in the latter, where data will drive
the identification of normal and faulty modes of operation.
See [1] for a general description of fault detection and diag-
nosis systems.

Autonomous fault detection systems have been developed
in many different areas. In the case of model-based tech-
niques, authors have applied these techniques to physical
systems that are relatively easy to model. For example,
Korasgani et al. [7] develop a model-based fault detection
scheme for a system of two tanks with two valves, with
the capacities and resistances of tanks and valves as model
parameters. Using their method, they can detect faults that
appear in the valves. They also define a detectability ratio,
a measure of residual detectability performance, providing
a means to find the most sensitive and robust residual for
the uncertainties at different regions of the system. They
also test the effectiveness of this approach and show that
it is possible to achieve better detection by using more
than one residual. In an application to modern telescopes,
Ortiz and Carrasco [8], [9] developed a framework of fault
detection and diagnosis, using a bank of Kalman filters to
detect a specific type of slow degradation faults. They tested
their scheme with real fault data from ALMA, showing
excellent accuracy. Their main drawback is that a model
of the faulty and non-faulty systems is required, something
that is time-consuming and hard to generalize. In this work,

we tackle the same type of fault but using a data-driven
approach that scales and generalizes much better.

One of the main techniques used in data-driven fault detec-
tion is to apply different architectures of Artificial Neural
Networks (ANN). For example, Wootton et al. [13] devel-
oped a fault detection system for bridge structures. In their
work, they study the structural health of a footbridge using
data time series collected from temperature and tilt sensors
located in strategic places. They show that, by using echo
state networks to replicate the bridge’s behavior, they can
detect faults in the bridge’s structure. To do so, they compare
the tilt sensor measurements with their predictions from the
temperature data. In another application using echo state
networks, Morando et al. [14] introduced an approximation
to fault diagnosis of fuel cells stacks, using a variation of
echo state networks known asNon-Linear NodewithDelayed
Feedback (NLDF) [17], [18]. In their work, they mention
several types of faults produced by fuel cell stacks and only
treat the cathode stoichiometric defects. Their work is based
on supervised classification of labeled data, where the net-
work’s prediction is if a fault is occurring or not. Their scheme
shows excellent classification rates in experimental studies,
with 84% to 95% of accuracy. In a different application,
Fan et al. [15] developed a fault detection scheme for the
air compressors in city buses. They consider methods like
echo state networks and a variation called Cycle Reservoir
with Jumps (CRJ) [19]. In this case, the idea is to train two
models with the same architecture, one with normal status
and another with a failure present. Fault detection is achieved
by a Consensus Self-OrganizedModels (COSMO) method to
measure the different models’ divergence. It was tested with
two datasets: one synthetic and a real one. One key insight
of their work is that Recurrent Neural Networks (RNNs),
although effective in the synthetic data, does not provide a
proper classification in the real one. A potential explanation
for this is that their real data is noisy, making the echo state
networks unable to learn the dynamics of the signal properly.

Also using an ANN architecture, Czajkowski and
Patan [20] developed a fault detection strategy and applied
it in a Twin Rotor Aero-Dynamical System (TRAS). Their
approach is to use a combination of Leaky Echo State Net-
works and Model Error Modelling (MEM), providing a con-
fidence region based on the residuals produced between real
and estimated values. They show that this RNNs framework
can successfully be used in diagnostic applications. Similarly,
Westholm [16] uses echo state networks as a component of
a process to detect a specific event on time-series obtained
from electrical and mechanical systems. The focus is mainly
on the Feature Generation component, using a Delay Line
Reservoir architecture (DLR) [21]. Later, the approach is
tested in three datasets named: Eyes, Occupancy, and Hard
Drive. For each dataset, a specific architecture of the echo
state network component is used. As a result, Eyes and
Occupancy provide an F-measure of over 97%, whereas Hard
Drive has under 16%. The explanation of this low rate comes
from the fault detection policy and the short-term memory of
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the RNN component defined in its architecture, which leads
to early warnings.

B. ECHO STATE NETWORKS
As shown in the previous section, a specific ANN family,
named echo state networks has been particularly useful in
fault detection schemes. This usefulness is because, in many
of the aforementioned applications, the studied system’s
behavior is usually nonlinear. Echo state networks (ESNs)
are a type of recurrent neural network that has a dynamical
memory to preserve in its internal state a nonlinear trans-
formation of the input’s history. Hence, they have shown to
be exceedingly good at modeling nonlinear systems. Another
advantage of ESNs is that they are easy to train because they
do not need to backpropagate gradients as classical ANNs do.

An ESN can be defined as follows: consider a discrete-time
neural networks like in [22]–[25], with Nu input units,
Nx internal units (also called reservoir units), and Ny output
units. Activations of input units at time step n are u(n) ∈
RNu , of internal units are x(n) ∈ RNx , and of output
units y(n) ∈ RNy . The connection weight matrix Win

∈

RNx×(1+Nu) for the input weights,W ∈ RNx×Nx for reservoir
connections, Wout

∈ RNy×(1+Nu+Nx ) for connections to the
output units, and Wfb

∈ RNx×Ny for the connections that
are projected back (also called feedback) from the output to
the internal units. The connections go directly from input
to output units and connections between output units are
allowed. Fig. 1 shows the basic network architecture.

FIGURE 1. The basic echo state network architecture.

The activation of reservoir units are represented by

x̃(t + 1) = tanh
(
Win [1;u(t + 1)]+Wx(t)+Wfby(t)

)
,

(1)

and are updated according to

x(t + 1) = (1− δ)x(t)+ δx̃(t + 1), (2)

where δ ∈ (0, 1] is the leaky integrator rate. The output is
calculated by

y(t + 1) =Wout [1;u(t + 1); x(t + 1)] , (3)

where [·; ·] denotes the vertical vector concatenation. The
coefficients in Wout are computed by using ridge regression,
solving the following equation,

Ytarget =WoutX, (4)

where X ∈ R(1+Nu+Nx )×T with columns [1;u(t); x(t)] for
n = 1, . . . ,T ; and all x(t) are produced by presenting the
reservoir with u(t) and Ytarget ∈ RNy×T .

Finally, the solution can be represented by

Wout
= YtargetXT

(
XXT

+ λI
)
, (5)

where I ∈ R(1+Nu+Nx )×(1+Nu+Nx ) is the identity matrix
and λ is a regularization factor (ridge constant). The ridge
constant is estimated using grid search and time series
cross-validation methods.

C. OUR CONTRIBUTION
Our work has the following novel contributions:

1) We develop a novel automatic fault detection scheme
using an Echo State Networks as a component for
dynamic learning.

2) We develop noise reduction techniques for highly noisy
signals using evolutionary algorithms such as genetic
algorithms and particle swarm optimization, improving
the signal-to-noise ratio while maintaining its relevant
characteristics such as trends and stationarity.

3) We develop a time-shift prediction process for compar-
ison with the lower bound of a fault-free behavior.

4) We show that our approach has a good performance
in noise real-life operational data from ALMA anten-
nas, comparing the result to the real fault occurrences
logged in the maintenance system.

As mentioned before, the main advantage of the pro-
posed scheme over model-based techniques is that it does
not require human intervention to develop or identify the
relevantmodels. This fact reduces the time required for tuning
the model, making it more scalable and applicable to other
settings.

Our approach was tested on a specific type of slow degra-
dation fault in the Intermediate Frequency Processors (IFPs)
of the antennas of the ALMA observatory. This subsystem is
critical to process the information gathered by each antenna
and communicate it, reliably, to the correlator for processing.
Due to the harsh environment in which the antennas operate,
the operational data of the IFPs have a meager signal-to-noise
ratio, making it very difficult for conventional fault detection
methods to have an acceptable performance. Furthermore,
the use of evolutionary algorithms and reservoir computing
gives our approach a dynamic adaptation for a broader family
of systems.

The rest of this article is organized as follows. First,
in Section II, we detail the application problem, showing the
main characteristics of the data used and the problem at hand.
In Section III, we present the proposed fault detection scheme
and explain how we train the system with real noisy data.
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FIGURE 2. The antennas of the ALMA observatory.

Finally, in Section IV, we study the performance of our
approach compared to the maintenance data from the IFPs,
which is used as ground truth. We also include an Appendix,
with the complete results of applying our scheme tomore than
5 years of data from ALMA.

II. APPLICATION SETTING: THE ALMA TELESCOPE
TheAtacamaLargeMillimeter/submillimeter Array (ALMA)
is a revolutionary instrument operating in the very thin and
dry air of northern Chile’s Atacama desert, at an altitude
of 5,200 meters above sea level. ALMA is one of the first
industrial-scale new generation telescopes, composed of an
array of 66 high-precision antennas working together at the
millimeter and submillimeter wavelengths, corresponding
to frequencies from about 30 to 950 GHz. Adding to the
observatory’s complexity, these 7 and 12-meter parabolic
antennas, with extremely precise surfaces, can be moved
around on the high altitude of the Chajnantor plateau to pro-
vide different array configurations, ranging in size from about
150 meters to up to 20 kilometers. The ALMAObservatory is
an international partnership between Europe, North America,
and Japan, in cooperation with the Republic of Chile [26].

ALMA is a very complex instrument. Each telescope is
composed of hundreds of individual electronic and mechan-
ical parts, each carefully calibrated, set up, and intercon-
nected. This complexity is multiplied by 66, the number of
single antennas, and the additional particularities contributed
by the four distinct antenna designs developed. For some
subsystems, the number of parts is duplicated, since two
polarizations are being observed. Adding to this mix are
the central equipment, the correlators, and the central local
oscillator, which allow the whole array to perform as a single
instrument through interferometry. Although not part of the
telescope per se, ancillary or infrastructural systems, such as
weather stations and power plants, are critical to attaining all
the scientific objectives.

On top of the aforementioned technical intricacy, is the
observatory’s setting. The Chajnantor Plateau, with its perfect

skies for astronomical observation, is also known for its
extreme weather and oxygen-deprived air conditions that
severely diminish troubleshooting and decision-making skills
of human operators. Remote and automated tasks execution
and investigation of arisen problems is a must, to the maxi-
mum possible extent [9]. Hence, developing automated sys-
tems that can reduce human intervention and detect possible
failures ahead of time is extremely important.

FIGURE 3. IFP module.

A. PROBLEM DESCRIPTION
The Intermediate Frequency Processor (IFP) of the antennas
of the ALMA telescope, as described in [8], is a critical com-
ponent responsible for the second down-conversion, signal
filtering, and amplification of the total power measurement of
sidebands and basebands. This subsystem allows for effective
communication of the captured data to the central correlator
for processing, thus making it a central and critical compo-
nent of each antenna. Figure 3 shows the IFP module. There
are 2 IFPs per antenna, one for each polarization, and each
IFP has sensors measuring currents of three different voltage
levels: 6.5, 8, and 10 volts. For 6.5 and 8 volts, currents
have four different basebands: A, B, C, and D, whereas,
for 10 volts, sidebands USB and LSB, and switch matrices
SW1 and SW2 currents are read. Each current is sampled
every 10 minutes. Figure 4 shows the IFP’s currents for 6.5V,
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FIGURE 4. Currents from the IFP of one polarization of one antenna.

8V, and 10V. This example shows some typical characteristics
of the raw data, with sections without samples, some currents
present a high level of noise, there is redundant data, many
different scales and large jumps in a single sample, records
between channels have little time displacement and different
numbers of samples, and sometimes outliers show up. There-
fore, it is necessary to preprocess the data eliminatingmissing
and duplicated records, as well as cleaning outliers.

One important thing to highlight from Figure 4 is that the
signals are highly noisy, with high variance, and the ratio
of mean to the standard deviation for each signal is very
low, i.e., they have a low signal-to-noise ratio (SNR). Hence,
identifying their trend is quite complicated. Because of this,
as shown in Section III, we apply a preprocessing procedure.
Given that the noise scale is different in every signal and
IFP, we estimate the parameters of our procedure using an
evolutionary algorithm [27]–[31], obtaining more effective
parameter values for every IFP, and thus reducing as much as
possible the noise present. The outcome of this preprocessing
is a more suitable signal that maintains the relevant character-
istics used later by our fault detection scheme.

B. DATA DESCRIPTION
The data exported from the ALMA operational database
is stored in Hierarchical Data Format (HDF) files (.hdf
or h5), used to store and organize large amounts of data.

FIGURE 5. ALMA’s HDF compressed file structure.

These files can be loaded in several programming languages
like Python 3 (with Pandas Library) and R (with h5 Library).
Each HDF file stores current data per antenna, polarization,
and voltage levels, making a total of 528 HDF files. To make
it more suitable, these files were compressed into 66 HDF
files, one per antenna, such that each related dataset to an
antenna was allocated in the file with a unique key, with a
total of 8 keys per files (3 for volts per polarization and 2 for
module serial number records). The structure and access to
each dataset of the file are shown in Figure 5.

175908 VOLUME 8, 2020



A. D. Cho et al.: Slow Degradation Fault Detection in a Harsh Environment

FIGURE 6. Fault detection scheme.

III. PROPOSED FAULT DETECTION SYSTEM
Our fault detection scheme was inspired by some of the ideas
applied in [11], [20]. The complete fault detection process is
summarized in Algorithm 3, and the whole process is showed
in Figure 6. The following steps are the main ones of our fault
detection scheme.

1) Data pre-processing and cleaning: the raw data is first
reformatted to specific HDF dataframes as explained
in II-B. Then, given that raw signals {yt }Tt=1 are highly
noisy, have irregular time stamps, and possible out-
liers could be present, it is necessary to preprocess
the signal to clean outliers, homogenize time between
records, and finally, apply noise reduction. We use a
double-exponential smoothing (DES) filter, tuned with
evolutionary algorithms to generate a smoothed signal
{ut }Tt=1.
l

2) Fault-free characterization: with the denoised signal,
we compute a sequence of values that represent a lower
bound of the fault-free prediction signal and will be
used as a reference in the fault detection step. Such a
lower bound is less sensitive to small variations in the
signal.

3) Time-shift forecast: this step consists of making fore-
casts of the dynamics of the series using a time-shift
strategy that allows us to use the information of a
time block and obtain a more accurate prediction. This
time-shift forecast is then used in the next step with
lower bound jointly for the verification if a fault is
present.

4) Fault detection: it is responsible for checking if there
is a divergence between the time-shift forecast and
the lower bound that will serve as an indicator that
there is a failure. This fault detection process depends
on a detection criterion that will allow us to reduce
sensitivity in detecting premature cases and, therefore,
possible false-positives cases.

The details of the previous steps are provided below.

A. DOUBLE EXPONENTIAL SMOOTHING PARAMETER
ESTIMATION
The double exponential smoothing filter [9], [27]–[31] is a
methodology used for forecasting in time series, but it can
also be used for noise reduction. This method is particularly
useful in time-series that have a trend, such as the current
case-study, where the IFPs in faulty conditions present a slow
degradation trend. This method depends on two parameters α
and β, which need to be fixed appropriately. In order to learn
the best values for these parameters, evolutionary algorithms
are used. In particular, we apply a Genetic Algorithm and Par-
ticle Swarm Optimization as metaheuristics to determine the
best values forα and β for each IFP. This fine-tuning is impor-
tant since the different IFPs present different signal-to-noise
ratios, and thus the preprocessing needs to be adjusted to each
subsystem.

1) DOUBLE EXPONENTIAL SMOOTHING (DES)
Double Exponential Smoothing [9], [27], [28] is a technique
used for forecasting in time series, also it can be used to
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smooth time-series and perform noise reduction. It can be
defined as follow:

Let {yt } be a sequence of observations beginning at time
t = 0, suppose that {lt } represents the smoothed value, {bt }
the best estimate of trend and {Ft } the forecast at time t , then
the formulae are given by:

lt = αyt + (1− α)(lt−1 + bt−1) (6)

bt = β(lt − lt−1)+ (1− β)bt−1 (7)

Ft = lt + bt (8)

where α, β ∈ (0, 1), b0 = 1
N

∑N
k=1(yk+1 − yk ) and l0 =

y0. In this method, α is the data smoothing factor, β is the
trend smoothing factor; and for values close to zero higher
the smoothing level.

2) GENETIC ALGORITHM (GA)
Genetic algorithms are a type of evolutionary algorithm
introduced by John Holland in 1960, inspired by the pro-
cess of natural selection [32]. This metaheuristic relies on
operators such as mutation, crossover, and selection to find
the best solutions of an estimation or optimization prob-
lem. The approach of using a Genetic Algorithm (GA) to
estimate DES parameters has achieved a good approxima-
tion by minimizing Mean Absolute Error (MAE) as fitness
function [27]–[29]. This function can be defined as:

MAE =
1
T

T∑
t=1

|Ft − yt | , (9)

where {yt } is a sequence of observations, {Ft } is a sequence
of fitted forecast by DES, and T is the last observation time
of the series.

We propose a variant of the approach for denoising each
signal; it can be defined as follows.

Let {Fαt } and {F
1−α
t } be the forecast sequences adjusted by

DES using as parameters (α, β) and (1− α, β), respectively;
given a constant τ ∈ [0, 1], we define the total weighted
absolute error (TAE) as fitness function with the following
expression:

TAE =
T∑
t=1

τ
∣∣Fαt − yt ∣∣+ (1− τ )

∣∣∣F1−α
t − yt

∣∣∣ . (10)

The GA approach is summarized in Algorithm 1. The
(α, β) values obtained by GA are used for forecasting; for
smoothing (1− α, β) are used.

3) PARTICLE SWARM OPTIMIZATION (PSO)
Particle swarm optimization is another metaheuristic used
for estimation and optimization. It is an evolutionary algo-
rithm developed in 1995 by Kennedy and Eberhart [33],
inspired by simulating social behavior and the observed
movements of organisms such as insects, birds, and fish. This
method has been applied in several optimization problems
and gives high-quality results in a few iterations. PSO has

Algorithm 1 DES - Genetic Algorithm
Require: Set a maximum evolution n, population size N ,

probability of mutation p, tournament size k and toler-
ance tol.

Ensure: Best denoise DES parameters value.
1: Randomly generates an initial population P of pairs

(α, β) ∈ (0, 1)2, of size N .
2: for each individual in population P do
3: Compute individual’s fitness values by using (10).
4: end for
5: t = 0,
6: while (t < n) and (@ fitness less than tol) do
7: Select k individuals with low fitness by tournament of

size k for mating.
8: Produce a new set of individuals P′ by uniform

crossover and mutation with probability p.
9: for each individual in population P′ do

10: Compute individual’s fitness values by using (10).
11: end for
12: Add new population P′ to P
13: Select top N individuals with lower fitness values.
14: t = t + 1.
15: end while
16: return {1−α, β}, such that {α, β} has the lowest fitness.

FIGURE 7. Histogram of DES parameters.

also been used to estimate DES parameters in forecast appli-
cations [30], [31], by minimizing (9) as the fitness function.
Given this insight, we apply our variant approach for denois-
ing signals using (10) as a fitness function. The PSO process
for denoising each signal is summarized in Algorithm 2.

B. FAULT-FREE CHARACTERIZATION
Once the signal-to-noise ratio is improved in the previous
step, the fault detection scheme characterizes the fault-free
data. To do so, the process assumes that the subsystem
starts in a fault-free mode, and uses that initial time-period,
of length s, to learn the signal’s characteristics in this setting,
using an ESN. The ESN is trained using this initial data to
predict later how the system behaves, and use it as a reference.
We compare this reference with the real signal values to
achieve fault detection, as we will explain later.

175910 VOLUME 8, 2020



A. D. Cho et al.: Slow Degradation Fault Detection in a Harsh Environment

Algorithm 2 DES - PSO
Require: Set a maximum iteration n, number of particles N

and tolerance tol.
Ensure: Best denoise DES parameters value.
1: Set the best global fitness value s = 106 and the best

global position g randomly on the grid (0, 1)2.
2: Initialize a set P of N particles.
3: for each particle in P do
4: Initialize a random position {α, β} on the grid (0, 1)2,

random velocity in [−1, 1]2 and set the best fitness
value equal to 106 of the particle.

5: Compute particle’s fitness value by using (10)
6: if fitness value is less than best fitness value then
7: Update the best fitness value and best position of the

particle
8: end if
9: if best fitness value is less than s then

10: Update global fitness value swith the particle’s best
fitness value.

11: Update global best position gwith the particle’s best
position.

12: end if
13: end for
14: t = 0,
15: while (t < n) and (s > tol) do
16: for each particle in P do
17: Update the particle’s velocity given the global best

position g.
18: Update the particle’s position.
19: Compute particle’s fitness value by using (10).
20: if fitness value is less than best fitness value then
21: Update the best fitness value and best position of

the particle.
22: end if
23: if best fitness value is less than s then
24: Update global fitness value s with the particle’s

best fitness value.
25: Update global best position g with the particle’s

best position.
26: end if
27: end for
28: t = t + 1.
29: end while
30: return {1−α, β}, such that {α, β} has the lowest fitness.

Although the signal should remain stable, the real data
shows that it still has some variability level, which could
generate false positives in the fault detection step. To reduce
this non-desired effect, we define a variation threshold by
analyzing the residuals of the prediction, and use this thresh-
old as a lower bound as follows.

Consider the first s values {ut }st=1 (s < T ), lets train an
ESN with {ut }s

′

t=1 (s
′ < s), and predict in a generative mode

to obtain a signal {pt }Tt=s′+1. We then compute the residual

Algorithm 3 Fault Detection Process
Require: signal: {yt }t=1:T , shift step: h, consecutive obser-

vations: N .
Ensure: Date of Fault detected
1: flag← False
2: Apply denoising process to obtain {ut }t=1:T
3: Using {ut }st=1(s < T ), train an ESNwith {ut }s

′

t=1 (s
′ < s),

predict in generative mode to obtain {pt }Tt=s′+1
4: Compute residuals {rt }st=s′+1, train an ESN and predict
{rt }Tt=s+1.

5: Compute lower bound {LBt }Tt=s+1 using (11).
6: i← 0
7: while ¬flag do
8: i← i+ h
9: Train a ESN using {ut }

s+h
t=i and predict {pt }Tt=i+1.

10: if ∃t such that pt < LBt forN consecutive observations
then

11: flag← True
12: end if
13: end while
14: return date belonging to position i.

as {rt = ut − pt }st=s′+1 that will be fed to another ESN to
fit and predict {rt }Tt=s+1. Finally, we define the lower bound
as a combination of the free-fault and residual predictions
expressed as the following,

LB = {LBt }Tt=s+1 = {pt − k · rt }
T
t=s+1, (11)

where LB is another series that behaves as a forecast of
fault-free tolerance through time, and k > 0 a gap constant.
The sequence of steps to these calculations are summarized
in a diagram shown in the Figure 8.

FIGURE 8. Fault-free lower bound diagram.

C. TIME-SHIFT FORECAST STAGE
It is relevant to highlight that the exact moment where the
fault occurs and the subsystem begins to degrade is unknown.
Unlike most of the fault detection literature, where the system
transitions from an unfaulty state to a faulty one relatively
fast, this transition can be extremely lengthy in the case
of degradation faults. This slow transition is specifically
challenging for conventional pattern recognition techniques.
Furthermore, since there is no labeled data identifying when
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the system is faulty, a supervised learning technique cannot be
used to learn the system’s dynamics under a faulty condition.

To overcome the previously mentioned limitations,
we developed a learning and prediction scheme based on an
ESN, which is time-shifted to compare the changes in the
system’s dynamics. This technique also reduces the need for
doing feature engineering manually by analyzing the data
beforehand.

Figure 9 gives a general idea on our approach. The predic-
tion of the ESN is shifted in time by h units, and its prediction
is compared to the fault-free lower bound to identify the
current operation mode. Hence, given a fixed h > 0, we take
a sequence {ut }

s+h
t=h to train a new ESN and compute an

element-wise average prediction for n repetitions, obtaining
{pt }Tt=s+h+1. This signal will be used to verify if fault is
present in the fault detection stage.

FIGURE 9. Time-shift forecast diagram.

D. FAULT DETECTION STAGE
The fault detection stage is responsible for verifying whether
there is a point in which the time-shift prediction diverges
from the computed lower bound. Defining the procedure to
signal a detected fault when there is a divergence between the
two signals is key to managing our scheme’s performance.

A criterion that is not sensitive enough can cause late
detections or false negatives. This behavior is especially trou-
blesome in our application: the occurrence of a fault leads
to disabling one of the antennas of the array, which in some
cases implies the whole array cannot function as needed.
Furthermore, to fix it, technicians need to work in a harsh
environment given the location of the antennas.

On the other hand, indicating a fault at the first sign of
divergence can lead to many false-positives. The cost of this
error is lower than the false negatives since it will only trigger
an engineer to check the data and confirm the fault. Still,
a high number of false-positives will lead to the maintenance
losing valuable time reviewing data.

In our scheme, we balance these two errors by using a
simple criterion based on the count of consecutive cases in
which the prediction is lower than the lower bound. If, in a
time segment, the comparison reaches N consecutive cases,
then it will be indicated that it found a fault and report the
time when it happened, i.e., a fault is detected at time t .

pk < LBk , k = t − N , . . . , t. (12)

FIGURE 10. Fault detection stage diagram.

Otherwise, it will return to the previous step (time-shift
forecast) and compute the next time-shift ESN (increasing the
displacement by h) and compare its forecast with the lower
bound. This procedure is repeated until reaching the end of
the data stream. Figure 10 shows a diagram on how the fault
detection and the time-shift procedures interact to determine
when a fault is detected.

IV. IMPLEMENTATION AND RESULTS
To evaluate its performance, we tested our fault detection
schemewith real historical data. As explained before, we used
seven years of operational data, from 2012 to 2019, from all
132 IFPs at the ALMA radio telescope. The data was first
cleaned and organized, as detailed in Section II-B.

For the implementation, the ESN parameters were as fol-
lows. We used three input units (two delays included), one
output unit, 500 reservoir units, 40% sparsity rates, a spec-
tral radius of 0.995, and 0.1 as the leaky rate. We used
4,500 observations for training and 4,500 observation for the
time-shift.

For the GA, we used a maximum of 20 iterations, with a
1.2 tolerance value. The mating group size was fixed to 10,
with ten tournaments. The population sizewas set to 100, with
a 50% probability for mutations.

For the PSO,we set to 5 themaximumnumber of iterations,
with eight particles, and 0.5 as the inertia constant. Both the
social and cognitive constants were set to 1. We also set τ =
0.6 in the TAE function.

Finally, for our fault detection process, we set k to 4, with
a shifting of 4,500 (which represents about one month of
observations). At least 10,000 observations belonging to a
single IFP serial number were needed (about two months
of data) in case different serial numbers had different noise
profiles. Considering that the fault can be present for more
than a year before problems happen in the system, this initial
requirement does not limit the application significantly.

All algorithms were implemented in Python 3.7 and ran on
a computer with an Intel(R) Core(TM) Processor i7-3770S
of 3.10 GHz, with 8 GB RAM, and using Windows 7 SP1
(64 bits) as OS.

Table 1 shows the parameters estimated by the GA and
PSO methods used in the DES filter for denoising signals.
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TABLE 1. Example of DES parameters for smoothing each baseband
(Polarization 1, 6.5V channels) and runtime [sec] for antenna 23.

The table shows the particular case of the data for Antenna
23 and Polarization 1, but the results were similar across all
antennas. Figure 13 shows the noise reduction achieved using
PSO.

From Table 1, we can see that a different set of smooth-
ing parameters (α, β) for the DES filter are determined for
every different baseband. They also differ depending on the
methodology used to compute them, GA or PSO. Although
the performance in denoising the signals was similar for both
methodologies, as Table 1 shows, the time required by PSO
was vastly superior. Therefore, combining PSO with DES
was deemed useful for signals with different noise scale.

It is also important to highlight that the estimated parame-
ters are close to zero in most cases, as illustrated in Figure 7,
which shows a histogram of all the 1,584 estimations made.
As expected, these values imply that signals with a high level
of noise need a higher smoothing level (i.e., parameter values
close to zero). This parameter, in turn, reduces the variability
in the signal while smoothing the slope between observations.
Our approach is successful in increasing the signal-to-noise
ratio, as shown in Table 1. We computed how much this ratio
increases between the original signal and the filtered one,
shown as Irate in Table 1.
As shown in Figure 7, in most cases the value of parameter

β is close to zero. Since it is fairly similar in most cases,
we studied the performance of our filtering stage when nei-
ther PSO nor GA is used for tuning. In this case, we set β = 0,
and test for a few values of α ∈ [0.05, 0.1]. Our results show
that the filtering keeps on delivering good quality output of
the denoised signal. The best performance was achieved for
α = 0.1, which was the value later used in our fault detection
scheme when testing over all our data.

TABLE 2. Fault detection and runtime [sec] for antenna 23.

The results of running our fault detection scheme for one
antenna are shown in Table 2 and illustrated in Figure 14.

FIGURE 11. Histogram of the number of days that our FDD
Scheme detects a fault before the human operator.

FIGURE 12. Histogram of the number of days the ESN detects a fault
before the FDD Scheme in [8].

TABLE 3. Detection improvement.

TABLE 4. Confusion matrix of the fault detection scheme.

Table 2 shows the results for the two IFPs in the antenna
(one for each polarization), showing that a fault can occur on
each of them at different times. This example is also useful
since it depicts that a fault can manifest by affecting only a
single channel (like in the Polarization 1 IFP, where only the
LSB channel was affected), or many (like the Polarization
0 IFP, where three different channels were affected). More-
over, when many channels are affected, the dates at which
each channel can present the effects can vary significantly.

Figure 14 shows that each fo the different channels of
each voltage can have vastly different dynamics during the
faulty-operation phase. In the Polarization 0 IFP, the 10-
volt SW1 channel has a higher degradation level and is thus
detected first. The rest, having a slower degradation, are
detected much later. In Figure 14, we can also appreciate
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FIGURE 13. Application of DES using PSO. parameters in Table 1.

FIGURE 14. Raw and DES signal with fault date - Antenna 23.

the effect of the noise reduction stage, which significantly
improves the information in the signal. In these cases, where
a fault is detected through multiple channels, we consider the
earliest detection to be the fault detection date for that IFP.
In the example of Table 2, the IFP of Polarization 0 inAntenna
23 would have assigned as fault date 2013-12-08.

To measure our scheme’s effectiveness, we compared the
results of our system with a Ground Truth. This ground
truth was constructed from the original analysis in [8], later
validated by the engineering team at ALMA by manually
revising the maintenance logs, to determine the actual date
when the IFP was detected to be faulty by a human operator.
A summary of all the analyzed cases is shown in Appendix.
In Tables 5 and 6 we give a general overview of all the faults
detected in the data from 2012 to 2019, and compare them to
the ground truth identified by the engineering personnel.

In total, there were 173 faults detected by our scheme.
In some cases, the same IFP could fail several timeswithin the
large time-window analyzed. Hence, an antenna and polar-
ization could appear more than once in the table. In the
Gap column of these tables, we show the time difference
(in days) between the detection time of our system and when
the engineering team validated that the subsystem was in
faulty mode. That detection took place, in most cases, when
the IFP stopped working entirely and was replaced. Table 3
summarizes this gap information, showing the number of
detectionsmade prior to what was set in our ground truth data.
Figure 11 details our results further, showing a histogram
with the number of days gained by our scheme, compared to
when the human operators detected the fault. In average, our
scheme could detect a fault 477.8 days earlier, and in some
cases detectionwas even a couple of years earlier. These cases
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TABLE 5. Fault detection performance for antennas 01 to 41.
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TABLE 6. Fault detection performance for antennas 42 to 66.

were confirmed by the ALMA engineering team. The reason
behind these few cases, was because the maintenance team,
without realizing the IFP was starting to fail, improved com-
munication gain in another subsystem, effectively retarding
the total failure of the antenna.

Table 4 shows the confusion matrix summarizing the per-
formance of our scheme. The two main performance metrics
we can compute from this matrix are the accuracy (indicating
how many of the cases were correctly identified), which is
at 70%, and the F-1 Score (which is the harmonic mean of
precision and sensitivity), which is at 78%. Both of these
metrics are an important improvement compared to the cur-
rently implemented scheme. Additionally, from Table 4 we
obtain has a recall rate of 94% and a precision of 66%.
These results are promising as they show a meager number of
false negatives (only 3%), which is crucial in our application.
False-negatives imply that the array stops working as needed,

and the maintenance teams need to go to the site to make
repairs. Although the percentage of false-positives is not as
low (at 27%), the effect is not as negative since it only implies
some additional time by the engineering team to review the
data and realize it is a false-positive. There is no need to go
to the site to do maintenance procedures or measurements to
validate the fault.

We also compared our schemewith the one currently in use
by ALMA, and detailed in [8]. Figure 12 shows a histogram
with the days gained by the ESN-based scheme. Although the
reaction time is almost the same (in average 0.7 days slower),
the scheme presented in [8] required that the maintenance
team to determine the system’s dynamics both in faulty and
fault-free conditions. In our case, the ESN takes care of iden-
tifying the system’s dynamics, making the process simpler,
and easy to scale and apply in other settings. Additionally,
Tables 7 and 8 give exhaustive details on how the current
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TABLE 7. Fault detection comparison for antennas 01 to 41.
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TABLE 8. Fault detection comparison for antennas 42 to 66.

system performs on the same data used to test our scheme,
showing that ALMA gains significantly in performance with
this new method.

V. CONCLUSION
Harsh environments add significant stress to the opera-
tions of instruments and machinery. This effect is par-
ticularly true for the next-generation telescopes. They are
generally located in places with extreme conditions that
increase the personnel’s risks, making operation and main-
tenance, particularly challenging. To reduce these risks and
improve the operation’s performance, developing fault detec-
tion schemes is crucial. These systems can help the personnel
focus on high value-added tasks, reducing the possibility of
malfunctions.

In this work, we developed a novel fault detection
scheme for a slow degradation fault in the antenna array’s

communication pipeline at the ALMA radio telescope.
To reduce false-positives due to the low signal-to-noise ratio,
a noise reduction stage was developed and tested. We tuned
the parameters of our filtering stage through GA and PSO
training, improving the signal-to-noise ratio by more than
twice.

In the fault detection stage, we took advantage of ESN’s
benefits to develop a detection scheme through prediction,
time-shifting, and comparison to a fault-free lower bound.
Our approach reduces the need to manually identify relevant
features and signal dynamics to achieve fault detection.More-
over, the proposed approach does not require human inter-
vention to identify relevant features or the signal dynamics in
faulty and non-faulty modes to able to detect the fault later.
This benefit reduces the requirements to the maintenance
teams and could make the approach much more flexible in
its application.
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We tested our design with real offline monitoring data
from the 132 IFPs available at the ALMA radio telescope.
Although the signals’ characteristics slightly varied among
IFPs, our scheme was able to correctly detect the histor-
ical faults, with an accuracy of 70%. More importantly,
the methodology only presented 3% of false negatives, which
is extremely useful in this setting. Furthermore, the system
was able to detect that the IFP was in a faulty mode more than
a year earlier than the human operators were able to realize it.

Although not critical in this application, our scheme still
has a high number of false-positives. Future work needs to be
done to reduce this, mainly caused by the high level of noise
in the raw data. Additionally, this scheme should be tested
against data from other components to see if it can detect
faults in different settings.

APPENDIX
SUMMARY CASES OF FAULT DETECTION
In this appendix, we present all the results from applying
our fault detection scheme to the historical data of the IFPs.
We used the data of all 66 antennas, each with two IFPs, with
time-series ranging from 2012 to 2019.

The results of our approach are summarized in Tables 5
and 6. Both tables show, for each antenna and polarization
under the ESN column, when the IFP’s fault was detected by
our scheme. In some cases, an IFP presented a fault more than
once; hence it can appear multiple times.

Under the Ground Truth column, we present the date when
the fault was identified by human operators, date that was
validated by an engineering specialist at ALMA. Finally,
the 1 column shows the difference, in days, between both
dates.

Finally, Tables 7 and 8 give thorough details on how the
current system, based on Kalman filters and expert knowl-
edge, performs.

The Atacama Large Millimeter/submillimeter Array
(ALMA), an international astronomy facility, is a partnership
of the European Organisation for Astronomical Research in
the Southern Hemisphere (ESO), the U.S. National Science
Foundation (NSF) and the National Institutes of Natural
Sciences (NINS) of Japan in cooperation with the Republic
of Chile. ALMA is funded by ESO on behalf of its Member
States, by NSF in cooperation with the National Research
Council of Canada (NRC) and the National Science Council
of Taiwan (NSC) and by NINS in cooperation with the
Academia Sinica (AS) in Taiwan and the Korea Astronomy
and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on
behalf of its Member States; by the National Radio Astron-
omy Observatory (NRAO), managed by Associated Uni-
versities, Inc. (AUI), on behalf of North America; and by
the National Astronomical Observatory of Japan (NAOJ) on
behalf of East Asia. The Joint ALMA Observatory (JAO)
provides the unified leadership and management of the con-
struction, commissioning and operation of ALMA.
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