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ABSTRACT Network traffic prediction is substantial for network optimization and resource management.
However, designing an efficient predictive model considering different traffic characteristics, including
periodicity, nonlinearity, and nonstationarity, is challenging. Recently, ensemble learning is attracting much
attention from researchers in the machine learning community. Although ensemble learning has proven
exceptional performance in modelling the intricate problems, it may not be able to handle varying patterns
and chaotic behaviour, which are typical properties of traffic data (and many other time-series problems). For
this reason, ensemble methods show a limited prediction accuracy in network traffic modelling. We address
this issue by proposing an ensemble of learners for time-series prediction that considers the accuracy of
individual learners as well as diversity among their outcomes. Each learner contributes to the optimization
process by finding the optimal accuracy-diversity balance in a segment of feature space. This divide-
and-conquer approach avoids complicated objective functions with many local optimums while fitting
the ensemble model on large datasets. Experimental results on the real traffic traces show our proposed
method outperforms other state-of-the-art predictors with 12% on average in prediction accuracy for different
datasets.

INDEX TERMS Network traffic prediction, machine learning, ensemble learning, Gaussian process
regression (GPR), Dirichlet process (DP) clustering.

I. INTRODUCTION
Network traffic prediction is an efficient tool for improving
proactive resource scheduling and traffic engineering. It has
been utilized to solve various problems such as resource
management, mobile data offloading, data-center trafficman-
agement, etc. Traffic prediction is challenging because the
behaviour of network traffic is affected by many factors
including users’ behaviour, network protocols, topology, and
management policies. Many predictive models have been
proposed based on different algorithms including neural net-
works [1], kernel-based methods [2], time-series models [3],
etc. They rely mainly on a single learner to train and fore-
cast the traffic data. Although those models are efficient for
specific types of network traffic, they lack flexibility and
generalization to capture the complex and varying behaviour
exhibited in traffic time-series. This work investigates a
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new approach based on ensemble learning to fulfill this
shortcoming.

Ensemble learning [4] is a recent direction of research in
machine learning algorithms in which a group of learners are
trained and combined to increase the accuracy and generaliza-
tion of the prediction. The base learners in an ensemblemodel
can be either the same type of machine learning algorithm
or different types of algorithms. The learners are trained on
the same training set or different subsets of the training set.
The outcome of the ensemble model for an input sample is
calculated by combining the prediction results of individ-
ual learners on this sample. Combining techniques include
voting (for classification), weighted sum (for regression),
etc. Many ensemble models have been proposed for classi-
fication [5], regression [6], online learning [7], and learning
concept drift [8]. Nevertheless, there are a limited number of
ensemble models for time-series prediction [9]. In this work,
we propose a new ensemble model for time-series prediction
and apply it on the complex time-series of network traffic.
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An ensemble of learners outperforms any of its members
if the individual learners are both diverse and accurate [4].
The accuracy of a learner is measured based on the difference
between the learner’s prediction and the actual target value.
Accuracy is a necessary condition to avoid poor learners
to obtain the majority of votes. Diversity measures the dis-
crepancy among the outputs of the learners. It is required
to ensure the learners make uncorrelated errors and achieve
better generalization performance [4]. In a diverse ensem-
ble, the learners rectify the prediction errors of each other.
Maintaining accuracy and diversity is the cornerstone of
ensemble learning. Existing ensemble models employ vari-
ous techniques to increase these two factors. For example,
accuracy has been increased by exploiting effective features,
finding appropriate lag (in time-series prediction) [10], and
optimal parameters for base learners [9]. Diversity has been
increased using various methods such as bagging, boosting,
and employing different base learners [4].

Accuracy and diversity are two conflicting objectives [11].
The increase in diversity among learners can lead to a
decrease in their accuracy. Finding the optimal balance
between accuracy and diversity improves the ensemble pre-
diction performance. Despite this relationship, many ensem-
ble algorithms employ separate techniques to enhance both
objectives independently. They do not consider the relation-
ship between accuracy and diversity as two conflicting objec-
tives. Therefore, they cannot guarantee the optimal balance
between accuracy and diversity to minimize the ensemble
prediction error and maximize its generalization. To address
this shortcoming, the trade-off between accuracy and diver-
sity must be reflected in the training phase of the ensemble
model. This idea forms the basis of our approach to ensemble
modelling.

In this work, we propose an ensemble model for traffic
time-series prediction which optimizes both the accuracy
of learners and diversity between them. During the training
phase of the proposed model, the accuracy of learners and
diversity between their outputs are adjusted as two param-
eters to find the global optimum point which minimizes the
ensemble prediction error. The control variables that optimize
the balance between accuracy and diversity are (i) the number
of base learners, (ii) their parameters, and (iii) their training
sets. The training phase determines the number of required
learners in the ensemble, values of their parameters, and the
samples that must be assigned to the training set of each
learner.

We designed a divide-and-conquer approach to distribute
the process of finding the optimal accuracy-diversity bal-
ance between the base learners. It reduces the computational
requirements of the training phase and improves the training
performance for large datasets. In this approach, each base
learner provides a trade-off between accuracy and diversity
in a small region of feature space. The feature space is firstly
segmented into multiple subspaces, each is assigned to a
base learner. Then, each base learner provides the balance
between accuracy and diversity in a local area of the feature

space. In other words, each base learner maintains the bal-
ance between two terms: (i) accuracy on its corresponding
segment, and (ii) diversity on the adjacent segments.

We employ Gaussian Process Regression (GPR) as the
base learner in our ensemble model. GPR is a kernel-based
Bayesian method and a powerful tool for regression and
function approximation [12]. In prior work, we showed
GPR can handle different traffic characteristics including
long/short range dependencies (LRD/SRD), self-similarity,
periodicity [13], and multiscale behaviour [14]. The standard
GPR is not appropriate to be used in the proposed ensemble
model because theGaussian likelihood inGPR considers only
the prediction accuracy. We changed the training phase of
GPR to make it compatible with the requirements of our
ensemble model by introducing a new likelihood function
which considers both accuracy and diversity.

The proposed model has two advantages over the exist-
ing time-series ensemble models. First, it optimizes the
accuracy-diversity trade-off to improve the prediction perfor-
mance. Second, it is appropriate for large datasets. The main
contributions of the proposed model are as follows.
• Our model considers both accuracy and diversity as
two conflicting objectives and finds the optimal bal-
ance between them to minimize the ensemble prediction
error. This is the main focus of this work.

• We proposed a divide-and-conquer approach to opti-
mizing the balance between accuracy and diversity dur-
ing the training phase. In this approach, each learner
considers a small portion of the training samples in a
region of the feature space during the accuracy-diversity
optimization. Comparing to the approaches when each
learner enhances the accuracy-diversity balance consid-
ering the whole training set, our approach leads to an
unsophisticated objective function for optimizing the
parameters of the base learners. It resolves the issues
related to complexity of the problem and allows the
model to achieve accuracy-diversity balance for large
datasets in a reasonable time.

• We proposed a new GPR ensemble likelihood function
which improves the the standard GPR to satisfy the
requirements of our ensemble model.

• We compared our ensemble model with well-known
time-series prediction algorithm such as Long Short-
Term Memory (LSTM), autoregressive integrated
moving average (ARIMA), fractional autoregressive
integrated moving average (FARIMA), Support Vec-
tor Regression (SVR), Least absolute shrinkage and
selection operator (LASSO), Gradient Tree Boosting
(GTB), Random Forest (RF), and Extremely Random-
ized Trees (ERT) using real traffic datasets.

The remainder of the paper is organized as follows.
Section II reviews prior research related to this work. Three
main components used in the proposed model (i.e., the con-
cept of ensemble learning, GPR, and clustering algorithm)
are explained in Section III. The phases of the proposed
GPR ensemble model are detailed in Section IV.
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Section V presents our experimental results. Finally, the con-
clusion is drawn, and we outline the future work.

II. RELATED WORK
Network traffic prediction has been utilized to solve vari-
ous problems. For example, it has been used in proactive
resource management [15], mobile data offloading [16],
data-center traffic management [17], optimizing inter-data-
center traffic flows [18], and forecasting big-data applica-
tions demands [19]. State-of-the-art traffic predictors are
based on different machine learning algorithms including
neural networks [1], Wavelet transform [18], kernel-based
methods [2], time-series analysis [3], and LASSO [20].
ARIMA is a class of statistical models for analyzing and
forecasting time-series data that has been used for SRD traffic
modelling and prediction [21]. FARIMA is the generalization
of the ARIMA model in which non-integer values for the
differencing parameter is allowed so that it can capture LRD
traffic [22]. LSTM is the result of recent advances in deep
learning algorithms. It is a type of Recurrent Neural Networks
(RNN) [23] and is famous for its performance in time-series
prediction. To the best of our knowledge, all existing traffic
models and predictors are based on an individual learner.

In [13], we proposed a GPR-based traffic predictor by
designing a covariance function to handle different traf-
fic characteristics such as LRD/SRD, self-similarity, and
periodicity. It achieved remarkable results compared to
other time-series forecasting methods. However, the standard
GPR has two main limitations. First, computational require-
ments of GPR scale cubically with the number of training
samples [24] which is the consequence of the inversion of
the covariance matrix. Second, using a stationary covariance
function, GPR with lacks the flexibility for modeling the
nonstationary data [25]. Both issues are fixed in this work.
The problem of cubic time complexity is fixed because each
GPR expert is trained over a limited subset of the samples.
Thus, the inversion of a large covariance matrix in the stan-
dard GPR is substituted with the multiple inversion of small
matrices. Also, using multiple GPR experts can easily handle
the nonstationarity [25]. These improvements are the result of
using a group of GPR learners in an ensemble model instead
of an individual GPR.

In this work, we proposed a divide-and-conquer approach
to improve GPR’s time-complexity and optimize the
accuracy-diversity balance. A great example of the divide-
and-conquer approach for reducing GPR time complexity is
presented in [26]. They studied efficient global optimization
(EGO), which employs GPR (also known as Kriging) as a
surrogate model to approximate the objective function. Since
GPR’s time complexity is a real bottleneck in EGO, they
proposed to use a GPR approximation called Cluster Kriging
that splits a huge data set into several small clusters and
improves the GPR time complexity. Another example is a
gradient boosting algorithm for approximating a Gaussian
process regression (VAGR) proposed in [27]. VAGR sequen-
tially creates random training subsets and approximates the

full Gaussian process regression model using the residuals
computed from variance-adjusted predictions. VAGR has a
time complexity of O(nm3) for a training dataset of size n
and the chosen batch size m.

Recently, ensemble learning has drawn attention of
researchers thanks to its promising ability to resolve com-
plex problems. Existing ensemble models employed different
base learners including neural network [28], support vector
machine (SVM) [29], nearest neighbors classifier [5], and
also hybrid of various classifiers [30]. There are well-known
ensemble models based on decision trees including Gradient
Tree Boosting (GTB), Random Forest (RF), and Extremely
Randomized Trees (ERT). GTB is an ensemble of decision
trees based on boosting approach [31]. RF algorithm is an
ensemble of decision trees, and achieves diversity using ran-
dom split of the dataset [32]. ERT is an extension of RF in
which the randomness of the subsets has been improved [33].
Ensemble models combine a set of learners to solve different
problems such as classification [5], regression [6], online
learning [7], and learning concept drift [8]. A small portion
of studies on ensemble learning focused on the time-series
prediction. In [34], a large number of RNN have been gener-
ated by training on different sets of examples. An ensemble
of support vector regression (SVR) has been designed for
prognostics of time-series data in [6].

Accuracy and diversity are two essential criteria to
decide the performance of ensemble learning. Unfortu-
nately, the majority of existing time-series ensemble models
consider either accuracy or diversity only [9]. Few models
consider both criteria. Recently, a layered ensemble architec-
ture (LEA) has been proposed in [9] to address this problem.
In LEA, accuracy is obtained by finding an appropriate time
lag, and diversity is mainly achieved using different train-
ing sets for learners. Unfortunately, LEA does not model a
trade-off between accuracy and diversity as two conflicting
objectives. Instead, it uses separate techniques to increase
both factors independently. This approach cannot guarantee
the optimal trade-off between accuracy and diversity of indi-
vidual learners.

In [11], accuracy and diversity have been formulated
to create the multiobjective deep belief networks ensem-
ble (MODBNE). Each learner in MODBNE refines the
error of other learners in the cost of reducing its accuracy.
In MODBNE, the objective is a function of the output of
all the learners for all the training samples. MODBNE is
appropriate for small training sets because its complexity
increases significantly by the rise in the number of samples
and number of learners. The objective function in MODBNE
measures the accuracy and diversity considering all the train-
ing samples and base learners. For large data sets, it leads to a
complicated function with too many local optimums and pre-
vents the ensemble from finding the optimal balance. In our
time-series ensemble model, the accuracy-diversity trade-off
is calculated locally for each learner which allows avoiding
the complexity issues. Each learner considers the samples in
a small region of the feature space during accuracy-diversity
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TABLE 1. Model notation.

optimization. Since the complexity of objective function (for
training each learner) is not affected by the size of the training
set, our approach is appropriate for large datasets.

III. BACKGROUND
This section describes the main building blocks of the model
including ensemble learning, Gaussian process regression
(GPR), and Dirichlet process (DP) clustering.

A. ENSEMBLE LEARNING
An ensemble learning system consists of a set of individual
learners where each learner provides an estimate of the target
variable. It predicts the target variable by combining the
results of all the individual learners. There are three main
steps in building an ensemble learning system: (i) ensemble
generation, (ii) training each model, and (iii) combining the
results [35]. The learners can be the same or different types
of machine learning algorithms. The success of the ensemble
learning system depends on the accuracy and diversity among
the results of the learners [8].

Accuracy is measured based on different metrics such as
mean squared error (MSE), normalized mean squared error
(NMSE) [13], etc. In an ensemble model withM learners (fi),
diversity over N data points (xi) can be measured as:

I =
M∑
m=1

N∑
i=1

(
fm(xi)− f̄¬m(xi)

)2
, (1)

f̄¬m(x) =
1

M − 1

M∑
j=1
j 6=m

fj(x). (2)

Equation (1) is the basis for negatively correlated ensem-
ble learning [35]. It measures the difference between the

prediction result of learner fm and the average of outcomes
of other experts in the ensemble.

B. GAUSSIAN PROCESS REGRESSION (GPR)
We used GPR as the base learner in our ensemble model.
According to the definition, a Gaussian process (GP) is a
set of random variables that any subset of them has a joint
Gaussian distribution. Gaussian Process Regression (GPR)
[12] is a supervised machine learning algorithm that provides
the mapping function between the input X = {xi} and (con-
tinuous) output Y = {yi}. Consider n pairs of input and noisy
output observations,D = {(xi, yi)|i = 0, 1, 2, . . . , n−1}, and
the unknown mapping function f (xi):

yi = f (xi)+ εi, (3)

where εi ∼ N (0, σ 2) is the independent Gaussian noise,
and f (X ) ∼ GP(m̄(X ), k(xi, xj; θ )). m̄(X ) denotes the mean
function and k(xi, xj; θ ) is the arbitrary covariance function
with hyperparameters θ . We employ the Rational Quadratic
(RQ) covariance function defined as [13]:

kRQ(xi, xj; l, αc) = s2.
(
1+ (xi−xj)2

2αcl2

)−αc
, αc > 0, l > 0,

(4)

with the set of hyperparameters θ = {αc, l, s}. In [13],
we showed that RQ covariance function can handle traffic
characteristics such as LRD/SRD and periodicity. Periodicity
is a traffic pattern that is consistently observable at differ-
ent time scales of traffic data. Thus, using periodic covari-
ance functions to model such behaviour is a well-known
approach. For example, in [13], we proposed a semi-periodic
self-similar (SPSS) covariance function for GPR, capturing
LRD/SRD and patterns of periodicity in traffic data. In this
work, however, the periodic pattern may not be perceptible
by individual learners because the data samples are clustered
into smaller subsets. The samples in a cluster are expected to
have the same pattern, but they do not necessarily illustrate
periodic behaviour. Therefore, we used the RQ covariance
function for modelling.

The goal is to predict y∗ for previously unobserved sample
x∗ which does not belong to D. The conditional distribution
of f̄∗ = f (x∗) is:

f̄∗|D, x∗, θ ∼ N
(
f̂∗, V 2

∗

)
, (5)

f̂∗ = K>∗ (K + σ
2I )−1Y , (6)

V 2
∗ = k(x∗, x∗; θ )− K>∗ (K + σ

2I )−1K∗. (7)

Equation (6) provides the predicted value. K is the n × n
covariance matrix of X , i.e., [K ]ij = k(xi, xj; θ ).K∗ is a n×1
vector where [K∗]i = k(xi, x∗; θ ).
Since the values of hyperparameters have a significant

impact on the prediction accuracy, they have to be selected
carefully. We used Bayesian inference to estimate the values
of hyperparameters. This approach is based on the maximiza-
tion of the Gaussian likelihood function [12]:

p(Y |X , θ) =
1

(2π )n/2|K |1/2
exp

(
−

1
2Y

TK−1Y
)
. (8)
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FIGURE 1. Creating and training the GPR ensemble model.

This likelihood function simply obtained by considering
Y ∼ N (0,K +σ 2I ). Equivalently, we can maximize the log-
likelihood function [13]:

log
(
p(Y |X , θ)

)
= −

1
2
Y>K−1Y −

1
2
log(|K |)−

n
2
log(2π )

(9)

This log-likelihood function considers only the prediction
accuracy. We designed a new likelihood function for GPR to
satisfy the requirements of our ensemble model regarding the
accuracy-diversity optimization.

C. DIRICHLET PROCESS CLUSTERING
A clustering algorithm is required to partition the feature
space into multiple subspaces. Any clustering algorithm that
satisfies both following requirements can be used. First,
the number of subspaces is not known as prior knowledge and
depends on the training samples. The clustering algorithm has
to determine the number of subspaces automatically. Second,
the probability that a new data sample belongs to an existing
cluster is required in our ensemble model (in the training
and prediction) and the clustering algorithm must be able to
estimate such a probability. Dirichlet process (DP) clustering
is a natural choice to provide both requirements.

DP has been used in nonparametric Bayesian models [25].
It is a distribution over distributions, i.e., each draw from a
Dirichlet process is itself a distribution while the marginal
distributions are Dirichlet distributions. A DP(α,G0) is
described by a base distribution G0 and a positive scalar α,
usually indicated as the innovation parameter. Consider a
sample distribution G drawn randomly from a DP, and ran-
dom variables ci sampled from G:

G|α,G0 ∼ DP(α,G0), (10)

ci|G ∼ G, i = 1 . . . n. (11)

Random variable ci indicates the cluster of sample xi.
Assume the indicators (ci) take M unique values. It can

be shown the conditional probability of a single indicator
ci given other indicators when integrating out G and letting
M tends to infinity exhibits a clustering effect [36]:

p(ci = m|c¬i, α) =
o¬i,m

M − 1+ α
, (12)

p(ci 6= cj, ∀j 6= i|c¬i, α) =
α

M − 1+ α
, (13)

where c¬i is the set of all indicators excluding the ith indicator
ci, and o¬i,m is the occupation number of the cluster m

ignoring the value of ci. In the standard DP, the occupation
number is calculated as:

o¬i,m =
∑
j 6=i

δ(cj,m). (14)

According to the equations (12) and (13), the indicator ci
belongs to a new cluster (with probability α

M−1+α ) or the
existing cluster m (with probability o¬i,m

M−1+α ). The number of
clusters is not predetermined, and it depends on the value
of α and the number of sample points. A larger value of
α induces a higher tendency of creating more clusters,
and a smaller value of α leads to a lower number of
clusters.

IV. GPR ENSEMBLE MODEL FOR TRAFFIC PREDICTION
This section presents the proposed GPR ensemble model.
The algorithm is explained in three phases: preprocessing,
training, and prediction. The proposed model requires three
steps for being used in real applications. First, the input data
(i.e., traffic time-series) must be processed and formatted
to create a dataset. Second, the model is trained using the
dataset. Finally, the trained model is employed for prediction.
For example, the proposed model may be used for proactive
resource allocation in data centers. For such an application,
we can employ an instance of the trained model in the net-
work controller, where (i) it can access the traffic data on
the links, and (ii) its outcome is accessible to the network
controller for resource allocation. In preprocessing phase,
traffic samples are prepared and structured in a dataset to
be used in the training and prediction phases. It normalizes
the time-series and eliminates their trends. In the training
phase, theGPR learners are generated and trained considering
learners’ accuracy and their diversity. In the prediction phase,
the outputs of base learners for a new sample are combined
to create the ensemble prediction. The ensemble prediction
is a weighted sum of individual outputs. The input of this
model is the time-series of traffic bit-rates (presented as ti in
this section), and the output is the predicted traffic bit-rates
(presented as fens(xi)). The type and source of traffic bit-rates
depend on the application. For example, it can be traffic
bit-rates on the links (for predicting the link utilization) or
traffic load between each pair of points in the network (for
predicting the traffic matrix). In our experiments, both traffic
types are considered (i.e., CAIDA and Waikato datasets con-
sist of link utilization, but Abilene datasets consist of traffic
matrix).
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A. PREPROCESSING
In the preprocessing phase, two transformations are applied
to the traffic time-series, and then the dataset is created
using the transformed samples. The input data of this step
includes time-series values shown as ti. This step’s output
is a dataset (called D) consisting of a feature vector (pre-
sented as xi) and a target value (shown as yi) for each data
point. The first transformation is known as the difference
operator which eliminates the nonstationarity and trend in the
time-series [37]:

ri = (1− B)ti = ti − ti−1, (15)

where ti is the original traffic sample, and B is the backshift
operator. The second transformation is the normalization of
input using a sigmoid function:

qi =
2

1+ e−anri/ln
− 1, (16)

where ln is the link capacity, and an is a coefficient value
that alters the shape of the normalization function. The func-
tion (16) maps the input value into the range of [−1, 1].
The transformed traffic data, qi, is used to create the train-

ing dataset D = {(xi, yi)|i = 0, 1, 2, . . . , n − 1} in which
feature vector xi (with length d) and label yi are:

xi = [qi−1, qi−2, . . . qi−d ], (17)

yi = qi. (18)

It means for data point i, the target value is qi, and
the feature vector is the d values observed before qi (i.e.,
qi−1, qi−2, . . . qi−d ) where d is the size of the feature vector.

B. TRAINING
The base learners have to be trained in such a manner that
the whole ensemble achieves the optimal balance between the
accuracy of base learners and the diversity of their outputs to
minimize the prediction error. The ensemble training process
must find the optimal balance by tuning two parameters
at the same time: accuracy and diversity. In the proposed
model, this optimization process is done using a divide-
and-conquer approach. Each base learner finds the optimal
balance between accuracy and diversity in a small region
of the feature space. Hence, the feature space is segmented
into smaller subspaces, and each subspace is used as the
training set of a base learner. Then, each base learner is
trained to provide a balance between the following targets:
(i) accuracy on its corresponding segment (or training set),
and (ii) diversity on the adjacent segments.

Database D is employed to train the ensemble model.
The samples in D are divided (randomly) into two groups:
the training dataset, and the boosting dataset. The training
dataset is denoted as D′ and includes 80% of samples in D.
The training phase is done in four steps as shown in Fig. 1.
In Step 1, the training dataset is segmented intoM ′ segments
using DP clustering algorithm while the value ofM ′ is deter-
mined automatically in DP. In Step 2, M ′ base learners are

FIGURE 2. An example of creating the training sample i = 53 from
processed time-series values (qi ). Sample i = 53 includes feature
vector x53 (with length d = 5) and target value y53.

generated and their hyperparameters are initialized by maxi-
mizing the standard Gaussian likelihood. In Step 3, the base
learners are trained to provide the optimal accuracy-diversity
balance. Instead of using the standard Gaussian likelihood
function, we propose a likelihood function which considers
both criteria (accuracy and diversity). In Step 4, M ′′ base
learners are generated and added to the ensemble using the
boosting dataset as input. The total number of generated
base learners during the four steps of the training phase is
M = M ′ + M ′′. The steps are detailed in the remainder of
this section.

1) STEP 1
DP clustering algorithm (explained in Section III-C) is used
to partition the training dataset. DP algorithm generates M ′

clusters Dm (m = 1, . . . ,M ′) while each cluster represents
a subspace in the feature space. The number of generated
clusters is determined automatically during the clustering and
can be tuned by changing the innovation parameter α. The
goal is to place similar samples (i.e., with similar feature vec-
tor) in the same segment. The probability that a new sample
belongs to a cluster depends on the similarity of the new
sample to the members of the cluster. It is calculated based
on the occupation number. Since the occupation number in
Equation (14) is not data-dependent [36] we replace it with
the following kernel-based function:

o¬i,m = (M − 1)

∑
j 6=i k(xi, xj; θ )δ(cj,m)∑

j 6=i k(xi, xj; θ )
, (19)

δ(cj,m) =

{
1 if cj = m
0 otherwise.

(20)

The function k(xi, xj; θ ) is an arbitrary covariance function.
We used the dot-product covariance function:

k(xi, xj; l) = exp
(
l−1

∑d
k=1[xi]k · [xj]k

)
, (21)

in which l is the hyperparameter of the covariance func-
tion. The element [xi]k is the k-th component of the feature
vector xi. It has been shown that dot-product covariance
function is effective in the classification problems where
the feature values are in the range of [−1, 1] on each
dimension [12].

The steps in DP clustering are shown in Algorithm 1.
Function pop(D′) in Line 1 removes one sample fromD′ and
returns the sample. Function size(D′) in Line 2 returns the
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Algorithm 1 Step 1 of Training Phase (DP Clustering)

Input: D′, α F Training Dataset
Output: D1,D2, . . . ,DM ′ F M ′ Clusters

1: M ′ = 1, D1← pop(D′)
2: while size(D′) > 0 do
3: xi← pop(D′)
4: m̂ = 1, Pmax = 0
5: for m = 1 to M ′ do
6: Om = occupationNumber(m, xi) F Eq. (19)
7: Pm = clusteringProbability(Om, α) F Eq. (12)
8: if Pm > Pmax then
9: Pmax = Pm, m̂ = m
10: Pnew = newClusterProbability(α) F Eq. (13)
11: if Pmax > Pnew then
12: Dm̂← xi F Assign to an existing cluster
13: else
14: M ′ = M ′ + 1
15: DM ′ ← xi F Create a new cluster

number of sample in the set D′. The occupation number is
calculated using Function occupationNumber in Line 5 based
on Equation (19). The probability of assigning xi to the
existing clusters is calculated in Line 7 using Function
clusteringProbability according to Equation (12). Function
newClusterProbability computes the probability of creating
a new cluster and assigning xi to the new cluster based on
Equation (13). The output of Algorithm 1 is M ′ clusters of
samples while M ′ is determined automatically.

2) STEP 2
Base learners fm (m = 1, . . . ,M ′) are generated in this step.
Cluster Dm is assigned as the training set of learner fm. All
the learners utilize the RQ covariance function defined in
Equation (4) while the hyperparameters of fm are denoted
as θm. The hyperparameters of the learners are initialized
using standard GPR training process. In standard GPR,
the values of hyperparameters θ are determined by maxi-
mizing the Gaussian likelihood function p(Y |X , θ) defined
in (8). The learners achieve the best fit on their training
set. However, they cannot guarantee the accuracy-diversity
balance.

3) STEP 3
In this step, the ensemble is trained to provide the balance
between accuracy and diversity. Each base learner optimizes
the accuracy-diversity balance in a small region of the feature
space. For each base learner, the goal is to compromise
between the accuracy on its corresponding subspace and
diversity of predictions on its neighbor subspaces. This goal
has two sides. On the one hand, it enhances the learner’s
accuracy which is independent of the samples in other seg-
ments and the results of other learners. On the other hand,
it improves the diversity which depends on the outputs of

other learners. To achieve this goal, a new likelihood function
is introduced which considers the accuracy (on the learner’s
corresponding subspace) and diversity (on the learner’s adja-
cent subspaces). The values of θm is selected considering the
accuracy of fm on Dm and diversity of the learners on the
subspaces that are adjacent to Dm.
The values of hyperparameters have been initialized in

Step 2. In this step, they are evolved tomaximize the proposed
GPR ensemble likelihood function which considers accuracy
and diversity as follows:

Lm = Pm + Vm, (22)

where Pm = log
(
p(YDm |XDm , θm)

)
is the Gaussian

log-likelihood defined in Equation (9), and Vm measures the
diversity:

Vm =
1
|D¬m|

∑
xi∈D¬m

pm(xi) · vm(xi), (23)

in which D¬m is the set of samples xi in the clusters adjacent
toDm (excludingDm) for which the pm(xi) ≥ ε, and |D¬m| is
the number of samples in D¬m. Function vm(xi) is calculated
as:

vm(xi) =
1
2
·
Im(xi)− Em(xi)
Im(xi)+ Em(xi)

+
1
2
, (24)

while Im(xi) is defined based on Equation (1) and measures
the distance between estimation of expertm for xi and f̄¬m(xi):

Im(xi) =
(
fm|θm (xi)− f̄¬m(xi)

)2
, (25)

where f̄¬m(xi) (the average of predicted values of other learn-
ers on xi) is defined based on Equation (2):

f̄¬m(x) =
1

M − 1

M∑
j=1
j 6=m

pj(x)fj(x). (26)

Also, Em(xi) is the estimation error of expert m on xi:

Em(xi) =
(
fm|θm (xi)− yi

)2
. (27)

pm(xi) is the probability of xi belongs to Dm based on Equa-
tions (12) and (19). In other words, pm(xi) measures the
similarity of between xi and Dm and is defined as:

pm(xi) =
p(ci = m|c¬i, α)∑M
j=1 p(ci = j|c¬i, α)

. (28)

Function pm(xi) can be assumed as a similarity score
between xi and samples in Dm. When pm(xi) is less than a
threshold (which means xi is not similar to cluster m), xi is
excluded from the calculation of Vm. This allows learnerm to
focus on its local neighbourhood instead of the whole training
dataset. The value of threshold is determined based on the
minimum value of p(x) for x in cluster m.
The likelihood function Lm is the sum of two terms. The

first term (Pm) is calculated using the samples of subspace m
(i.e., Dm) and shows the accuracy of fm on Dm. The second
term (Vm) is computed using the samples of surrounding

176546 VOLUME 8, 2020



A. Bayati et al.: Gaussian Process Regression Ensemble Model for Network Traffic Prediction

FIGURE 3. An example for function vm(xi ) for xi /∈ Dm where yi = −0.2
and f̄¬m(xi ) = 0.4. The minimum value of vm(xi ) happens when
fm|θ (xi ) = f̄¬m(xi ), and its maximum value occurs when fm|θ (xi ) = yi .

subspaces (Dm′ ,m′ 6= m). Vm measures the contribution of
fm|θm to the prediction diversity on other subspaces.
Function vm(xi) is in the range of [0, 1]. It is minimized

when Im(xi) = 0, and maximized when Em(xi) = 0. The
outcome Em(xi) = 0 occurs when there is no difference
between the prediction of learner m for xi and target value
yi (i.e., fm|θ (xi) = yi), which means the prediction error of
learner m for xi is zero. The term Im(xi) = 0 happens when
the prediction of learner m for xi is equal to the average
prediction of other learners (i.e., fm|θ (xi) = f̄¬m(xi)). This
is the worst case for the diversity of the learner m when it
generates the same outcome as other learners.

We can analyze vm(xi) using the following example. Con-
sider xi as a sample in the neighbourhood of cluster m (but it
is not in cluster m) with target value yi = −0.2. The average
prediction of other learners for xi is f̄¬m(xi) = 0.4. Based on
this assumptions, function vm(xi) is calculated as:

vm(xi) =
1
2

(
fm|θ (xi)− 0.4

)2
−
(
fm|θ (xi)+ 0.2

)2(
fm|θ (xi)− 0.4

)2
+
(
fm|θ (xi)+ 0.2

)2 + 1
2
. (29)

which is illustrated in Fig. 3. As shown, vm has a minimum
value at fm|θ (xi) = f̄¬m(xi), and it has a maximum value at
fm|θ (xi) = yi.
Probability pm(xi) limits the calculation of Vm to the sub-

spaces that are adjacent to Dm. When the distance between
xi and Dm is high (i.e., xi is not similar to samples in Dm
which means xi is not in the surrounding subspaces), fm|θm (xi)
does not affect Vm. Since pm(xi) takes small values (close to
zero) for samples that are far from Dm, it limits the number
of samples that affect the likelihood function of fm. Since fm
optimizes the accuracy-diversity trade-off in its local neigh-
borhood, the complexity of objective function Vm (and L) is
decreased significantly (compared to an objective function
which considers the whole dataset). Also, the complexity of
training process for fm does not depend on the size of the
datasetD. Fig. 4 shows this property of our ensemble training.
During the training of fm, Pm is calculated using the samples
in the subspace Dm, and Vm is calculated based on samples
in adjacent subspaces D¬m. The samples that are not in the
adjacent subspaces and the predictions of experts for those
samples do not affect Lm.
Fig. 5 gives an intuitive illustration of the accuracy-diversity

balance. The samples of one cluster (Dm) are given in a

FIGURE 4. The process of calculating the likelihood function. Likelihood
function Lm is sum of Pm and Vm while Pm is calculated using the
samples in Dm, and Vm is computed using the prediction results of other
learners on the adjacent subspaces D¬m (the grey area).

FIGURE 5. Example of hyperparameter optimization for function fm. The
prediction results of other learners (e.g., fm′1

, fm′2
, fm′3

) on the

surrounding samples (e.g., xi ) must be considered in the hyperparameter
optimization of learner fm.

one-dimensional feature space x. The goal is to train fm (and
find the optimal θm) in a manner that it provides an optimal
accuracy-diversity balance in the regions around Dm. In this
example, (xi, yi) is a data point in a subspace adjacent to Dm
(xi /∈ Dm). GPR expert fm has to diminish the prediction
error of other learners on xi by providing diversity. There
are three learners (fm′1 , fm′2 , and fm′3 ) that have been trained
on their subspaces (Dm′1

, Dm′2
, and Dm′3

). So, the values of
their hyperparameters and their predicted values for xi are
known. Consider two possible sets of hyperparameters θ̄ and
θ̂ for fm where the outcome of standard Gaussian likelihood
function on Dm is almost the same and maximized for both
sets (e.g., they are two local optimums of Equation (8), and
p(YDm |XDm , θ̄ ) ' p(YDm |XDm , θ̂ )). It means they result in
the same level of accuracy for fm, so both θ̄ and θ̂ have
equal chances to be selected in the standard GPR training.
However, θ̂ is more likely to be selected when we employ our
GPR ensemble likelihood function. Consider the prediction
results of fm, fm′1 , fm′2 , and fm′3 for xi. It can be shown fm|θ̂ (xi)
leads to higher diversity compared to fm|θ̄ (xi) according to
Equation (1). So, θ̂ is preferred because it provides a higher
diversity on xi. In this example, we considered only the
outcome of three learners on sample xi. In a real scenario,
we need to consider all the training samples and base learners
in the neighbor segments.

The accuracy-diversity balance is improved after one round
of optimizing the experts’ hyperparameters within Step 3.
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It is possible to enhance the balance by multiple iteration
of Step 3.

4) STEP 4
In this step, the samples in the boosting dataset are used
to enhance the ensemble performance. First, the generated
(and trained) learners are employed to predict the samples in
the boosting dataset. The prediction algorithm is explained
in Section IV-C. The goal is to select the samples in the
boosting dataset that their corresponding prediction error
are significant. In other words, the samples that cannot be
predicted accurately by the existing learners are selected to
form a subset called D′′. The prediction error is measured
using NMSE [13]:

NMSE =
1

σ 2 |D′′|
∑

(xi,yi)∈D′′
(yi − f̂ens(xi))2, (30)

where (xi, yi) is a sample in D′′, |D′′| is the number of
samples in D′′, σ 2 is the variance of {yi}, and f̂ens(xi) is
the voted prediction for xi (defined in IV-C). The smaller
values of NMSE are preferred, and NMSE = 0 corre-
sponds to a perfect predictor with no error. (xi, yi) ∈ D′′
is added to the boosting dataset if its corresponding pre-
diction error is greater than threshold ethr (i.e., 1

σ 2
(yi −

f̂ens(xi))2 ≥ ethr ). The value of ethr is set to 50 percentile
of the NMSE of the boosting dataset. Therefore, 50% of the
boosting samples (with significant prediction error) will be
selected.

The prediction error of generated experts is high for the
samples in D′′. It will be used to generate and train M ′′ new
learners which will be added to the ensemble to improve the
overall prediction accuracy. The new learners are generated
as explained in Step 1, Step 2, and Step 3. First, the D′′ is
clustered using DP algorithm to create M ′′ clusters (while
the value of M ′′ is determined in DP). Then, M ′′ learners
are generated and initialized using the new clusters. Finally,
the learners are trained to optimize the accuracy-diversity by
maximizing the likelihood function.

Algorithm 2 implements steps 2, 3, and 4. In Step 2,
the hyperparameters of GPR experts are initialized using
function fitStandardGPR (line 2). It takes the samples in
one subspace and optimizes the standard Gaussian likelihood
in Equation (8). In Step 3, the accuracy-diversity balance
is optimized using function fitAccuracyDiversity (line 4).
In Step 4, the ensemble model is used to predict the samples
in boosting dataset and create D′′ (lines 5 to 11). Then,
M ′′ clusters are created by applying DP clustering to D′′
(line 12). Each cluster is employed to initialize and train
a new GPR expert (lines 13 to 16). Note the difference
between inputs of fitAccuracyDiversity in lines 4 and 16.
In line 4, the input consists of training dataset D′. In line 16,
both D′ and D′′ are required for the accuracy-diversity
balance because the new experts must consider the
results of M ′ previously generated experts on the whole
dataset.

Algorithm 2 Steps 2, 3 and 4 of Training Phase

Input: D1, . . . ,DM ′ , boosting data F M ′Clusters,
Boosting Dataset

Output: f1, f2, . . . , fM F M GPR Experts

1: for m = 1 to M ′ do F Step 2
2: fm = fitStandardGPR(Dm) FMaximize Eq. (8)

3: for m = 1 to M ′ do F Step 3
4: fm = fitAccuracyDiversity(fm,D′) FMaximize

Eq. (22)

5: for xj ∈ boosting do F Step 4
6: ej = NMSE(f̂ens(xj), yj) F Prediction error in

Eq. (30)
7: threshold = percentile(e, 70)
8: D′′ = {}
9: for xj ∈ boosting do
10: if ej ≥ threshold then
11: D′′← xj

12: {D′′1 , . . . ,D
′′

M ′′} ← DP(D′′) F DP clustering for D′′

13: for m = 1 to M ′′ do
14: fm+M ′ = fitStandardGPR(D′′m)

15: for m = 1 to M ′′ do
16: fm+M ′ = fitAccuracyDiversity(fm+M ′ ,D′ ∪D′′)

C. PREDICTION
The final voted prediction for a new sample xi is the weighted
sum of predictions of the GPR components:

f̂ens(xi) =
M∑
m=1

pm(xi)fm(xi), (31)

where M is the number of generated experts, and pm(xi) is
defined in Equation (28). The contribution of expert m in
the final voted predicted value, f̂ens(xi), is proportional to
pm(xi) (i.e., the similarity of xi to the the samples in the
clusterm). The term pm(xi) gives strong weights to the experts
that have been trained on samples similar to xi. It reduces the
effects of learners that have been trained on clusters which
are far from xi in the feature space. The ensemble prediction
is shown in Fig. 6. As shown, the outcome of each learner is
multiplied by the probability of sample belongs to the training
set of the learner which is calculated using DP clustering
algorithm.

D. COMPUTATIONAL COMPLEXITY
In standard GPR, the inverse of covariance matrix K is
required to optimize the likelihood function in Equation (8).
The time complexity of matrix inversion isO(N 3) where N is
the number of training samples. Thus, the standard GPR has
a cubic computational requirement.

In our algorithm, two parts must be considered for time
complexity analysis (i) DP clustering (in Step 1 of training),
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FIGURE 6. The final predicted value is the weighted sum of the individual
prediction. The weight of each learner is proportional to the similarity of
xi to the corresponding cluster of the learner.

and (ii) hyperparameter optimization (in Step 2 and Step 3).
In DP clustering, a covariancematrix of sizeN×N is required
for calculation of the occupation number in Equation (19).
Each element of the covariance matrix is the result of
Equation (21). The time complexity for calculation of such
a matrix in DP clustering is in the order of O(N 2).
In steps 2, 3 and 4, the hyperparameters of M learners

must be optimized. For expert m, the inverse of covariance
matrix of Dm is needed. The size of Dm is not predetermined
and depends on the DP clustering, training set, and length of
feature vector. Assuming |Dm| ∼

N
M (on average), the time

complexity of hyperparameter optimization in our algorithm
isO( N

3

M3 ). For small values ofM , the time complexity of algo-
rithm is close to the standard GPR. This can be avoided by
choosing appropriate values for α. As the number of clusters
increases, the average size of clusters decreases. In Section V,
the number and size of clusters for different values of α are
investigated. It shows that for a wide range of values for α,
the time complexity of GPR ensemble model is significantly
smaller than standard GPR.

E. GRADIENT DESCENT OPTIMIZATION
The proposed likelihood function is optimized using the gra-
dient descent method, which requires the likelihood func-
tion derivative. In this section, we provide the derivative
of the likelihood function in Equation (22) with respect to
hyperparameters θ :

∂Lm
∂θm
=

∂Pm
∂θm
+
∂Vm
∂θm

. (32)

The first part (i.e., ∂Pm
∂θm

) is the derivative of the standard GPR
log-likelihood function, and has been investigated in existing
GPR models (e.g., [13]):

∂Pm
∂θm
=

1
2
Y>K−1

∂K
∂θm

K−1Y −
1
2
Tr
(
K−1 ∂K

∂θm

)
, (33)

where Tr is the trace of the matrix, and ∂K
∂θm

is the covariance
matrix derivative:[

∂K
∂θm

]
l,k
=
∂k(xl, xj, θm)

θm
. (34)

The second part of the derivative (i.e., ∂Vm
∂θm

) depends on
fm|θm , Im, and Em. Function fm|θm (x∗) is the prediction of
learner m for input x∗, and it is defined in Equation (6):

fm|θm (x∗) = f̂∗ = K>∗ (K + σ
2I )−1Y . (35)

Its gradient is calculated as:

∂fm|θm (x∗)
∂θm

=
∂K>∗
∂θm

(K + σ 2I )−1Y

+K>∗ (K + σ
2I )−1

∂K>

∂θm
(K + σ 2I )−1Y . (36)

Accordingly, the derivative of Im(xi) and Em(xi) are:

∂Im(xi)
θm

=
∂
(
fm|θm (xi)− f̄¬m(xi)

)2
θm

= 2
(
fm|θm (xi)− f̄¬m(xi)

) ∂fm|θm
∂θm

, (37)

∂Em(xi)
θm

=
∂
(
fm|θm (xi)− yi

)2
θm

= 2
(
fm|θm (xi)− yi

) ∂fm|θm
∂θm

, (38)

where ∂fm|θm
∂θm
=

∂fm|θm (xi)
∂θm

. The derivative of ∂vm(xi)
θm

is:

∂vm(xi)
θm

= 2
Em(xi)

(
fm|θm (xi)− f̄¬m(xi)

)(
Im(xi)+ Em(xi)

)2 ∂fm|θm
∂θm

− 2
Im(xi)

(
fm|θm (xi)− yi

)(
Im(xi)+ Em(xi)

)2 ∂fm|θm
∂θm

. (39)

Finally, we can calculate the derivative of ∂Vm
θm

:

∂Vm
θm
=

1
|D¬m|

∑
xi∈D¬m

pm(xi)
∂vm(xi)
θm

. (40)

In calculating the derivative, those terms that do not depend
on θ are considered constant (e.g., pm(xi), D¬m, f̄¬m(xi),
and Y ).

V. EXPERIMENTAL RESULTS
A. SETUP
We carried out experiments on six different datasets
which have been created using traffic samples from three
well-known sources of traffic data. The list of datasets and
data sources are shown in Table 2. The first two datasets
(CAIDA-01, and CAIDA-02) have been created from the traf-
fic data monitored on 10GigE links from 2008 to 2015 pro-
vided by the Center for Applied Internet Data Analysis
(CAIDA) [38]. Abilene Internet2 Network traffic data [39]
(from 2007-01-01 to 2007-10-14) has been used to build the
datasets Abilene-01 and Abilene-02. Abilene Internet2 Net-
work is a high-performance backbone network for research
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TABLE 2. Datasets of traffic time-series created from different sources at
different time-scale.

and education institutes in the United States. Waikato traffic
traces [40] collected from 2011 to 2013 have been exploited
to form datasetsWaikato-01 andWaikato-02. The time-scales
of the traffic samples in the datasets varies from 30 seconds
(in CAIDA-01) to 30 minutes (in Waikato-02) as determined
in Table 2. These datasets are created based on the traffic
bit-rate time-series (in Mbps). Abilene datasets consist of
traffic bit-rates between pairs of points (i.e., traffic matrix),
but Waikato and CAIDA datasets include traffic loads on
the links in the network (i.e., link utilization). The process
of preparing the dataset is the same for all these datasets,
as explained in Section IV-A. The main difference between
these datasets is the time-scale of traffic samples, as illus-
trated in Table 2. Therefore, the prediction task for these
datasets is to estimate target values (i.e., yi) according to the
feature vector (i.e., xi).
We compared our model with different algorithm includ-

ing traditional time-series algorithms (i.e., ARIMA [21],
FARIMA [22]), supervised regression methods (i.e., standard
GPR [13], SVR [6], LASSO [20]), ensemble learning meth-
ods (i.e., GTB [31], RF [32], ERT [33]), and a deep learn-
ing time-series predictor (i.e., LSTM [23]). These models
have been discussed in Section II. We performed separate
experiments on the datasets in Table 2. In the experiments,
each dataset is divided into two non-overlapped subsets. The
first subset is used for the model selection (i.e., selecting
the optimal size of the training set, the optimal number of
features d , and the optimal values for parameters) for each
algorithm using a cross-validation process. The second subset
is divided into 100 portions, and each portion is employed to
create a pair of the non-overlapped train and test sets (random
train-test split). For each pair, themodels are fitted on the train
set (using the training process explained in Section IV-B)
and then, evaluated on the test set. The reported results are
the average of 100 prediction error measurements which
have been achieved from this process. The prediction error
is evaluated using NMSE in Equation (30).

B. RESULTS
In this section, we present the results of our experiments
carried out on the datasets. In Fig. 7, an example of the
outcome of the GPR ensemblemodel for predicting the traffic

FIGURE 7. Prediction results of the proposed ensemble model (including
the individual prediction results and the final predicted values) for traffic
time-series at time-scale of 10 minutes (Abilene-02).

samples in Abilene-02 is presented. Each point is the outcome
of one GPR expert. Also, the final predicted values (weighted
sum of individual predictions) are illustrated. The individual
experts have different errors (diversity), so the error of each
expert is corrected by other experts. Thus, the GPR ensemble
model was able to predict most of the samples presented
in Fig. 7 accurately. For few samples such as t = 581,
the individual errors are not diverse around the actual value.
Therefore, the final prediction error is high compared to other
samples. It shows that diversity of individual predictions has
an important role in reducing the final prediction error in
ensemble model.

The average prediction error of different algorithms are
illustrated in Table 3. As shown, the GPR ensemble model
outperforms other models in the experiments on CAIDA-02,
Abilene-01, Abilene-02, and Waikato-02. In two cases
(CAIDA-01 and Waikato-1) ARIMA and LSTM have the
smallest prediction error respectively. Nevertheless, GPR
ensemble error is close to the winner algorithms in these two
cases. The details of results are illustrated in Fig. 8, 9, and 10.
The prediction error of different models for datasets
CAIDA-01 and CAIDA-02 are shown in Fig. 8. On aver-
age, ARIMA has the lowest prediction error for CAIDA-01
compared to other algorithms. GPR ensemble model has
the second smallest prediction error. Also, its variance is
less than ARIMA. For dataset CAIDA-02, GPR ensemble
model has the best prediction results (in term of average
prediction error). The performance of FARIMA is close to
GPR ensemble model. In both cases, the GPR ensemble
model has the minimum variance in prediction which shows
it is more stable compared to other models. The average
of prediction error of the algorithms for CAIDA datasets
is higher than other datasets (see Table 3). It is because of
the traffic behaviour at small time-scales. The time-scale of
samples in CAIDA-01 and CAIDA-02 are 30 seconds and
1 minute respectively. It has been shown that traffic exhibit
short-range dependency (SRD) at small time-scales [41]. The
traffic fluctuations are notable and temporal changes in traffic
patterns are more frequent at small time-scales. Therefore,
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TABLE 3. Average of prediction error of different models on traffic datasets.

FIGURE 8. Prediction results for CAIDA datasets: (a) CAIDA-01 at time-scale of 30 seconds, (b) CAIDA-02 at time-scale of 1 minute.

FIGURE 9. Prediction results for Abilene datasets: (a) Abilene-01 at time-scale of 5 minutes, (b) Abilene-02 at time-scale of 10 minutes.

the average of the errors on these datasets is higher for all the
algorithms.

The prediction results for datasets Abilene-01, and
Abilene-02 are presented in Fig. 9. The time-scales of traffic
samples are 5 and 10 minutes for these datasets respectively.
In both cases, the GPR ensemble model outperforms other
models with average NMSE of 0.19 for Abilene-01, and 0.20
for Abilene-02. Also, the variance of its prediction results
is lower than other models. The second smallest prediction
error belongs to LSTM with average NMSE of 0.26 and 0.24
for these datasets. Generally, the average of prediction error
of all algorithms is smaller for Abilene datasets compared to
the results for CAIDA datasets. The results of predictions for

Waikato datasets are demonstrated in Fig. 10. In the case of
Waikato-01, the average NMSE for LSTM is 0.16 (which
is less than other competitors), and the average prediction
errors of GPR ensemble model and RF are equal to 0.18. For
Waikato-02, the GPR ensemble model has the best prediction
result with average NMSE equal to 0.14.

The results of our experiments show the GPR ensemble
model has a higher prediction accuracy compared to other
ensemble models for many traffic datasets. Also, our model
experiences a small variance in its prediction results which
shows it is able to handle traffic characteristics and varying
patterns. Unlike other models which have different results
at various traffic time-scales, GPR ensemble model has a
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FIGURE 10. Prediction results for Waikato datasets: (a) Waikato-01 at time-scale of 15 minutes, (b) Waikato-02 at time-scale of 30 minutes.

satisfactory and stable performance at all the traffic time-
scales. The high prediction accuracy in GPR ensemble model
is achieved by optimizing the balance between accuracy and
diversity between prediction results of individual experts dur-
ing the training phase.

C. LIKELIHOOD OPTIMIZATION
We monitored and analyzed the results for likelihood func-
tion convergence during the hyperparameter optimization.
An example learner is selected, and its likelihood values (for
Pm and Vm) are tracked. This learner is assigned to a cluster
with 166 samples during the training process, and it has
237 samples in its neighbourhood (i.e., samples that pm(x)
is greater than the threshold for them).

The changes in Pm and Vm as two terms of the likelihood
function are shown in Fig. 12. As shown, the value of Vm
decreased during the first iterations (before iteration 41),
while there is a significant improvement forPm. In themiddle
of optimization, there is a period that both terms are increased
together (between iterations 41 to 51). After iteration 51,
it seemsPm reaches its optimum point and stays stable, while
there is a notable gain for Vm. We noted the increase in Vm
(in the final iterations) causes a minor decrease in Pm, but
the total likelihood is improving. In general, we observed
similar behaviour in other learners. In the first optimization
iterations, the hyperparameters are changed to improve Pm
(i.e., improve accuracy on the assigned cluster), and in the
final iterations, the hyperparameters are tuned to gainVm (i.e.,
to improve diversity on adjacent samples).

D. EXECUTION TIME
We compare the execution time of different algorithms.
As mentioned in Section IV-D, the computational complexity
of the proposed algorithm can be affected by the number and
size of the clusters. In the worst case, the time complexity of
the GPR ensemble model is comparable to the standard GPR
model if a cluster’s size is close to N (size of the training set).
On the other hand, the size and number of clusters depend
on the innovation parameter α in DP clustering. Therefore,

FIGURE 11. Average cluster size and number of clusters in DP clustering
algorithm for different values of α when training set of size N = 10000.

FIGURE 12. The optimization of likelihood function for an example
learner that illustrates the changes in Pm and Vm during hyperparameter
tuning.

we need to investigate the size and number of clusters for
different values of α. Fig. 11 shows the average size and
number of clusters created by applying the DP algorithm on
dataset of size N = 10000. DP clustering algorithm has been
executed 100 times for each dataset in Table 2 while 10000
samples were selected randomly from the dataset in each run.
As shown, the number of clusters is small when the value
of α is close to zero, and it increases as α increases. At the
same time, the average cluster size decreases as α increases.
Even for small values of α, the cluster size is much smaller
than the whole training set. For example, the average cluster
size is around 5% of the training set (i.e.,∼ 500 samples) for
α = 0.5.
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FIGURE 13. Training time of different models with varying training size.

Fig. 13 shows the execution time of different algorithms on
varying size training sets. All the experiments are conducted
in Python 3.7 on a workstation (Ubuntu Server 18.04.2 LTS,
8 Intel 2.40 GHz processors, 32 GB of RAM). As shown,
the training time of standard GPR increases very fast (i.e.,
cubically) as the training size increases. For dataset of size
2000, it takes 981 seconds to train standard GPR. The training
time of LSTM grows very fast (but linearly). LASSO has the
shortest training time compared to other models as it is a low
performance linear regression model (with high prediction
error). The effect of training size on the execution time of the
GPR ensemble model is significantly smaller than standard
GPR model (and also LSTM and GPT). Since each expert
in GPR ensemble model is trained on a segment of feature
space, the size of training set has a small effect on the training
time of the model. This is the result of local optimization of
accuracy-diversity balance in our ensemble training.

VI. CONCLUSION
While network traffic prediction is a powerful means to
improve the network performance, it is a very challenging
task. The traffic predictionmodelmust handle different traffic
patterns at various time-scales. In this article, we presented an
algorithm for traffic prediction based on the ensemble of GPR
experts, and proposed an optimization framework to optimize
the balance between accuracy and diversity of these experts.
The proposed framework reduces the complexity through a
divide-and-conquer approach where each learner optimizes
accuracy-diversity balance in a segment of the feature space,
and each segment is used to train a base learner. The pro-
posed GPR ensemble model has been applied on real traffic
traces. The experimental results show our GPR ensemble
model outperforms other models in traffic prediction. In the
future work, wewill investigate the performance of ourmodel
regarding various traffic characteristics such as burstiness,
and LRD/SRD. We intend to integrate the model into exist-
ing network controllers to improve the resource and traffic
management in networks. We will also compare our model
with new deep learning algorithms and graph-based neural
networks to show its efficiency.
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