
Received August 12, 2020, accepted August 30, 2020, date of publication September 23, 2020, date of current version October 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3025597

Deep Learning-Based Autoencoder
for m-User Wireless Interference
Channel Physical Layer Design
DEHAO WU 1, MAZIAR NEKOVEE 1,2, AND YUE WANG3, (Senior Member, IEEE)
1Centre for Advanced Communications, Mobile Technology, and IoT, University of Sussex, Brighton BN1 9QJ, U.K.
2Quantrom Technologies Ltd., London SE21 8DU, U.K.
3Network Standards and Research, Communications Research Group, Samsung Research and Development Institute, London TW18 4QE, U.K.

Corresponding author: Dehao Wu (dehao.wu@sussex.ac.uk)

ABSTRACT Deep learning (DL) based autoencoder (AE) has been proposed recently as a promising,
and potentially disruptive approach to design the physical layer of beyond-5G communication systems.
Compared to a traditional communication systemwith a multiple-block structure, the DL based AE approach
provides a new paradigm to physical layer design with a pure data-driven and end-to-end learning based
solution. In this article, we address the dynamic interference in a multi-user Gaussian interference channel.
We show that standard constellation are not optimal for this context, in particular, for a high interference
condition.We propose a novel adaptive DL based AE to overcome this problem.With our approach, dynamic
interference can be learned and predicted, which updates the learning processing for the decoder. Compared
to other machine learning approaches, our method does not rely on a fixed training function, but is adaptive
and applicable to practical systems. In comparison with the conventional system using n-psk or n-QAM
modulation schemes with zero force (ZF) and minimum mean square error (MMSE) equalizer, the proposed
adaptive deep learning (ADL) based AE demonstrates a significant achievable BER in the presence of
interference, especially in strong and very strong interference scenarios. The proposed approach has laid the
foundation of enabling adaptable constellation for 5G and beyond communication systems, where dynamic
and heterogeneous network conditions are envisaged.

INDEX TERMS Deep learning, autoencoder, 5G physical layer, and interference channel.

I. INTRODUCTION
Artificial intelligence (AI) is becoming increasingly present
in all aspects of our lives, and it has the capability to manage
more complex, data-intensive tasks. In the area of communi-
cations, there is an increasing awareness that communication
networks and services are becoming more intelligent with
the novel advancements and unprecedented levels of compu-
tational capacity. AI is soon to move and work among the
networks, processing locally or in the cloud. Machine learn-
ing (ML) and deep learning (DL), which are the most promi-
nent AI approaches today, are being extensively employed
for designing and managing complex communication sys-
tems and services. It has been demonstrated to significantly
improvement of the system performance, as well as the
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quality of the services [1], [2]. Therefore, design, develop-
ment and use of AI systems has attracted great attention, not
only in industry, but also in the research community [3].Many
studies of the AI technologies have been carried out in com-
munication systems in recent years, including unknown chan-
nel estimation and detection through DL [4], super-resolution
channel estimation for a massive multiple-input multiple-
output (MIMO) system, novel DL based algorithm for decod-
ing [6], joint channel encoding and source encoding [8] and
DL for joint channel estimation and detection in Orthogonal
Frequency Division Multiplexing (OFDM) systems [7].

In a conventional mathematical derived communication
system model, multiple functional blocks structure is used
to build a link. Each block is optimized individually to
improve performance. However, the DL based autoencoder
design provide a holistic solution which is a pure data-driven
and end-to-end learning-based optimization approach.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 174679

https://orcid.org/0000-0002-8155-0690
https://orcid.org/0000-0001-8771-5452
https://orcid.org/0000-0002-6550-749X


D. Wu et al.: DL-Based AE for m-User Wireless Interference Channel Physical Layer Design

Many studies have been carried out recently. For instance,
end-to-end learning-based autoencoder (AE) is studied in [9].
By interpreting the system as an AE, the system is recon-
structed, and the transmitter and receiver components are
optimized jointly in a single process. In [10], authors pro-
posed a novel learning algorithm that iterates between super-
vised training of the receiver and reinforcement learning
(RL)-based training of the transmitter and achieved an
end-to-end system without a channel model. In [11], authors
designed a system that learns to transmit real numbers over
an unknown channel without a preexisting feedback link.

Some DL-based experimental work has been carried out
and implemented, as shown in [17] and [18]. Those studies
above have significant insights into the performance enhance-
ment, and it shows that the DL based AE is the most promis-
ing approach for interference-free channels. Studies in [19]
provided an overview of physical layer DL and the state of
the art for 5G and beyond system. It shows the potential of
DL approaches to address problems in the physical layer,
such as the dynamic interference channel [12], modulation
recognition [20], radio fingerprinting [21] andmedium access
control [22], especially when casting in the context of
real-time hardware-based implementation. On the other hand,
5G network requires a higher bandwidth in order to achieve
greater data rate. It will be largely characterized by small
cell deployments. The implementation of small size net-
works delivers various advantages such as high data rate
and low signal delay. However, it also suffers from vari-
ous interference [12]. For instance, ultra-dense small-cell
networks (USNs) have been established as one of the vital
networking architectures in the 5G [14]. However, inten-
sive deployment of cells results in a complex interference
problem. Other interference challenges include the high
mobility induced multi-user interference [15] and problems
in multi-user MIMO interference channel [16] are studied
too.

In this work, our DL based AE demonstrates excellent
robustness to various interference levels, where the conven-
tional design either does not consider the interference channel
or uses simplified models of interference channel which usu-
ally yields sub-optimal performance. We believe that the pro-
posed AE approach is one of the most promising approaches
to address the problem of dynamic interference channel in the
physical layer, especially for the 5G-and-beyond networks.
5G small cells is an important example of such challenges,
where the proposed approach could be useful.

In contrast, studies in [23] indicated that AE can be vul-
nerable to adversarial and jamming attacks comparing to the
conventional schemes. The work in [24] points out that such
disadvantages can be mitigated through adversarial training.
The studies in [25], [26] show that it is also not clear that
what is the behaviour of AE under a multi-user interference
channel. And how to enhance the performance of a multi-user
system which is often impaired. The study in [9] proposed a
solution for the interference of a two-user link when AE is
applied. However, only two users are considered, and offline

training is used. Furthermore, there is no adaptive training
for different levels of interference under multiple user’s sce-
narios. Some other studies on AE are also presented, such as
the MIMO channel learning [28], channel estimation in an
OFDM system [29], and learning to optimize for interference
management [30]. However, those studies are based on offline
learning, and, theretofore, are unable to cope with scenarios
where interference is dynamic and may vary in real-time.

In this article, we address the dynamic interference in
a multi-user Gaussian interference channel. We show that
standard constellation are not optimal for this context, in par-
ticular, for a strong or very strong interference condition.
We propose a novel adaptive DL based AE to overcome
this problem. We study the constraint of a conventional
offline trained system and demonstrate the improvement of
our proposed approach. Additionally, an in-depth analysis of
the symbol constellation is studied, and we also apply the
ZF and MMSE equalizers for the interference channel and
analyze the performance when it compares with the proposed
ADL based AE approach. In our ADL based AE algorithm,
interference strength is predicted through a DL learning pro-
cess. With the real-time online learning of the knowledge of
the interference level, we show that the proposed AE works
more robustly in an interference channel for all interference
levels. In particular, the improvement is more notable for
the strong and very strong interference scenarios. Prelimi-
nary discussions and results were presented in our earlier
work [31].

The main contributions of this article are summarized
below:

1) For a conventional communication channel, it is a chal-
lenge to overcome the dynamic interference caused
by multiple users with a predetermined mathematical
model. In this work, we propose an ADL algorithm
for a m-user interference Gaussian channel, to enhance
the robustness of the link by estimating the uncertain
interference via learning. Comparingwith studies using
other ML based AE methods, our system does not
rely on a fixed training model. Instead, we utilize the
pilot signals, and estimate the dynamic interference
strengths via an adaptive training loop at the receiver
side. We optimize the ML training processing by turn-
ing the estimation function. By substituting the esti-
mated interference ‘status’ back into the ML training,
we update the decoder and obtain a more robust com-
munication link.

2) In the proposed model, the interferences are classified
as different levels from weak to very strong, based on
a coupling parameter α. With our algorithm, α can be
estimated through a training process and a predeter-
mined ‘reward’ function. We further characterize the
tolerance and robustness of the system, according to
different interference levels. We demonstrate the con-
straints and propose an algorithm. We compare results
against the system using a conventional DL-assist AE.
We demonstrate that our proposed ADL-assist
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FIGURE 1. System block diagram of an adaptive deep learning based AE for a wireless
communication interference channel with m-user.

algorithm has a significant capability to overcome the
effect induced by different levels of interference-to-
noise ratio (INR). In particular, the enhancement is
more notable for the strong and very strong interference
scenarios.

3) We study the learned constellation, and analyze its
difference with comparing to a conventional system
using n-psk or n-QAMmodulation schemes, as well as
with conventional ZF and MMSE equalizer. We reveal
the possible fact that how the constellation effected by
the interference. We study the compressed techniques
such as one hot vector and inverse one hot vector
based encoder and decoder, and discuss the promising
methodologies to minimize the computational com-
plexity when vectors get larger.

The rest of the paper is organized as follows. In Section II
we introduce the system model and its underlying mathemat-
ical description. The algorithm and specifications of DNNs
learning architecture are also introduced.We evaluate the per-
formance of the proposed algorithm in Section III, comparing
and discussing the results with the system using a conven-
tional AE method. We conclude the paper in Section VI.

II. SYSTEM MODEL
A. SYSTEM OVERVIEW AND DNN BASICS
The system block diagram is shown in Fig.1. An ADL
algorithm based AE is proposed for a wireless communica-
tion interference channel with m-user. The system is com-
posed of m pair transceivers. Each sender encodes data by
using a predetermined codebook, and each receiver decodes
data by treating the interference as noise. It has three main
blocks: transmitter, channel, and receiver. Compared to a

conventional communication system with a number of
blocks, this proposed diagram recast the block diagram as an
end-to-end optimization task and represent the system as a
simplified AE system. For the transmitter side, the transmit-
ted messages s is reconstructed, and si ∈M = {1, 2, . . . ,M},
where M = 2k is the dimension of M with k being the
number of bits per message. The format of messages s is
one hot encoded vector 1s ∈ RM . A one hot encoding is a
representation of categorical variables as binary vectors. One
hot encoding is used in ML as a method to quantify categori-
cal data. This method produces a vector with length equal to
the number of categories in the data set. More details of one
hot encoding can be found in [39]. The message is passed
to the transmitter. Transmitter output is a 2n-dimensianal
vector which corresponds to n complex symbols transmitted
in n‘channel uses by considering one half as real part and the
other as the imaginary part. The channel is represented by an
additive noise layer with a fixed variance β = (2REb/N0)−1,
where Eb/N0 denotes the energy per bit (Eb) to noise power
spectral density (N0) ratio. R is the communication rate. The
receiver is implemented as a feedforward NN with a single
or multiple dense layers followed by an output layer with
softmax activation whose output p ∈ (0, 1)M is a probability
vector over all possible messages. The decoded message ŝi
corresponds to the element index of p which has the highest
probability. The AE can be trained using stochastic gradi-
ent descent or any other suitable optimization approaches
on the set of all possible messages using the categorical
cross-entropy loss function. The basics of DNN is introduced
in [35], where also a method for stochastic optimization
is proposed. Similar to [35], the NN layers considered in
this work transform an input data lin into an output lout
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as follows:

lout = f (wlin + b), (1)

where w and b are weights and trainable parameters and
f (.) is the activation function, which includes both linear and
non-linear ones [37]. These functions are listed in Table 1.
With the appropriate choice of parameters, multi-layer neural
networks can in principle approximate any smooth function,
withmore hidden units allowing one to achieve better approx-
imations. The weights of the whole layers are optimized
jointly.

TABLE 1. The structure of the MLP AE.

For a fully connected neural networkwith J layers, an input
vector l0 maps to an output vector lJ via J iterations:

l j = fj(l j−1; νj), j = 1, . . . , J (2)

where fj(l j−1; νj) : RMj−1 → RMj is the mapping on the
jth layer. The mapping relies on the output vector l j−1 from
the earlier layer and a series of parameters νj. ν= ν1, . . . , νJ
presents the set of parameters in each layer of all J layers.
In this work, the transmitter x applies a transformation f :
M →R2n to the message si to generate the transmitted signal
xi = f (si) ∈ R2n. Note that the output of the transmitter
is an n-dimensional complex vector which is transformed
to a 2n real vector. Following the similar definition in [10],
the transmitter is constrained by either an energy constraint:
x2i ≤ n or an average power constraint: E [|x2i |] ≤ 0.5 ∀ i.
Signal is sent to the receiver using the channel n times. The
communication rate of this system is Rc = k/n. In this work,
amodel of an additivewhite Gaussian noise (AWGN) channel
is used. The channel causes distortions to the transmitted
symbols and at the receiver upon reception of signal y ∈ Cn.
One commonly used loss function is the squared error, which
is given by:

L(fθ (x), y) = ||fθ (x) − y||2. (3)

If f is unrestricted, minimizing the expected value of the loss
function over the distribution P(x, y) yields:

f (x) = E[y | x = x̂]. (4)

This is the conditional expectation of y, which the neural
network is trying to learn. However, when y is a discrete
label, other loss function such as the Bernoulli negative
log-likelihood have been proposed to be more appropriate
than the squared error [37]. In this work, the receiver produces
the estimate signal ŝ, where ŝ is a realization of the original
transmitted signal s. The network is trained to optimize the
reconstruction error, which is given by:

L(s, ŝ) = −logp(s|ŝ) (5)

The reconstruction error here is known as the cross entropy
loss, which is given by [37]:

L(s, ŝ) = −
∑
µ

(s(µ)logŝ(µ)+ (1− s(µ))log(1− ŝ(µ)))

(6)

where ŝ(µ) = P(s(µ) = 1|ŝ). s(µ) stands for bit µ of s
and ŝ(µ) stands for bit µ of ŝ. The training of the network
is performed by solving the following optimization problem:

arg min
8

Es,N ,θ [L(s, ŝ)] (7)

where 8 denotes the set of trainable parameters. N and θ are
generated noise and phase by the channel layer each time it
is used. To achieve this, the sigmoid as non-linearity for the
output layer is used. The cross entropy criterion allows gra-
dients to pass through the output non-linearity even when the
neural network produces a wrong answer, which outperforms
the squared error approach coupled with a sigmoid or softmax
non-linearity.
As shown in Fig.1, at the receiver side, y represents

the received signal after propagating through an interfer-
ence channel, which includes the original transmitted signal,
the channel response, AWGNnoise as well as the interference
from other sources. Here, the received n-dimensional signal
y noised by a channel represented as a conditional proba-
bility density function p(y|x), and the DNNs receiver subse-
quently learns it with multiple dense layers. The last layer
of the receiver is a Softmax activation layer that outputs an
M -dimensional probability vector p. The receiver applies the
transformation R2n → M to decode the signal, creating a
signal ŝi for signal recovery. In the receiver block, we propose
an adaptive training loop for enhancing the decoder process.
By utilizing the pilot signals, the interference strength can be
estimated via a training loop. By substituting the estimated
interference ‘status’ back into the learning, we update the
training function for the decoder and obtain a more robust
communication link.
To enable the comparability of the results implemented

in different scenarios, we set (n, k)=(1,1), (1,2), (1,3) and
(1,4) respectively throughout this work, to compare with
other competitive conventional modulation schemes n-psk
and n-QAM. The equivalent modulations for comparing are
following the setting of 2k/n-psk/QAM for different parame-
ters (n, k). We train the AE in an end-to-end manner using the
Adam optimizer, on the set of all possible messages si∈ M,
using the cross-entropy loss function.
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B. MODEL OF MULTI-USER INTERFERENCE CHANNEL
A m-user Gaussian AWGN interference channel is shown
in Fig.1 within the dashed-line rectangle block. The inter-
ference channel has m transmitter-receiver pairs that simulta-
neously communicate in a block of size m. Each transmitter
communicates to its own receiver a message s ∈ M =

{1, 2, . . . ,M} by choosing a code word Ci,m. Let xi and yi
denote the input and output signal of the ith user, respectively.
Ni ∼ CN (0, 1) is independent and identically distributed
Gaussian noise that impairs receiver i. Each xi has an associ-
ated average power constraint Pi so that 1

m

∑m
i=1 |x

i
m|

2
≤ Pi.

Receiver i observes ŷi and estimates the transmitted message
x̂i. The average probability of error for user i is εim = E[p(ŝi 6=
si)], where expectation is over the random choice of message.
The channel output at each receiver is a noisy linear combina-
tion of its desired signal and the sum of the interfering terms,
of the form [32]:

yi = xi +

√
INR
SNR

m∑
j=1,j6=i

xj + Ni,∀j, i = 1, 2, . . . ,m (8)

where at the discrete index t , yi and Ni are the channel output
and AWGN respectively, at the i th receiver and the xi is the
channel input symbol at the i th transmitter. All symbols are
real and the channel coefficients are fixed. The AWGN is
normalized to have zero mean and unit variance and the input
power constraint is given by [32]:

E[(xi)2] ≤ SNR, ∀ i ∈ m. (9)

The INR is defined through the parameter α [32]:

log(INR)
log(SNR)

= α → INR = SNRα (10)

Note that the definition of INR ignores the fact that there
are m-1 interferers observed at each receiver. This is for two
reasons. First, this definition parallels that of the two-user
case [24], which will make it easier to compare the two rate
regions. Second, the receivers will often be able to treat the
interference as stemming from a single effective transmit-
ter, via interference alignment. This is not the case when
the receiver treats the interference as noise. In this work,
the introduced parameter α > 0 defined by INR = SNRα;
this coupling parameter α is used to specify the corresponding
linear deterministic model in [25].

In this work, different interference scenarios are studied,
from noisy, weak, moderate, strong to very strong interfer-
ences. The classification of the interference is defined in [32],
and we use the same definition in this work. The degrees-
of-freedom (GDoF) of the symmetric m-user interference
channel is used to identify the multiple-user channel with
regard to the interference level. The definition is given as

Algorithm 1 ADL Algorithm to Predict the Interference
Input : • AE model and specifications: n, k , batch size,

epochs number, optimizer, learning rate, etc
• the training data set lin
• the variance of channel noise σ 2

Output: • the estimated interference parameter α
1 Initialize:
2 Set AE model parameters (e.g., n←4, k ←4,M ←4)
3 for i in range (training data samples) do
4 Set x = f (si) ∈ R2n, si ∈ {1, 2 . . .M}, encoding
5 Create and Set ŷ(n) for receiver layer
6 for i in range (numble of guessing α) do
7 DNN layer setting of the training data (settings
in Table 1)

8 Recovery pilot signal ŝi according to a guessing α.
9 Calculate reward R̂i according to Eqs. (16) and (17)
10 Set confidence interval of R̂i and predict α
11 Update DNN layer with α according to Eqs. (8) to (10)

follows, except for a singularity at α = 1:

d(α) =



1− α, 0 ≤ α <
1
2
(noisy)

α,
1
2
≤ α <

2
3
(weak)

1−
α

2
,

2
3
≤ α < 1 (moderate)

1
K
, α = 1

α

2
, 1 < α < 2 (strong)

1, α ≥ 2 (very strong)

(11)

The proposed AE for multiple transmitter and receiver
pairs is shown in fig. 1. Recall the m-user interference
channel shown in Eq. (1). We consider m pairs transmitters
and receivers, which are interacting each other. A two-user
(two pairs) AE model is introduced in [9], which is given by:

y1 = x1 + x2 + N1 (12)

y2 = x2 + x1 + N2 (13)

Eqs.(12) and (13) can be rewritten in a general format with a
channel gain, as follow:

y1 = x1 + g21x2 + N1 (14)

y2 = x2 + g12x1 + N2 (15)

where g21 and g12 are the channel gain that from
transmitter 2 to receiver 1 and from transmitter 1 to receiver 2
respectively. Depending on the values of g21 and g12 [26],
the two-user Gaussian interference channel is classified into
weak, strong, mixed, one-sided, and degraded Gaussian inter-
ference channel.Briefly, if 0 < g21 < 1 and 0 < g12 < 1,
then the channel is called weak Gaussian interference
channel. If 1 < g21 and 1 < g12, then the channel
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is called strong Gaussian interference channel. If either
g21 = 0 or g12 = 0, the channel is called one-sided
Gaussian interference channel. If g21 = g12 = 1,
then the channel is called degraded Gaussian interference
channel. If either 0 < g21 < 1 and 1 ≤ g21, or 0 < g12 < 1
and 1 ≤ g12, then the channel is called mixed Gaussian
interference channel. If g21 = g12 and P1 = P2, the channel
is defined as the symmetric Gaussian interference channel.
The two-user (two pairs) AE model introduced in [9], where
g21 = g12 = 1, is a two-user symmetric Gaussian channel
under a strong interference condition. In this work, the model
is derived into a more general scenario form-pair transceivers
Gaussian interference channel. Two types of channels are
studied in this work: symmetric and asymmetric Gaussian
interference channels.

As shown in Eq. (8), let’s assume that i, j ∈ M,i 6= j,
gi,j is the co-channel interference channel coefficient (gain),
xj and yj are the transmitted and received signals of the
transmitter j and receiver j, respectively. Nj is a Gaussian
noise vector with independent and identically distributed
components of zero mean and variance σ 2

= 1. The trans-
mitted signals has a power constraint P that E [||xj||2] ≤ KP.
Transmitter j wants to send a message Sj which is a random
variable uniformly distributed over the message set Si =
{1, 2, . . . , 2KRj} to receiver j by using a code of length K
channel uses. Thus, it encodes Sj into xj ∈ RK and send xj.
After K channel observations, the receiver obtains yj from
which is decodes Ŝj. An error event occurs if Sj 6= Ŝj for
some j ∈ {1, 2, . . . ,m}, and a probability PKe . The NN based
AE is proposed to replace the PHY structure of the channel.
Through learning, the receiver can jointly estimate the gain,
interference, and do the detection simultaneously.

C. ADAPTIVE DEEP LEARNING ALGORITHM BASED
RECEIVER BLOCK
The receiver block is shown in Fig.1. After propagating
through an AWGN channel, the received signal y(n) consists
of the originally transmitted signal, the channel response,
AWGN noise, and the interference from other sources. The
received n-dimensional signal y(n) noised by a channel can
be modelled using a conditional probability density function
p(y|x), and the DNNs receiver subsequently learns it with
multiple dense layers. The last layer of the receiver is a
Softmax activation layer which outputs an M -dimensional
probability vector p, in which the sum of its elements is equal
to 1. The receiver first applies the transformation f : R2n

→

M to decode the signal, creating a signal ŝi to recover the
original transmitted signal si. For the structure of AE, to allow
a benchmark for comparison, we use the similar AE structure
settings as in [7], which are based on a multi-layer perceptron
(MLP). ReLU and Softmax are used in DNNs layer. The
specifications are listed in Table 1.

An adaptive learning algorithm integrated with DNNs
based receiver block, named ADL algorithm, was designed
and proposed to mitigate the dynamic interference. After the

learning processing, the interference coupling parameter α
can be estimated. With a predicted α, the channel function
is obtained, following by Eqs. (8) to (10). Then the DNN
layer is updated with this knowledge by substituting α into
Eq. (8). This updating process has two steps. Firstly, a group
of pilot signals is used for DNN training to predict the
real-time α. Then, with this knowledge of the interference
channel, channel function is updated, and DNN layers are
updated with a new set of parameters for decoding signals.
To choose suitable pilot signal, an adaptive pilot design is
studied in [27], which can be integrated with the proposed
ADL algorithm to jointly design the pilot signals and the
channel estimator.

The transmitted signals contain two parts. The first part
is the pilot signal, which is used for the training data set.
The second part is the signal, which is used for communica-
tion. It has a similar structure as a DL based OFDM system,
which is studied in [29]. However, in our proposed method,
the pilot signals are used for both interference estimating and
the DNN training. We introduce and explain the proposed
ADL algorithm in Algorithm I. At the initialization stage,
the specifications of an (n, k) AE are set, and the input training
data set is loaded. After that, the DNN layer encodes the data
into the messages, propagating through an AWGN channel.
After a group of signals are captured by a DNNs based
receiver, the learning algorithm at the receiver block starts to
train the pilots and then decode the messages after a learning
loop. By process of reward computation, the block normalizes
the reward regarding different guessing values of α. Then the
optimum α range is determined, with regard to a predefined
confidence interval. Based on the plot of the reward according
to the guessing α, the predicted α is obtained by computing
the mean value. Next, the estimated α is substituted back
into the DNNs learning layer for the decoding process with
updated parameter sets. In this work, the normalized reward
is defined as follows:

R̂i =
Ri
||Ri||

(16)

where

Ri =
1

BER|Pilot←(1,...,i)
(17)

Ri is defined as the reciprocal of the mean bit error rate (BER)
value for i pilots signals.

The reward calculation includes two steps. First of all,
the pilot signal is decoded using different guessing value of α,
e.g. ascending from α = 0 (non-interference) to α = 3 (very
high interference channel). For each guessing α, the pilot
dataset is trained using its channel function, which is associ-
ated with the guessing α, as in Eq. (8). In each iteration of α,
DNN network trains the datasets and update the prediction
function. In the second step, the pilot signal is recovered. The
bit error rate (BER) of the recovered pilot signal is computed.
Based on the BER, the reward is calculated following the
definition in Eqs. (16) and (17). After a loop of DNN training
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FIGURE 2. The Learned AE constellation produced by AE for single user case: (a) AE-1-1, (b) AE-2-2, (c) AE-3-3 and
(d) AE-4-4. (e) AE-1-2, (f) AE-1-3, (g) AE-1-4, (h) AE-1-5.

(according to a range of guessing α), we have a set of
reward Ri. Then we define the confidence interval of the Ri
and find out the peak of the reward. The mean of reward is
calculated. Based on the mean, an optimal α is predicted. For
this specific α, a DNN trained predict model is determined,
which update the DNN layer for decoding the received signal.
For this prediction process based on the reward performance,
we give a case study with details in the Section of Numerical
Evaluation.

III. SYSTEM PERFORMANCE EVALUATION
In this section we present extensive simulation studies of our
proposed system operating in a range of multi-user interfer-
ence channel conditions. All simulations were carried out
using Python, with the libraries of PyTorch, TorchNet and
TQDM. Training was done at a fixed value of Eb/N0 = 7 dB
using Adam [35] with a learning rate of 0.001. Activation
functions rectified linear units (ReLU) [36] and Softmax are
used in our DNNs layer. The details are listed in Table 1.
Detailed explanation of these can be found in [37]. The pilot
symbol ratio we used in our simulation is 0.01. The group
number of the bit streams is 30, which is used for jointly
training and estimating the interference α.

A. CONSTELLATION STUDY
We study the constellation of the AE in different setting
(n, k), where the link operates at the communication rate
of Rc = k/n [bits/channel use]. The AE can be split to
two parts: encoder and decoder, after training the model in
end-to-end manner. Then the encoder part is implemented
at the transmitter side which generates encoded symbols for
each message to be sent over the channel and decoder part
is implemented at the receiver, which regenerates the mes-
sages from the received symbols. After completion of model
training, encoder can generate all possible output signals for
each message in the message alphabet. Fig.2 (a) to (h) show
learned constellations for different systems we tested.

When mapping 2n-dimensional output from the encoder
model to the n-dimensional complex valued vector x, the odd
indexed elements of x are taken as in-phase (I) components
and even elements of x are taken as quadrature (Q) com-
ponents. In the scatter plots, I and Q values are plotted in
x- and y- axes respectively. For example, in a 4-4 AE setting,
n = 4 and k = 4, for a testing 16 messages using one
hot vector matrix, the input 16 messages have a size of
16× 16. A one hot encoding is a representation of categorical
variables as binary vectors. One hot encoding is used inML as
a method to quantify categorical data. This method produces
a vector with length equal to the number of categories in
the data set. More details of one hot encoding can be found
in [39]. After the learned encoder, the output of the encoder
has 16 messages in a matrix with a size of 16 × 8, where
odd indexed elements (column) are I components and even
elements are Q components. Therefore, for each row of the
date, AE using four symbols to represent 4 bits signal. For
comparison, we set (n, k) in different values. Fig. 2 shows the
constellation for AE-1-1 to AE-1-5. And the constellation of
each symbols for the case of AE-4-4 is plotted in the Fig. 3.

We first study the AE in a single-user case without interfer-
ence. The constellation results are plotted in Fig.2. It shows
that with different settings (n, k), the AE find the optimal
constellation shape via a learning processing. It notices that
the system predict a psk modulation shape constellation for
AE-1-1, AE-1-2, AE-1-3, AE-1-4 and AE-1-5 via a sufficient
learning. However, the constellation shapes of AE-3-3 and
AE-4-4 look different. As we introduced above, n defines
the dimension of the complex channel size. When n = 1,
the output of the encoder has two columns, which present
I and Q values, respectively. It is similar as the definition
of a psk constellation. However, when we apply n > 1,
the output of encoder has multiple columns, which represent
the messages parallel. In another word, AE use longer sym-
bols to represent messages simultaneously. E.g, for Fig. 2(c),
AE-3-3. AE use every 8 dots as a symbol to represent one
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FIGURE 3. The Learned constellation of AE for two-user case. Scatter plots of learned constellations for k= 4, n= 4 system,
encoder of symbol 1 to symbol 4: (a) weak interference g12 = g21 = 0.5 and (b) very strong interference g12 = g21 = 3.

message, and totally 8 symbols are used for all (23) messages.
Similarly, one symbol of single use case AE-4-4 is shown
in Fig. 2(d).

Then, we study the constellation of the AE for the inter-
ference channel with multiple-pair transceivers, and analyze
the effect from low to high interference conditions. In par-
ticular, for the high interference scenario, we demonstrate
how does the AE overcome the interference and predict
the corresponding constellation via learning. In this study,
the inverse one hot vector format is used for the AE. For a
two-user case, we first set the weak interference condition
where g12 = g21 = 0.5, the constellation of an AE (4, 4) is
plotted in Fig.3 (a). It shows that the constellation points
(blue for user 1 and red for user 2) locate randomly but it
seems that they concentrate toward to its own cluster on the
I and Q map. For the dots of different users, it notices that
the distances between them are quite small for low inter-
ference condition. However, for high interference scenario,
the constellation dots of different user move and concentrate
toward to its own cluster area which helps the receiver to
decode the signals against the interference. Based on the
BER performance, we notice that for the low interference
scenario, although the dots from different users are quite close
to each other on the I and Q map, the AE still holds the
capability to decode the signals against the interference from
other user. To verify this, the BER performance is plotted
in next Section. Similar observation can be found in more
users based cases. Fig. 4 (a) and (b) depicts the changes of
learning constellation for a four-user case, AE (4, 4) for low
and high interference conditions respectively. We can notice
that similar performance is observed. For the low interference
scenario, Fig. 4(a), the four symbol clusters (16 dots for each
symbol) from four different users are close to each others.
However, the decoder still can sufficiently recover the signals.
In contrast, for the high interference condition (Fig. 4(b)),
the clusters are separate, and concentrate toward to its

own area. It reveals that the learning based encoder
prevent the high interference from the constellation
design.

The propsoed AE is based on the format of one hot vector
or inverse one hot as the compressed techniques. However,
other studies suggest some alternative approaches to mini-
mize the computational complexity when vectors get larger.
E.g., dense vector methods that are used in Natural language
processing (NLP) [38] or efficient sparse vector representa-
tions could be used reduce the complexity. This is interested
and we will investigate it in our future work.

B. COMPARISON BETWEEN THE DL BASED AE AND
CONVENTIONAL n-PSK AND n-QAM
FOR SINGLE USER CASE
Recall the results in Fig. 2, we notice that an AE based
system has the capability to generate the optimum constel-
lation according to its channel condition. For example, for
a single-user channel, with a maximum power constraint,
AE based system generates the n-PSK shape constellation for
the encoder via learning. However, to compare the difference,
bit error rate (BER) and symbol error rate (SER) against
signal noise ratio (SNR(Eb/N0)) are plotted in Fig. 5. For BER
of AE, we can see that AE-1-1 and AE-1-2 have a similar
performance, and they are very close the performance of
uncoded BPSK and QPSK. For a fair comparison, the setting
of AE-n-k is equivalent to a conventional modulation scheme
following the communicate rate formula R = k/n, where
n is the complex channel uses per message. The equivalent
formula is given as: 2k/n-QAM. Based on this, the equivalent
modulations of AE-1-1 and AE-1-2 are BPSK and QPSK.
AE-1-3 and AE-1-4 are compared to 8-psk and 16-QAM,
respectively. As shown in Figs. 5 (a) and (b). We can see
that the AE-1-3 and AE-1-4 have around 2 dB improvement
compared to the conventional schemes 8-psk and 16-QAM.
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FIGURE 4. The Learned constellation of AE for four-user case. Scatter plots of learned constellations for k = 4,
n = 4 system, encoder of symbol 1: (a) weak interference and (b) very strong interference.

FIGURE 5. Bit error rate and symbol error rate vs SNR (Eb/N0) for the AE and other modulation schemes
(single user case).

C. CONVENTIONAL n-PSK AND n-QAM MODULATION
WITH EQUALIZATION TECHNIQUES
In this section, we study the two equalization techniques
ZF and MMSE applied with the conventional modulation
schemes for the interference channel. We first evaluate the
improvement against the co-channel interference induced by
two pairs of users. As shown in Fig. 6 (1), both ZF and
MMSE equalizers work well against the interference at a low
interference level where g12 = 0.2. However, they don’t
performance well for the high level interference. It is also
noticed that MMSE equalizer has a slight better performance
than the ZF for a strong interference. However, it is more
notable for smaller Eb/N0 values. In Fig. 6 (b), the plots
give more details of how much the performance degraded
with an increased interference gain g12. The results indicate
that for a high level of interference, the conventional ZF and
MMSE equalizers have a limited capability for mitigating the
interference. Therefore, an adaptive algorithm based AE is
proposed for this scenario. In next section, we will evaluate
the n-psk and QAM modulations with MMSE equalizer, and
compare its performance to the proposed AE scheme.

D. TWO-USER CASE, SYMMETRIC AND ASYMMETRIC
INTERFERENCE CHANNEL
Figs. 7 (a) and (b) show the BER performance of some dif-
ferent AE schemes for two-user symmetric and asymmetric
interference channels respectively. Together, the equivalent
conventional psk and QAM modulations with MMSE are
plotted too for comparison. In this simulation, g12 is set as 1
for the symmetric interference channel and g12=0.5 for the
asymmetric one. The results show that the AE demonstrates
a promising solution for the strong interference, even in the
case that conventional MMSE equaliser doesn’t work. The
improvement is quite significant and notable.

E. INTERFERENCE ESTIMATION
In this section, we evaluate the robustness of the AE scheme
and introduce the interference estimation processing with the
proposed ADL algorithm.

A DL based AE with different settings of (n, k) are studied
and evaluated in [9]. It compares the performance between
the M -QAM modulation and AE with similar settings.
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FIGURE 6. BER of BPSK two-user co-channel interference with ZF and MMSE equalization.

FIGURE 7. Bit error rate vs SNR (Eb/N0) of AE and several modulation schemes with MMSE equalizer for two-user
symmetric and asymmetric interference channel.

It demonstrates that the AE (n, k) outperforms the equivalent
n-psk or QAM. To enable a benchmark for comparison,
we use the similar setting AE-4-4 throughout this section.
However, we evaluate the performance according to our
proposed interference model, as shown in Eqs. (8)-(11).
We verify our algorithm through an example of a two-user
interference channel case. For other multi-user case,
the methodology is similar, and the enhancement is more
significant.

We demonstrate that the AE approach has some robustness
when it applies in an interference channel. However, we also
want to characterize the robustness for difference interfer-
ence strengths. It assumes that the system knows the inter-
ference channel generalized formula (Eq.(8)) and it applies
a DL training for the decoder. We train the model with a
predetermined α. However, we assume that α may change
dynamically in a real time scenario and we want to evaluate
how robust of the decoder when α has some offset, denote
as αoff.

Following the definition in Eqs.(5) to (8), we simulate
for weak (α = 0.5) and very strong interference (α = 2)

respectively. Results are plotted in Figs. 8 (a) and (b). It shows
that the AE approach is quite robust for a weak interference.
The system works even under a very large offset: 3 times of
the training α. However, the situation is slightly different for
very strong interference, where α = 2. The result in Fig. 8 (b)
indicates that the system is quite sensitive to the offset under
a very strong interference channel. For this scenario, it does
require a technique to deal with the interference. To address
this, we apply the proposed ADL algorithm and the perfor-
mance evaluation is given in the next section.

Recall the proposedADL algorithm in section II.We evalu-
ate the ADL algorithm to estimate α in different interference
strengths. We also carried more groups of study similar as
above, and we found that for strong (α = 1.5) and very strong
(α = 2) interference, the offset of α becomes more critical.
Therefore, we address this and implement our algorithm for
these cases. With the same setting in Figs. 8 (a) and (b),
we plot the normalized reward versus a predicted α (different
values at training), in Fig. 9. for α = 1.5 and α = 2,
respectively. We can see that the peak value of the normalized
reward appears around 1.5 (actual value), and it reduces
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FIGURE 8. SER versus SNR performance of an AE (4, 4): (a) weak interference α = 0.5 with offset up to α = 2.5, (b) very
strong interference α = 2.0 with offset up to α = 2.5.

FIGURE 9. Normalized reward versus predicted α: strong interference
α = 1.5 and very strong interference α = 2.0.

gradually to both sides of the actual value. By contrast, for
the very strong interference, where α = 2, we can also found
out the peak value of the normalized reward appears around
the real value ofα. However, it decreases rapidly towards both
sides of the actual value, which agree with the achievement
that it’s more sensitive to the offset. As the fluctuation is quite
large in Fig. 9, here we define 40% offset as the confidence
interval of the reward, to estimate α. We use the mean α for
evaluating the performance, as we introduced in Section II.
Furthermore, the reward is computed according to the instant
SNR condition. For this simulation, we use Eb/N0 = 7 dB
as an example. To evaluate the performance with and without
applying the proposed ADL algorithm, we plot the SER per-
formance for weak, strong and very strong interference chan-
nels for comparison, as shown in Fig. 10. In this simulation,
we take a large interference effect as an example, αoff = 2α,
to demonstrate the improvement achieved by our algorithm.
Two groups of data are highlighted in Fig. 10. We can see that
the SER significantly degrades due to the large offset of α.
In particular, for the strong and very strong interference cases,

FIGURE 10. SER versus SNR: comparison for strong and very strong
interference channel, with and without the proposed ADL algorithm.

the system does not work without the knowledge of α. How-
ever, with applying the ADL algorithm, the result shows that
with an efficient interference prediction, the ADL algorithm
based AE is capable of robust performance over the entire
range of interference levels, even for the worst case in a very
strong interference channel.

IV. CONCLUSION
An ADL algorithm based AE is proposed for a m-user
interference channel with unknown interference. With the
proposed ADL algorithm, interference can be estimated and
predicted, which is subsequently used for updating the DNN
based decoding processing. The constellation of the proposed
AE scheme has been studied for m-user interference channel.
Our findings reveal the promising compressed technique to
minimize the complexity when vectors get larger. The pro-
posed algorithm shows the significant enhancement on the
robustness of the system against interference and provides an
AE system that is adaptable to real-time interference scenario,
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for the entire range of interference levels. The enhancement
is more notable for strong and very strong interference sce-
narios, compared to the performance of conventional AE
with offline learning. The performance also outperforms the
conventional ZF and MMSE equalizer approaches. The pro-
posed approach has laid the foundation of enabling adaptable
constellation for 5G and beyond communication systems,
where dynamic and heterogeneous network conditions are
envisaged. Studies on the AE generated constellations which
adapt according to varying channel conditions, is substan-
tially different from conventional constellations (e.g., QAM
signals), where the static magnitude and phase is expected
under any channel conditions. Such an approach has given
interesting insights into future adaptable constellation design
using AI. Our future work aims at improving computational
efficiency of our online learning scheme, and the implemen-
tation on real-life platforms.
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