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ABSTRACT With the development of smart phones, malicious applications for the Android platform have
increased dramatically. The existing Android malicious code analysis methods majorly focus on detection
based on signatures, inter-component communication, and other configuration information features. Such
methods ignore the effect of the semantic features of the malicious code. Even a few such studies that
exist are based on the statistical features of the code for malicious code detection. To address these
shortcomings, we (1) use the code semantic structure features to reflect deep semantic information, (2)
propose a preprocessing method of APK files to generate graphics that reflect the code semantic features,
and (3) introduce the advanced graphical semantics for a graph convolutional network (GCN) model to
automatically identify and learn semantics and extract features for malicious code detection. Experiments
on a dataset confirm that the proposed method can achieve 95.8% detection accuracy. Compared with the
existing methods that adopt configuration information features or statistical features of codes, our method
shows higher accuracy.

INDEX TERMS Deep learning, malicious code detection, semantic features.

I. INTRODUCTION
At present, the Android operating system has firmly occupied
more than half of the market and is one of the most pop-
ular smart mobile platforms. However, the Android operat-
ing system has considerable hidden security risks. Although
Android’s open ecological environment provides conve-
nience for application programming, it increases the number
of vulnerabilities that malware can exploit. In recent years,
the installation and use of malware has posed a security threat
to mobile devices, including theft of privacy of smartphone
users and repackaging benign applications.

The development of malware has prompted researchers to
develop malware detection techniques. The current malware
detection technology ismainly divided into static analysis and
dynamic analysis. Dynamic analysis tracks the behavior of
the Android application while it is running, whereas static
analysis analyzes the Android application package (APK) file
of the application. In this study, we focus on static analysis
techniques.

Many malware detection systems use static analysis tech-
niques to detect malware. They mainly focus on the static
features of malware, such as permissions required by the
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APK, services [1], sensitive application programming inter-
face (API) [2], and program functions [3]. However, these
features are only the information extracted from the config-
uration file, ignoring the dex source code of the APK. These
malware detection methods ignore the semantic features of
APK files, thereby reducing the recognition rate of malicious
code detection. Some studies have reported on this problem.
Pei et al. [4] focuses on the semantic information of dalvik
opcodes, mainly collecting statistical features of a malware
code, such as code length and the number of occurrences of
special characters. Yen and Sun [5] converts the classes.dex
file in the APK into images to extract semantic features,
where the image is composed of multiple color blocks. The
size of each color block is determined by the correspond-
ing characters in the code; that is, the greater the number
of characters appearing in the code, the larger is the color
block of the corresponding image. These studies extract the
statistical features of the code, thereby improving their effect
compared to other features [4]. However, by considering only
the statistical features of the code, the potential semantic
information such as the structural features of the code is over-
looked. In addition, these methods are not valid when mal-
ware developers use different special characters. To address
this issue, we propose a scheme for extracting structural
features from the source code in order to provide deep code
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semantic information for subsequent model learning. More
specifically, we transform the code into a data flow graph that
reflects semantic information through preprocessing and then
use the data flow graph as an input to the subsequent model.

In recent years, the field of deep learning algorithms such
as recurrent neural networks and convolutional neural net-
works (CNNs) has been combined with malware detection
technologies. Among them, CNNs arewidely used in the field
of malware detection. Ren et al. [6] converts APK binary files
into grayscale images and then uses CNNs to extract features.
McLaughlin et al. [7] use recurrent neural network research
to classify the features of the opcode sequence extracted
from APK. However, the objects of the studies are Euclidean
space data and structural rules irrespective of whether the
search object is an opcode sequence or a grayscale image
converted from a binary file. In this study, the structure
around the nodes of the extracted data flow graph is unique,
which renders the traditional CNN and RNN instantaneously
invalid. To meet this challenge, we propose a model based on
graph convolutional networks (GCNs) [8] to detect Android
malware.We use the GCN to assemble each node with a fixed
number of ordered neighbors and summarize the features of
all neighboring nodes of each node.

Specifically, in this article, we propose a deep learning
framework that can extract semantic features of the code,
which are then used in malware code detection with improved
accuracy. We first perform data flow analysis to extract the
data flow graph of the Android application, and then add
data flow attributes to the nodes of this graph. The structural
information and attribute information of the node collected
by the GCN model are used as the input of the subsequent
classifier.

In general, our study contributes in the following aspects:
1) The feature extraction of the code by traditional deep

learning is improved by introducing the semantic features of
the code for malicious code detection.

2) A preprocessing method for APK files is proposed to
generate a data flow graph that reflects semantic information.

3) A deep learning framework based on the GCN is pro-
posed for malicious code detection. Experimental results
show (Chapter 4) that compared with existing methods, our
proposed features can improve the detection accuracy of
malicious code.

Chapter 2 introduces related work, Chapter 3 introduces
the pre-processing methods and deep learning framework
used for malicious code detection, Chapter 4 presents the
experimental results, and Chapter 5 finally discusses the con-
clusions.

II. RELATED WORK
Compared with traditional malware, mobile platform mal-
ware has special features. For example, it does not require
large-scale self-replication and distribution like viruses or
worms, but only needs to be placed in an application store
to be downloaded on a large scale. In addition, the signature
of mobile phone malware is relatively concealed, and the

signature codes of most malware are not the same; moreover,
a new malware cannot be detected promptly, so a detec-
tion technology based on signature matching is not suit-
able for detecting malicious codes in Android phones. The
well-known open source tool Androguard [9], implemented
in academia in 2013, is a representative method based on
developer signature matching. By establishing a large and
effective database, we can quickly and effectively discover
known malicious applications but not new ones. Another
method is behavior-based detection technology in which the
mobile phone malware behavior is accurately detected by
monitoring the behavior of an Android code (for example,
through dynamic interception or static analysis to obtain
the system call sequence of the program) by comparing
it with known malicious behavior patterns (malware sys-
tem call sequence) [10]. The most prominent advantage of
behavior-based detection technology is that its feature library
is small and does not need to be updated frequently. It can
also detect unknown malware with similar behavior patterns.
However, it requires high real-time performance, and it must
be ensured that malicious programs are detected before they
damage the system. Threats are relatively expensive, and the
usual solution is to use sandboxes to close operations and
monitor programs.

These shortcomings of the traditional methods have moti-
vated research into new technologies. In recent years, data
mining based on machine learning is the research hotspot of
the development of Android malicious code detection tech-
nology [11]. Machine learning algorithms mainly include the
application of common methods such as k-nearest neighbors,
support vector machines, neural networks, Bayesian clas-
sification, and clustering; feature processing modes mainly
include source code feature extraction and mobile applica-
tion configuration file analysis, API call analysis, applica-
tion permission monitoring, abnormal behavior analysis, and
other multi-level and multi-dimensional methods [12]–[14].
However, machine learning is usually based on feature engi-
neering and relies on complex or expert features to complete
learning tasks. Tobiyama et al. [15] proposed malware pro-
cess detection based on the process behavior. In this method,
long-term short-term memory (LSTM) was used for feature
extraction and the CNN was used for classification. The pro-
cess behavior is a series of API calls. Features are extracted
from the process behavior log file and transferred to an image
that contains local features, which mainly represent process
activities. Therefore, the CNN can be applied to capture these
local features and correctly classify the images. Rhode et al.
[16] studied the possibility of detecting malware executable
files on the basis of behavioral data. In their study, the selected
features are 10 consecutive machine activity data indicators
instead of classification API calls. However, since API calls
can be manipulated, the classification of input samples may
be incorrect. Ilham et al. [1] and Yuan et al. [17] proposed
a deep learning-based extraction method of three types of
features from the malware: (1) required permissions, (2)
sensitive APIs, and (3) dynamic behavior. These features
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were then used for complex pattern and feature recognition.
Ren et al. [6] used an end-to-end architecture to build
deep learning models and characterize Android applications.
Kolosnjaji et al. [18] proposed the classification of malware
system call sequences using convolution and recurrent net-
work layers, in which the convolutional layer is used for
feature extraction.

Although these methods have higher detection accuracy
compared to machine learning-basedmethods, they still show
some weaknesses when expressing complex features. These
methods cannot fully utilize the semantic information con-
tained in the malware and lack the ability to integrate the
semantic information into the neural network. Mercaldo and
Santone [19] extracted features on the basis of the semantic
information of the code, converted the binary file of the code
into a grayscale image, and then used a CNN to extract
features. Yen and Sun [5] used Simhash and Djb2 algorithms
to convert APK dex files into images based on the statistical
features of the code as well as used CNNs to extract features.
Similarly, Azmoodeh et al. [20] proposed a deep feature space
learning method to classify malicious and emerging Internet
of Things (IoT) applications. They extracted 1078 benign and
128 malware opcode sequences from IoT applications. The
selected features (opcode) of each sample were converted
into a graph for classification using the deep convolutional
network. These methods only used the statistical features of
the code whereas ignoring the internal structural information,
and they cannot fully integrate the semantic information into
the neural network.

Therefore, we consider generating a data flow graph based
on the structure of the code and extracting semantic fea-
ture information from it. However, the traditional deep con-
volutional neural network is not suitable for graphs with
non-Euclidean structures. Some studies have tried to extract
features from non-Euclidean structures. Shu et al. [21] used
graph long short-term memory (G-LSTM) to extract features
from the graph. G-LSTM includes a control unit to filter
the graph node, select important information, and learn fea-
tures. Tang et al. [22] used coherence constrained graph long
short-term memory (CCG-LSTM) to extract features from
the graph, thereby strengthening the associated routines and
suppressing weak references associated with the graph to
learn the graph features. The GCN model [8] extends the
traditional Fourier transform to the graph; therefore, the con-
volution operation can be represented by the product of two
Fourier transforms. Thus, the convolution of graphs with
non-Euclidean structures is achieved.

III. METHOD
A. PREPROCESSING
1) DATA FLOW CHAIN ACQUISITION
As shown in Figure 1, the APK is essentially a compressed
package, and multiple files and folders can be obtained
from it after decompressing it. An APK file usually includes
a META-INF folder (which stores program signatures and

FIGURE 1. APK file structure.

certificates), a res folder (which stores application resources),
AndroidMainfest.xml (which stores application configura-
tion information), and classes.dex (which are class files on
the DEX compiler file format used to execute on the Dalvik
virtual machine). In this study, the preprocessing of the APK
is mainly aimed at classes.dex.

For code preprocessing, we adopt the data flow analysis
method, which is a commonly used method for describing
software based on semantics. In this study, to divide the code
into fragments carrying semantic information like biological
genes, information is extracted in the form of a data flow
chain. The data flow chain refers to the flow of data from the
use to the definition in the software, including a data activity
in the entire life cycle. The life cycle of a data is from the
definition to the redefinition of the data or the end of the
basic block. The basic block is a sequence of sequentially
executed statements in the code segment. In general, there is
only one entry and one exit, at which a statement jump occurs.
In this study, the executable bytecode is analyzed to obtain the
data flow chain. First, we use decompilation tools to extract
code from classes.dex. Then, to convert executable bytecode
into an intermediate language, we use the Soot tool [23],
a commonly used JAVAprogram analysis tool, which can also
now be used in Android software. Soot’s analysis is based
on several intermediate languages. In our experiment, we use
Jimple language, a three-address statement, which is more
convenient for analyzing and obtaining data flow chains. The
data flow chain is obtained by Algorithm 1.

In Algorithm 1, the control flow graph of basic blocks
generated by the Soot tool is re-analyzed to obtain a data
flow chain. Through the analysis of the basic block control
flow graph, we can extract the definition and usage values of
all data (called def-value or use-value, respectively). Lines
2-18 extract data flow chains in the basic block through
traversal. The data flow chain is generated when each piece of
data is defined by a value, and the first node of the chain is the
definition statement. Whenever a value is used, the statement
used for this value will be added to the end of the data flow
chain. When a value is redefined, the data flow chain marked
by this value is output and another data flow chain marked
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Algorithm 1
Input: Android apk document
Output: Data flow chain
1: for each control flow graph of basic block do
2: for Each statement in a basic block do
3: Get the def-value and use-value in the statement
4: Use the method name and method type of this sen-

tence as the expression of this statement
5: if There is a data flow chain marked with this def-

value then
6: Output this data flow chain;
7: Recreate a data flow chain marked with this def-

value
8: use the expression of this statement as the head of

the chain;
9: else
10: Create a data flow chain marked with this def-

value
11: Use the expression of this statement as the head

of the chain;
12: end if
13: for Each use-value in this statement do
14: Find the data flow chain marked with this use-

value;
15: Add the expression of this statement to the end of

the data flow chain;
16: end for
17: end for
18: Output all data stream chains that are not currently

ended in this basic block;
19: end for

by this value is opened simultaneously. In addition, when the
basic block ends, all unfinished data streams generated at this
time are generated. The chain will be terminated and output
(i.e., line 18 in Algorithm 1).

To facilitate Android malware sample matching and com-
parison in subsequent research, the nodes of the generated
data flow information graph must be embedded.We represent
nodes by two features: the statement-type feature and the
calling method name.

As an easy-to-analyze three-address statement, Jimple has
only 15 statement types. In this study, we use a single letter
to abstract the common statement types as shown in Table 1.
In addition, the name of the calling method in the statement
is obtained as an important feature of the code to express
semantic information.

Thus, we use the statement type and calling method name
to represent the nodes of the graph.Figure 2 is an example of
two data flow chains. The code in Figure 2 is a piece of data
flow chain in amalware samplewidely named by the antivirus
engine as the Plankton family. The malware of the Plankton
family collects sensitive information such as bookmarks of
infected device browser and phone numbers from various
mobile devices and sends it to a remote server.

TABLE 1. Abstract representation of jimpele statement.

FIGURE 2. The example of two data flow chains.

2) DATA FLOW CHAIN MERGE
After all data flow chains are generated, the same nodes in the
data flow chain are combined to form a graph that reflects the
data flow information. Figure 3 is an example of the merging
of two data flow chains shown in Figure 2. A graph of reaction
data flow information thus generated is input to the following
model.

FIGURE 3. The merge of data flow chains.

3) EMBEDDED REPRESENTATION OF NODES
We use the statement type and calling method name to rep-
resent the nodes of the graph and embed the nodes into the
vector space by applying an embedding method. Therefore,
in the embedding of each node, the sentence type and call-
ing method name from the vocabulary are mapped to the
N -dimensional real number vector in the embedding vector
space; N = 200 in this study. Figure 4 shows an example of
encoding nodes.

Our goal is to obtain a matrix expression x ∈ RM×N ,where
instance x consists of N -dimensional embedded vectors
xj, j = 1, . . . ,M , corresponding to a series of nodes. M rep-
resents the number of nodes in the graph.
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FIGURE 4. An example of encoding nodes.

xj is generated is as follows:

xj = {emb(Wj ⊕ Cj)}Mj=1 (1)

Here,Wj and Cj represent the type and name of the method
called by node j, respectively; emb means the embedding
operation; and ⊕ means the connection operation.

B. MALICIOUS CODE DETECTION BASED ON DEEP
GRAPH CONVOLUTIONAL NETWORK
We use the GCN model to model the graph generated by the
preprocessing. The GCN is a neural network that runs on the
graph and summarizes node features based on the properties
of its neighborhood. Depending on how many convolutional
layers are used, the GCN can capture information about
neighboring neighbors (with a graph convolutional layer) or
any node with amaximum k-hop distance (where k represents
the number of graph convolutional layers used).

The overall flow of the proposed algorithm is shown in
Figure 5. The core of the network consists of a graph convo-
lution layer and a classification layer. The graph convolution
layer uses the GCN to aggregate nodes and extract features.
In the classification layer, a softmax classifier is used to
classify the input based on the features extracted by the graph
convolution layer.

The graph is represented by (VER,EDG), which is a set of
nodes on the graph VER = {VER1, . . . ,VERn} and a set of
edges EDG ∈ VER× VER.
The GCN uses the following variables as input based on

(VER,EDG):
1) A feature matrix composed of k-dimensional embedded

vectors xj, j = 1, . . . ,M corresponding to a series of nodes
(already described in the previous section).

2) The adjacency matrix A that reflects the graph structure
can be obtained from the graph. Finally, the label probability
Z is output through the classification layer, which is divided
into two categories, benign and malicious.

The GCN obtains node vectors by iteratively aggregating
vectors from its neighbor nodes. We try to obtain graph

representation by learning to transform the entire graph into
a vector space graph. In this space, the geometric relation-
ship between the learning vectors reflects the graph structure
information, which can be used as the input for the next
classification layer.

Multi-layer changes are prevented by the large scale differ-
ence between the output and input. The adjacency matrix A
is reconstructed by the normalization operation, described as
follows:

Â = A+ I (2)

Ã = D̂−
1
2 ÂD̂−

1
2 (3)

where I is the identity matrix used to add the self-loop con-
nection. Â = A + I ensures that when the adjacency matrix
is multiplied, the node itself can also be added when the
feature vectors of all adjacent nodes of each node are added;
D is the diagonal of nodal degree matrix Â; D−

1
2 ÂD−

1
2 is

the normalization operation performed to avoid the problem
of data instability and gradient explosion or disappearance
caused by repeated operations.

Each graph convolution layer of the GCN model has a
nonlinear activation function, defined as follows:

xv(k+1) = ReLU

 ∑
u∈N (v)

(
Ãxv(k)W (k)

+ b(k)
) (4)

where k is the number of layers and xv(1) is the embedded
matrix X composed of the embedded vectors corresponding
to the nodes in the graph,W (k) is the weight matrix of the kth
layer, and b(k) is the intercept of the kth layer. Specifically,
N (v) is represented as a group of neighbors of node Ver,
where Ver belongs to N (v) due to self-loops [24]. RELU is
the activation function and

∑
u∈N (v)

(
Ãxv(k)W (k) + b(k)

)
repre-

sents the convolution operation adopted.
For our classification experiment, a two-layer GCN model

is used, and the output of the graph convolution layer is input
into the classifier. The objective function of the classification
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FIGURE 5. Architecture of our model.

is as follows:

Z = soft max(xv(2)) (5)

After Z provides the probability distribution of the label,
cross-entropy is used as the loss function. Next, we use
backpropagation loss and the Adam algorithm to update the
weight matrix W (k) and intercept b(k)(k = 1, 2) in the
convolutional layer of the graph.

The GCN basically collects information from neighbors
and learn neighbor representations. The embedding matrix X
and the adjacency matrix A constitute the GCN input. The
graph structure framework can inductively learn the embed-
ding of each node. The aggregation operation adopted can be
described as follows:

xv(k+1) = ReLU

 ∑
u∈N (v)

(
Ãxv(k)W (k)

+ b(k)
) (6)

More formally, through learning, our model integrates the
node structure (structure information) and node attributes
(attribute information) on the last layer of the GCN, so that
these two parts interact closely with each other.

IV. RESULTS
We conducted extensive comparison experiments, analysis,
and research to demonstrate that the code semantic features
are effective for improvingmalicious code detection.We used
accuracy (ACC), accuracy (P), recall (R), and F-score (F) as
parameters to quantitatively evaluate the performance of the
classifier. In addition, we used five-fold cross-validation.
In the malware detection experiment, we randomly retained
four-fifths of the data for training and verified the model
using the remaining one-fifth of the samples. All experi-
mental results were obtained on the same evaluation dataset.
Finally, the performance was optimized by adjusting variable
hyperparameters.

A. DATASETS
The dataset consists of malware and benign applications,
including 8,000 benign APKs collected from Google Play
Store [25] and 8,000 malicious APKs collected from

Virusshare [26]. The APK files we collected are between
20 KB and 50 MB.

B. EVALUATION METRICS AND EXPERIMENT SETTINGS
1) EVALUATION METRICS
To quantitatively evaluate the performance of the classifier,
we used the following common machine learning perfor-
mance evaluation indicators: True positive (TP) is the num-
ber of samples correctly classified as malicious, true nega-
tive (TN) is the number of samples correctly classified as
benign, false positive (FP) is the number of samples misclas-
sified as malicious, and false negative (FN) is the number of
samples that are misclassified as benign.

Accuracy (Acc) represents the number of samples correctly
classified as benign or malicious.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(7)

Precision (p) is the ratio of correct positively labeled
instances to all positively labeled instances.

Precision =
TP

TP+ FP
(8)

Recall (R) is the ratio of correct positively labeled instances
to all instances that should have been labeled positive.

Recall =
TP

TP+ FN
(9)

F-score (F) is the harmonic mean of precision and recall.

F − score = 2×
Precision× Recall
Precision+ Recall

(10)

2) EXPERIMENT SETTINGS
As shown in Figure 5, our model is divided into an input layer,
a convolution layer and a classification layer. The convolution
layer uses GCN model for graph convolution. To optimize
the performance of our model, we study the hyperparameter
settings of the GCN model in this section.

The setting of model parameters plays a vital role in the
effectiveness of malware detection, such as the number of
GCN layers, optimizers, and epochs. These factors are ana-
lyzed below.
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TABLE 2. Experimental results of GCN layers comparisons.

The hidden layer of the GCN plays a vital role in the
performance of the model. As shown in Table 2, G represents
the number of graph convolutional layers.

The results indicate that when the number of hidden layers
increases, the GCN can retrieve deeper semantic information,
thereby improving the accuracy. Moreover, when the size of
the graph convolutional layer is 2, F-score is the highest.
However, when the number of hidden layers is extremely
large, the semantic information extracted by the GCN net-
work will also increase through the increase in the number of
layers, and thus overfitting occurs, which leads to a decrease
in F-score.

The model selects six optimizers, namely stochas-
tic gradient descent (SGD), Momentum, adaptive gradi-
ent (AdaGrad), Adam, AdaDelta, and root mean square
prop (RMSProp) for comparison experiments. The corre-
sponding accuracy rates of different optimizers are shown
in Figure 6.

FIGURE 6. Experimental results of optimizers comparisons.

The results indicate that the model training effect is best
when the optimizer selects Adam.

The learning rate is usually set within 0.001–10. In this
study, we select five learning rates, namely 0.001, 0.01, 0.1,
1, and 10, for comparison experiments. The corresponding
accuracy rates of the different learning rates are shown in
Figure 7.

The results indicate the best training effect of the model for
a learning rate of 0.01.

With repeated experimental tests, after 27 training itera-
tions, the highest accuracy of the overall test set of the model
is achieved.

With increasing number of training iterations, the accuracy
of the test set improves and eventually stabilizes, as shown
in Figure 8.

FIGURE 7. Experimental results of learning rates comparisons.

FIGURE 8. Experimental results of epochs comparisons.

TABLE 3. Experiment settings.

In Table 3, ‘‘GCN-filters’’ indicates the number of output
channels in the convolutional layer of the graph, ‘‘GCN-
neighbors’’ indicates the number of neighbors of each node
and ‘‘batch-size’’ indicates the batch quantity. In addition,
Dropout is a technique to overcome overfitting by randomly
excluding nodes during training. In our experiment, a dropout
rate of 50%was applied.We experimented with these settings
and found that minor changes did not considerably change the
results.

3) EVALUATION METRICS
To quantitatively evaluate the performance of the classi-
fier, we used the following common machine learning per-
formance evaluation indicators: True positive (TP) is the
number of samples correctly classified as malicious, true
negative (TN) is the number of samples correctly classified
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as benign, false positive (FP) is the number of samples mis-
classified as malicious, and false negative (FN) is the number
of samples that are misclassified as benign.

Accuracy (Acc) represents the number of samples correctly
classified as benign or malicious.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)

Precision (p) is the ratio of correct positively labeled
instances to all positively labeled instances.

Precision =
TP

TP+ FP
(12)

Recall (R) is the ratio of correct positively labeled instances
to all instances that should have been labeled positive.

Recall =
TP

TP+ FN
(13)

F-score (F) is the harmonic mean of precision and recall.

F − score = 2×
Precision× Recall
Precision+ Recall

(14)

C. EFFECT OF DATASETS ON MODEL PERFORMANCE
1) EFFECT OF TRAINING SET SIZE ON MODEL
PERFORMANCE
This section mainly discusses the effect of the size of train-
ing data on the performance of the model. The data set is
divided into training and test sets with the same structure.
Keeping the test set size constant, the training set is randomly
sampled from the previous training set to construct multiple
training sets with different degrees of reduction. We retrain
the network on the reduced training sets and evaluate the per-
formance of the model on the training and test sets. The per-
formance evaluation standard is F-score. We plot the results
on the Figure 9. The ordinate is F-score, and the abscissa is
the number of training sets.

FIGURE 9. Effect of training set size on model performance.

As shown in Figure 9, when the training set size is small,
the model performance on the training set is high, but that
on the test set is poor, indicating overfitting of the model.

FIGURE 10. Effect of test set distribution on model performance.

Further, as the size of the training set increases, the model
performance on the test set continues to improve, indicating
that the model has learned to generalize from the training
set. Thus, it can be inferred that the model performance will
improve with larger training set size.

2) EFFECT OF TEST SET DISTRIBUTION ON MODEL
PERFORMANCE
This section discusses the effect of the distribution of positive
and negative samples in the test set on the performance of
the model. We conducted experiments using three ratios of
benign and malware samples, namely 1:1, 1:4, and 1:16,
to evaluate the stability of the model while keeping the size
of test set constant.

In actual malware detection tasks, the distribution of pos-
itive and negative samples is usually not fixed. We use the
precision–recall (PR) curve to evaluate the classification per-
formance of the machine learning algorithm. Figure 10 shows
the PR curve of the model for varying distribution of the test
set. The closer the curve is to (1,1), the more accurate the
model classification. However, when the sample distribution
in the test set is varied, the PR curve usually changes con-
siderably. The greater the difference in the ratio, the greater
the drop in the PR curve. The figure indicates that even in
the extreme distribution of the test set, the model has good
stability.

D. COMPARISON WITH OTHER METHODS
In this section, we present the results of our proposed method
and compare them with the results of other frontier meth-
ods. All evaluation results shown in Table 4 are the best
results reported in the respective papers. Yen and Sun [5]
used the term frequency-inverse document frequency (TF-
IDF) method to generate images according to the frequency
of characters appearing in the code, and then used the CNN
to extract features for analysis. Mclaughlin et al. [7] used
the opcode call sequence as a feature input into the model.
Ren et al. [6] resampled the original bytecode of the Android
application classes.dex file as an end-to-end Android mal-
ware detection method based on deep learning. The com-

VOLUME 8, 2020 176735



Y. Zhang, B. Li: Malicious Code Detection Based on Code Semantic Features

TABLE 4. Experimental results of different algorithms comparisons.

TABLE 5. Experimental results of different features comparisons.

parison of the methods shows that the proposed algorithm
is superior over the previous research methods. Compared
with the accuracy of the method of [4], the accuracy of our
method is lower because [4] adopts a multi-feature detec-
tion method, which uses a combination of the opcode call
sequence, permissions required by the APK, and sensitive
APIs as features for malicious code detection. Although the
required permissions, services, and sensitive APIs of the APK
cannot express semantic information, they are very important
for malicious code detection.

We varied some of the input features of the study of [4] to
use a single feature formalicious code detection. The compar-
ison of those results with the results obtained by the proposed
method is shown in Table 5. Comparison of some features
indicates that the detection accuracy of [4] is much lower than
that of our method; however, if these features are combined,
the detection accuracy is relatively high. Therefore, in our
future work, we will integrate the semantic features of the
code with other features to further improve the effectiveness
of malicious code detection.

V. CONCLUSION
This study investigated a new deep learning method based on
code semantic features for malicious code detection. We pro-
posed a preprocessing method of the APK file to gener-
ate graphics that reflect the semantic features of the code.
We used the GCN to learn the features of graphics as code
semantic features for malicious code detection. The neigh-
borhood information extracted from the nodes of the graph
according to the GCN maintains its original spatial structure
and hierarchically expresses high-level semantic structural
feature information. Experiments confirmed that the code
semantic features are superior to other features. However,
we revealed that the effect of the fusion of code semantic
features and other features is better than that of only a single
feature. Therefore, in our future work, we will integrate the
semantic features of the code with other features to further
improve the effectiveness of malicious code detection.
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