
Received August 13, 2020, accepted September 3, 2020, date of publication September 23, 2020, date of current version October 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3026006

XML-REG: Transforming XML Into Relational
Using Hybrid-Based Mapping Approach
EMYLIANA SONG AND SU-CHENG HAW , (Member, IEEE)
Faculty of Computing and Informatics, Multimedia University, Cyberjaya 63000, Malaysia

Corresponding author: Su-Cheng Haw (sucheng@mmu.edu.my)

This work was supported in part by Telekom Malaysia (TM) Research and Development from TM, Malaysia.

ABSTRACT eXtensible Markup Language (XML) is one of the most used standards for information sharing
between applications and devices, both on the internet and local network. However, relational database
(RDB) has been used by many enterprises as their data management system and will require an amount
of cost to change the system completely, if they are to change to XML technology solely. Thus, a mapping
scheme is required to provide seamless integration on bridging XML technologies and RDBs. In this paper,
an efficient model-based mapping scheme named XML-REG is proposed. The XML document will first be
read and parsed into the parser, namely Streaming API for XML (StAX) parser. Then, each node will then be
assigned with unique identification label to show the exact position of nodes in the document. Subsequently,
by employing the proposed algorithm, data will then be transformed into tables in the RDB storage. As the
result, two tables, namely (i) value table to store information carried by text node of the document, and
(ii) path table to store the hierarchy structure of the document will be created. Experimental evaluations
demonstrated that XML-REG outperformed some existing approaches, such as Mini-XML, XAncestor,
XMap and XRecursive in terms of data storage size, mapping time and query retrieval time. In addition,
the scalability test has also been conducted to show the capability of these approaches in supporting huge
datasets, by scaling the DBLP dataset by times 5, times 10 and times 15. The results showed that XML-REG
has the closest to linear graph compared to other existing approaches. On average, XML-REG showed the
best performance in terms of query retrieval time and database storage size.

INDEX TERMS XMLmapping, XML to RDB, XML database, XML labeling, model-basedmapping, XML
transformation, XML extraction.

I. INTRODUCTION
eXtensible Mark-up Language or better known by its abbre-
viation, XML, is a mark-up language that allow data trans-
ferring from one platform such as database and website to
another platform. This is achievable as it is cross-platform in
nature and allows XML to be able to bridge differences in
system and devices. XML is widely applied in web services
and on the Internet, it is used to store, carry and transport
data. The data carried in XML document is separated by
the start tag <> and end tag </ >, which define when the
element begins and ends. The data carried by the element are
commonly known as text.

XML mapping is a technology that used in transforming
XML data into any other format as the underlying stor-
age. Among some of the existing database technologies are

The associate editor coordinating the review of this manuscript and

approving it for publication was Genoveffa Tortora .

relational database (RDB), object-oriented database, object-
relational database and Not Only SQL (NoSQL) database.
Among these databases, RDB is still the popular storage.
With the emergence of cloud computing, RDBs are still the
back-end architecture of cloud computing architecture. RDB
has been and still widely used in many organizations, thus,
these organizations require an effective mapping scheme to
transform XML into RDB storage.

There are two types of mapping techniques, which
are structural-based mapping (schema-based mapping) and
model-based mapping (schema-less mapping) [1]. The main
difference between these mapping choices is the existence of
XML Schema (XSD) or Document Type Definition (DTD)
to help define the structure of the document. Structural-based
mapping approach requires existence of DTD to transform
XML document into RDB storage. Nevertheless, DTD file
are not usually provided along with the XML document.
Thus, if user wants to run amapping with DTDfile, ones need

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 177623

https://orcid.org/0000-0002-7190-0837
https://orcid.org/0000-0003-4765-8371


E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

to create it. Creating a new DTD file is often complicated and
requires skills. This will create additional complexity when
managing various types of XML documents [2], [3].

Meanwhile, DTD is not required for the model-based map-
ping as it can define document structure of XML document
independently, based on the respective model constructed.
Using this approach, the XML are mapped to some fixed
relational schemas.

XML can be categories into data-centric or document-
centric. Data-centric consists of highly structured content,
and the meaning of value depends on the structured data
represented in it. It is often used for data exchange purpose,
transferring data from one system to another. This type of
XML is commonly found in enterprise applications. To give
an example, enterprises usually have data on sales orders,
flight schedules, stock quote and sometimes, scientific data
analysis. Aside from that data-centric, another category of
XML is document-centric. This type of XML is loosely struc-
tures; it contains a large amount of text. Examples are legal
document, product catalog or news like CNN RSS Feed. For
this research, data-centric XML is given priority as wemainly
focus on elevating productivity of enterprises in term of data
management and analysis.

The ability on processing semi- structured, unstructured,
and structured data is vital as well as extracting information
from the data. As for XML, although native XML databases
are present, cost of shifting between database management
hardly made it as come-and-go category. The primary goal of
XML databases is to enable XML content to be stores and
retrieved as per requested by users.

In recent years, there are many authors that kept improving
existing XML-RDB mapping algorithm in term of storing
method and labeling system. Storing methods of an algo-
rithm will give huge impact on how query retrieval needs
to be structure and the time taken to process each query.
Common improvement of the proposed algorithm is on how
the data is stored and the technique used. Most of the time,
authors use existing labeling system to label the nodes in
the document, this gives author limited improvement on the
mapping algorithm. For this research, we target to achieve
faster storing time, faster query retrieval time and yet able to
support dynamic updates effectively.

The simplicity of XML syntax enables both human and
machine to understand the language easily. XML encodes
data in plain text format, which gives the advantage of plat-
form independence, bridges changes of format for different
computer system. Flexibility of XML has also benefitted to
the data sharing process, whereby, the data are transported
without losing any descriptive information. Nevertheless, the
recommendations of W3C to employ XML as a standard
across the internet have brought challenges in data process-
ing. As such, integration of XML into various formats is
essential through the mapping scheme.

Figure 1 shows a sample of the XML document that will
be used throughout this paper for data representation and

FIGURE 1. Sample of XML document.

experimentation. This document is extracted from parts of
yahoo dataset that is obtained from XML Repository [4].

II. REVIEW ON EXISITNG APPROACHES
There are four types of mapping approaches, edge-based
mapping scheme, node-based mapping scheme, path-based
mapping scheme and hybrid-based mapping scheme [5].
Edge-based mapping scheme is the simplest yet modest tech-
nique. The edges of the XML tree will be mapped into
single table. Designated tables store information of document
by using node identifier, source and target to get the edge
label between nodes. The drawback of this technique is huge
storage space is required as all the document edges are stored
in a single table. This will be incurred higher query processing
time, especially in retrieving complex queries. Excessive self-
joins are required, which is the most expensive operation in
RDBMS [5].

Path-based mapping scheme tracks the hierarchical struc-
ture of document by tracking the trail of node to node. This
labelling approach utilizes path table. The path store is often
divided into two, namely (i) root to non-leaf node and (ii) root
to leaf node. With storing node information into a path table,
it is able to reduce the search space of node when it comes
to query retrieval process. This technique can be divided
into two sub-categories: (i) root to node, and (ii) root to
leaf node.

For the first sub-category, the path expression of nodes
is stored in a table, while the node information of the doc-
ument is stored in another table. The second sub-category
will store path expression in one table, while storing only the
leaf node information in the other table. For this approach,
the information of inner node is not significant, and thus, it is
not stored.

Node-based mapping scheme allocates an identifier to
indicate the absolute position of the node in the document.
This technique normally uses high storage space, which may
cause the column size to appear overhead for some label in
the RDB. By looking at the positional identifier, the hierar-
chical relationships between pair of nodes can be determined
easily. Nevertheless, for complex queries (consists of at least

177624 VOLUME 8, 2020



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

a branching edge), the query response time will be longer as
the structural join will be performed based on pair of nodes.

Hybrid-based mapping scheme is the combination of two
or more of any techniques. For example, XParent [6] and
XPEV [7] combine both edge and path-based techniques.
All edge between nodes and path information are stored into
separate table. Containment relationship is utilized by these
approaches to preserve node relationships. Obvious draw-
back of this technique is it requires huge storage space to store
all the edge information. Nevertheless, with the employment
of path table, the query response time is expedited by reduc-
ing the query search space [5].

The following sub-sections elaborate some of the recent
mapping schemes in detail.

A. MINI-XML MAPPING APPROACH
Mini-XML is a path-based mapping scheme that reduces data
redundancy by storing leaf node separately from the data
table [8]. The Document Object Model (DOM) parser is used
to check well form-ness of XML document; that is the docu-
ment must follow syntax rules to be identify as well formed
for the parser. However, DOM Parser Application Program-
ming Interface (API) in Java provides function to traverse
input of the XML file and creates DOM object corresponding
to the nodes. The object is stored into memory, resulting in
longer time and memory space requires torun larger dataset.
Nevertheless, this parser allows users to navigate nodes in the
document back and forth. The nodes are then annotated using
first version Persistent labelling scheme [9] and traverse the
XML tree in depth first manners.

Zhu et al. [8] compared their proposed approach against
s-XML [10] using six datasets with size ranging from 2.2MB
to the largest by 683 MB. The experimental results revealed
that Mini-XML successfully reduce storage time and space;
it is attainable because Mini-XML avoids data redundancy.
In terms of storage time, Zhu et al. stated that s-XML
uses more fields that stores duplicated information of nodes.
As such, as the dataset grow larger, efficiency of Mini-XML
become dominant as compared to s-XML.

Storage space that used by Mini-XML are comparably
lesser than s-XML. This is because Mini-XML keeps only
crucial path information and fields that are sufficient to
identify the relationship of nodes. Yet, data redundancy still
occurs when the same path expression is stored into path
table with different node position. Figure 2 illustrates the data
model annotated for Mini-XML with node annotation that
describes each position of node.

Table 1(A) and Table 1(B) depict the partial data of path
table and leaf table respectively. Path table stores only unique
path on the three attributes (PathId, Path and Pos of non-leaf
nodes). Each path has its own unique id (PathID) and the posi-
tion of the element node (Pos). The path expression (Path)
defines the top-down hierarchy of data from the root to its
respective node.

Table 1(B) depicts the leaf table, which stores the value of
all the leaf nodes. The table contains four attributes, namely

FIGURE 2. Data model labelled based on Mini-XML approach.

TABLE 1. (a) Partial view of path table. (b) Partial view of leaf table.

(i) leaf id, which is the unique self id of nodes, (ii) node name,
which is the name of the node, (iii) value, which is the text
value, and (iv) pos, which is the position of the node in the
document. Each node pos is composed of node level, parent
id and self id of node among the siblings.

Mini-XML stores all nodes and its precise position in the
document into path and value table. Unlike approaches that
will be discussed later, each element node with different
position label will be kept into path table, thus it increases
the size of space consumption. Other than that, it resulted in
longer query retrieval time compared to other approaches.

B. XANCESTOR MAPPING APPROACH
Qtaish and Ahmad [11] proposed XAncestor, an approach
that consists of three main components, namely (i) fixed RDB
scheme, (ii) XtoDB mapping, and (iii) XtoSQL query pro-
cessing algorithm. The fixed RDB scheme is designed with
the aim to store the relations optimally. The XtoDB mapping
component, maps XML document into RDB scheme. Prior
to the mapping process, a DOM parser API is adopted to
validate the document. The data then stored into two tables.

VOLUME 8, 2020 177625



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

FIGURE 3. Data model labelled based on XAncestor approach.

The uniqueness of XAncestor is that it manages path of leaf
node in a pre-defined RDB scheme (also known as fixed RDB
scheme). This reduces the size of storage consumption when
the dataset is huge. The third component, XtoSQL, is a query
processing algorithm to transform XPath queries into SQL
queries representation to retrieve relevant results against the
pre-defined RDB scheme.

The experimental comparison results onXAncestor against
other approaches, XRel [12], SMXR [13], approach proposed
by Ying et al. [14], XRecursive [15] and s-XML [10], show
that XAncestor uses the least storage space and time. For
instance, the storage space consumed by XAncestor is half of
the storage space as compared to s-XML approach. For com-
plex query processing, XAncestor achieve the best results.
For simple query search, it is observed that approach pro-
posed by Ying et al. [14] is compatible with XAncestor.
However, as the query complexity increases, the difference
can be seen between the two approaches. Figure 3 shows
a data model using XAncestor annotation. This approach
implements Dewey order labelling [16] to annotate each
node.

Table 2(A) and Table 2(B) depict the resulted tables
using XAncestor mapping approach. XAncestor stores the
data into two tables, namely Ancestor_Path and Leaf_Node.
Table 2(A) represents the Ancestor_Path_Table, whereby this
table shows unique path for every node in the path expression.
This table consists of Ancestor_PathID that shows unique ID
of path expression in Ancestor_PathExp.

Table 2(B) shows the Leaf_Node table. This table is made
up of four attributes, which is Node_Name, Anc_PathID,
Ancestor_Pos and Node_Value. However, information of the
inner node is not stored in this approach.

XAncestor approach able to reduce storage space as it
only stores inner nodes and query retrieval time able to be
lessen by utilizing path expression in path table. Nevertheless,
the column Ances_Pos requires to retrieve parent node via
level using recursive join.

C. XMAP MAPPING APPROACH
Bousalem and Cherti [3] proposed XMap, which utilize the
ORDPATH labelling scheme [17] to annotate the data in

TABLE 2. (a) Partial view of Ancestor_Path Table. (b) Partial view of
Leaf_Node Table.

FIGURE 4. Data model labelled based on XMap approach.

XML document. The authors categorized the method into
three main components as follows: (i) XML to RDB, (ii)
Translate the XML Query to SQL query, and (iii) Recon-
structs XML document from RDB by transforming from the
SQL result.

The authors have not done any experimental comparison
against related approaches. Instead, the author compared
the efficiency of using DOM parser and Simple API for
XML (SAX) in their evaluation. From the evaluation result,
it is observed that SAX outshined DOM in both storage
and time consumption. Nevertheless, theoretical comparisons
were also conducted among XRel [12], Edge [18], XParent
[19] and their proposed approach, XMap. The authors stated
that the proposed algorithm has the benefit over utilizing
ORDPath as its labelling scheme. The design of ORDPath
supports structural identification and dynamic updates effi-
ciently compare to the rest of the approaches. Figure 4 shows
the data model based on XMap mapping scheme, which is
based on ORDPath labelling.

Table 3 (A) to Table 3 (C) are the tables that stores data of
each node. XMap stored data into three tables, which are data,

177626 VOLUME 8, 2020



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

TABLE 3. (a) Partial view of Data table. (b) Partial view of Vertex table.
(c) Partial view of Path table.

vertex and path table. The data table consists of six attributes,
namely, ordpath, value, order, no.element, no.attribute and
pathId. The ordpath is the path labelling of node from root
to the leaf node using ORDPath labeling [17], the value
is the text of the node, the order column is the unique id
given to each node in the order of its appearance among
its sibling node, while both the no.element and no.attribute
are the number of element and attribute the node nesting
respectively. Lastly, the pathId is the id of the path that leads
to the element. This id act as the foreign key to join to Path
table (Table 3 (C)).

The name and id of each element are stored in Vertex table
(see Table 3 (B)), while the path id and path expression are
store in Path table (see Table 3 (C)).

D. XRECURSIVE MAPPING APPROACH
Fakharaldien et al. [15] proposed XRecursive, which is a
model-based approach that store XML into RDB storage.
XRecursive stores data of the XML document with only two
tables, which are Tag_structure table and Tag_value table.
The path of each node is identified recursively by using the
parent id without storing path value and structure of the path.

Fakharaldien et al. performed an experimental evaluation
to compare XRecursive with SUXCENT [20]. The results
indicated that database storage using XRecursive approach
is much more memory saving. SUCXENT uses five tables
for data storing while XRecursive only use two tables. The
time required for mapping and insertion is improved by
XRecursive. Other than that, they also did a comparison
on storing method via DOM and SAX parsers. The result
revealed that SAX parser uses less size compared to DOM
parser. In addition, SAX parser is faster and uses less memory
since the model is traversed in depth first manner and unique
label is uniquely assigned to each node.

Figure 5 shows data model labelled with simple depth first
traversal labelling method.

Table 4 (A) shows the partial view of Tag_structure table.
TagName represents the name of the node, ID represents the
id of the respective node, while PID represents the parent id

FIGURE 5. Data model labelled based on XRecursive approach.

TABLE 4. (a). Partial view of Tag_structure table. (b) Partial view of
Tag_value table.

of the node. Since the root node does not have any parent id,
the ID of the root node and PID of the root node are the same.

Table 4 (B) depicts the partial view of Tag_value table.
This table represents the values associated with the elements
or types. The TagId is the primary key of the table, and it
is obtained from the ID attribute in the Tag_structure table.
The Value attribute represents the value of respective node.
The Type attribute consists of either two alphabets, ‘A’ or ‘E’,
whereby ‘A’ indicates attribute and ‘E’ represents element.

E. OTHER EXISTING APPROACHES
Subramaniam et al. [10] proposed simple XML (s-XML),
which annotate each node based on Persistent labelling. In s-
XML, there a two tables, which are parent table and child
table. All non-leaf nodes will be stored into parent table while
the leaf node will be stored into child table. The authors com-
pared s-XML against Edge, Attribute and DTD approaches.
The experimental results showed that s-XML is better in
term of time and storage consumption. This is especially
proven on query retrieval on complex chain and twig queries
evaluation. However, Zhu et al. [8] did a comparison test
on their proposed approach, Mini-XML against s-XML. It is

VOLUME 8, 2020 177627



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

observed that s-XML require more time and space, which
might be caused by the duplicated information stored in both
child and parent table. On a separate research, Qtaish and
Ahmad [11] revealed that s-XML take up the most RDB
storage space to map XML documents as compared to some
mapping approaches.

Suri and Sharma [21] proposed a path-based approach
that adopted DOM model to uniquely identify each node
with positive numbers. Unlike previous approaches, the pro-
posed approach maintains the P-C relationship by annotating
each node based on depth first traversal order. Performance
comparisons against existing approaches (XRel and XPEV)
were conducted. The evaluation outcomes demonstrated that
their proposed algorithm uses the least database storage size.
This may be due to their approach only uses two tables to
store the data, which resulting in lesser join during query
processing.

Ying et al. [14] proposed a mapping using hybrid labeling,
which combines both path and node labelling technique. The
document is first modelled into tree and subsequently, orderly
labelled each node. The approach thenmaps the data into four
tables: File, Path, LeafNode and InnerNodes table. The path
expressions in path table adopted the XPath representation
to generate the path of element node. The approach was
compared against XRel [12], XParent [19], and SUXCENT
[20] using two datasets and five queries. The results showed
that their proposed approach managed to store the document
more efficiently and consume lesser storage.

Abduljwad et al. [13] proposed SMX/R approach, which
uses path labelling technique to track node to node in an
XML document. XPath is adopted to identify the path infor-
mation starting from the root to the leaf node. SMX/R uses
two tables to store data, which is (i) Path_Table, and (ii)
Path_Index_Table. The mapping approach provides a generic
solution in storing XML efficiently while utilizing XPath to
extract fragments of the data. The comparison tests performed
by the authors indicated that SMX/R outperformed XRel
[12] in various aspects such as number of join operations
required, number of paths and number of predicates required
to accomplish some designated queries.

Jiang et al. [19] proposed XParent mapping approach,
which is an edge-oriented mapping technique. XParent stores
information into four tables, the tables are, (i) label path
table, (ii) data table, (iii) element table and, (iv) data path
table. XParent enables easy retrieval of regular path queries
and utilizing the path identifier to identify value attached
on the leaf node. XParent maintain the P-C relationship in
label path table to reduce the join operation during query
processing.

Yoshikawa et al. [12] proposed XRel, which is a path-
based approach to map XML data into relational tuples. XRel
stores XML data graphs into four tables, (i) Text table, (ii)
Attribute table, (iii) Path table, and (iv) Element table. This
approach does not require any special indexing structures as
each node is orderly labelled in depth first traversal manner.
XRel uses Path table with the aims of reducing the cost of join

operation. The relationship in the document is maintained
by using region method, utilizing start and end position of
a node.

In terms of experimental evaluation, the authors have run
a comparison test on XRel against Edge [18] approach. The
results showed that XRel have some improvement in term
of time and space cost to store and query process. However,
in 2016, Qtaish and Ahmad [11] demonstrated that XRel
consumed themost storage space compared to their approach,
XAncestor and XRecursive [15]. This is due to number of
tables that XRel required to store the data, which increases
the time needed to map XML into RDB, and subsequently
involved more join operation to query the data. It is also
observed that, the Attribute table will only be shown if a
document contains attribute node.

Florescu and Kossmann [18] proposed Edge mapping
approach to store all information in XML document into one
single table. They named the table as Edge. Edge table only
keep label of edge, rather than path label. Huge amount of
join operations is required to perform query processing. Over
the time, path-based mapping technique was introduced to
overcome extensive amount of join operation for querying
problem. By using path table to store all possible paths in
the document, it reduces query time and search space for
retrieving data.

F. SUMMARY OF MAPPING SCHEMES
Table 5 summaries and compare existing approaches dis-
cussed. These approaches are grouped into its labelling tech-
nique, which are edge, node, path and hybrid labelling. Also,
the advantages and weakness of each approach is tabulated
in the table based on chronological order of the year being
proposed.

On the other hand, a good labelling scheme is essential
to provide quick determination on the relationship between
query nodes for fast retrieval. Nevertheless, the size of the
label increases space consumption on the database and poten-
tially leads to longer time taken for query processing. More-
over, an efficient labelling should be able to avoid relabelling
of node and capable to deal with dynamic updates.

Dynamic updates can be identified in a few categories;
such are insertion, update and deletion. Most existing works
[22, 23, 24] focus on support for dynamic updates on inser-
tion operation as the deletion and modification operations
will not cause any re-labeling problem. Our work concurred
with existing works, which focus on addressing the insertion
operation (to be elaborated further in Section III). Generally,
there are three types of insertion: (i) in-between insertion, (ii)
left-most insertion, and (iii) right-most insertion.

III. PROPOSED APPROACH
There are two stages involved in this process, mapping pro-
cess and query retrieval process. In the mapping process,
XML document will be mapped and transformed into a RDB,
that is, necessary data are extracted and stored in tables. The
XML document will first be read and parsed into the parser,

177628 VOLUME 8, 2020



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

TABLE 5. Summary of Mapping Approaches.

namely Streaming API for XML (StAX) parser [25]. Similar
to SAX parser, StAX is an event-driven parser, while DOM
parser is memory-based parser. The main difference between

FIGURE 6. Detailed structure of process architecture.

StAX and SAX parsers is that SAX is a push API, while
StAX is a pull API. StAX allows retrieval of data on the
available pointer while SAX parser provides the data that it
encountered. In another word, StAX parser is able to filter
XML data, in which unnecessary data can be ignored.

Then, each node will then be assigned with unique iden-
tification label to show the exact position of nodes in the
document. This process is also called as tree annotation.
By employing the proposed algorithm, data will then be
transformed into tables in the RDB.

In the query retrieval process, data will be retrieved from
the database by using Structure Query Language (SQL). SQL
provides commands that justify what data to be retrieved
and how to acquire. From the Grapical User Interface (GUI),
the user is required to select database that the data has been
stored on. Then, the user may input the SQL command to
retrieve particular data. It is then translated and retrieved data
from the database. The answer of the query will then be
returned through the GUI to the user. Figure 6 illustrates the
overall view of system architecture design.

This research aims to implement a model-based mapping
algorithm that allows dynamic updates without the need to
re-labelled the nodes. The proposed approach consists of
three components, which is reading XML documents, tree
annotation and database design.

A. NODE ANNOTATION
The nodes in the document are then added with unique ID
as the label to define its position in the document. This
identification values act as one of the main keys in query
retrieval process. Without these values, a node with similar
names but different position will affect the correctness of
retrieved data. Other than that, labelling system is crucial
for dynamic updates and making sure that each node existed
in the database. Figure 7 shows XML data model with our
proposed node labelling system.

The proposed method utilizes a hybrid labelling system,
where both path-based and node-based labelling schemes are
combined. A tree will be traversed in the depth-first traversal
order. Each node will be given position annotation where the

VOLUME 8, 2020 177629



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

FIGURE 7. XML data model with proposed node labelling system.

label is represented as (l, s, e). with l represents the level
of the node, s represents the startid and e represents the
endid. To identify a leaf node, the startid will be equal to
the endid.

In order to identify relationships between the nodes, these
labels will provide quick determination on the structural
relationship. For instance, for the Parent-Child (P-C) rela-
tionship, the level between parent and child node has the
difference of one, while for the siblings, it can be identified
with the same value of level and the node of its parent node.
To identify if A-D relationship exist between nodes, one need
to be in the range of another. For instance, to identify if node
4 has AD relationship with node 2, id of node 4 must be in
the range of starts and end id of node 2.

On top of that, XML allows nesting of elements, which
means that the element can contain another element; this
relationship between the elements is described as P-C rela-
tionship. If an element nested more than one level, the rela-
tionship between the highest-level node and the lowest level
node is called as A-D relationship.

B. DATABASE DESIGN
Two tables are used to store the necessary information to
ensure lossless of data. These tables are: (i) Element_path
table and (ii) Value table. By limiting the number of tables,
the join operation required for the query retrieval can be
minimized as well, thus, unnecessary storage of data can be
avoided. Element path table stores all distinct path informa-
tion of nodes in the XML document. An unique path ID,
PathId is assigned to each unique path expression (Pathexp).
Table 6 shows the partial view of the Element_path table.

Table 7 shows the partial view of the Value table. Value
table consists of four attributes, which are level, self id, node
value and path id. Path id is retrieved from path table where
the leaf node is equal to the node name of value node.

C. DYNAMIC UPDATES
To support dynamic updates, we adopted the idea from the
scheme proposed by Khanjari and Gaeini [23]. Figure 8

TABLE 6. Partial view of the Element_path table.

TABLE 7. Partial view of Value table.

FIGURE 8. Dynamic updates with node instance.

illustrates how dynamic updates take place in various situ-
ations. The algorithm is designed to insert data anywhere in
the document without any re-labeling.

From Figure 8, if leftmost insertion were to happen,
the value of startid will be added with ‘.0’ at the end of the
initial label. In case of leftmost insertion happens again, the id
will be added ‘0’ at the end. For instance, first insertion of left
insertion can be seen for node A and node C. The label was
added with ‘.0’ at the end. Node B illustrates the subsequent
leftmost insertion of additional node. Label of node is added
with value ‘0’ at the end. This process will be repeated for all
insertion on the leftmost.

On the case of insertion on the rightmost, there are two
situations to be considered. Firstly, it is the situation where
startid does not exist. Node D represent the situation, id given
label will be added into the value table as it is. Second
situation is the insertion of right node if id existed, the level of
id needs to be check. If the level is not the same, this situation
will be the right insertion of a subtree. The id will be added
with value ‘.1’ at the end of the label.

Meanwhile, for the case of the id is within the same
level with the new node, but node value does not exist
(like node F), this in-between insertion will be added .0 at the

177630 VOLUME 8, 2020



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

FIGURE 9. Flow of dynamic updates operation.

end of the node label. Figure 9 shows the flow of the insertion
if occurs.

IV. IMPLEMENTATION
A. ALGORITHM
An XML-REG is a hybrid of path-based and node-based
mapping scheme. The path of each inner and leaf node is
tracked and stores in the path table as path expression. This
will maintain the hierarchical nature of XML document and
can easily locate text node stored in the value table. Parent
and ancestor node can be track by using the rpathid in the
Value table and pathid in the Element_path table. On the
other hand, node-based mapping in this proposed approach
is used when it comes to storing the value nodes. Each node
is uniquely labelled as id in the value table. Figure 10 shows
the pseudocode of XML-REG approach.

First and foremost, for all approaches to be implemented,
the connection of database needs to be established. Then,
the XML dataset is loaded and parsed using StAX parser.
Parser is used to read and extract the data to be mapped into
RDB.

In Figure 10, a stack named stackPath is created to store the
path as in line 3. It stores the entire element name from root to
the current node. StAX parser uses the function getEventType
to get the type of the node. There are three event types:
(i) startElement in line 6, (ii) character in line 26, and (iii)
endElement in line 32.

The startElement retrieves element that exist in the angle
bracket tag (<>). It basically retrieves all element name and
id will be incremented for each startElement. Local name
of startElement is assign to variable qName, and after that,
it will be stored in string path. Nevertheless, as shown in line
11, path will only be stores in stackPath if the path does not
exist in stackPath. In addition, the attribute node is labelled
in the start tag too. Thus, attribute node will be retrieved
when the startElement tag is encountered. While attribute
exist in startElement, attribute information will be retrieved

FIGURE 10. Pseudocode of XML-REG Approach.

and stores into table value with RPathid of existing path in
stackPath.

The second EventType is character, where character is the
text value of a leaf node. Text node information is stored in
variable value and inserted into value table. Finally, for the
third EventType, endElement, it takes the element in end tag
of XML which is </ >. In endElement, the last qName in
string path is removed and follow by deducting level by 1.
Unlike value table, path expression and id are stored into path
table at the end of the algorithm.
Definition 1: Each node in XML document is denoted as

q. For each node q, by following the q type, the information
on the name, selfid, level and value are extracted accordingly.
The node name will be used for path expression.
Definition 2: Each node will be given position annotation

where the label is represented as (l, s, e). with l represents
the level of the node, s represents the startid and e represents
the endid. To identify a leaf node, the startid will be equal to
the endid.

VOLUME 8, 2020 177631



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

FIGURE 11. Query design.

Definition 3: Each node q is then checked for existence of
attribute with attribute.hasNext() function.
Definition 4: Path expression can be denoted as p1 n1p2

n2. . . pknk, where p is denoted as the element name and n
denoted as relationship between node to node, ‘/’ for P-C
relationship and ‘//’ for A-D relationship.
Definition 5:Aquery is given by, Q= (Nd, Ed)whereNd is

a set of nodes in the query tree with n0∈Nd, and Ed is a set of
edges that connects Nd with e0 ∈ Ed denotes the association
between nodes. The type types of association between the
nodes are represented with ‘/’ for P-C relationship and ‘//’
for A-D relationship.
Defintion 6:AP-C relationship existed in a Query Q, if and

only if:
• q selfid is in the range of ≥ startid and ≤ endid
• level difference is equal to 1.
Defintion 7:AnA-D relationship existed existed in aQuery

Q, if and only if:
• q selfid is in the range of ≥ startid and ≤ endid
• level difference is more than 1.
The definitions are used to identify hierarchical structure

between nodes in XML document.

B. QUERY EXPRESSION
Query execution process evaluates the retrieval time for data
to be searched in the newly created tables. The efficiency
and effectiveness of this process are influenced by a few
factors, such as, number of tables, the information stored,
labelling technique and so on. Six queries were prepared for
the evaluation as depicted in Figure 11 [26].

Similarly, each query runs six times consecutively. Yet, the
first result will be eliminated as it calculates the execution
plan of the query before it is executed. Then, the average of
these remainder results is calculated.

Table 8 depicts the query patterns used in the evaluation
process. Generally, there are two main types of queries,
namely Path Query and Twig Query. As for our evaluation,
PQ1 to PQ3 are path queries with P-C, A-D, and mixed
relationships, while TQ1 to TQ3 are twig queries with P-C,
A-D and mixed relationships.

V. RESULTS AND DISCUSSION
All evaluations are carried out on the machine with AMD
Ryzen 7 processor (64 bit) with maximum memory capacity

TABLE 8. Description of query patterns.

TABLE 9. Various dataset sizes for test evaluation.

of 237 GB and RAM volume of 32 GB. During evaluation
test, machine will not work on other tasks and all connection
of internet and devices are removed in order to get stan-
dardize result for each test. The system is implemented in
JAVA language, using the Java SE Development Kit, while
Microsoft SQL Server is chosen as the DBMS. This is
because Microsoft SQL server is more scalable and reliable
compared to other DBMS [27].

Three benchmark datasets were selected for the test eval-
uation [4]. The smallest size is Sigmod dataset (467 KB),
followed by DBLP (130.73 MB) as the medium sized, and
PSD7003 (722.59 MB) as the large sized. Details of datasets
are shown in Table 9. We have selected these datasets due to
several reasons. One of the criteria is the depth of the XML
document must be at least three so that the query with A-D
relationship can be constructed. Next, the selection of datasets
must also contain attributes in an element. This is needed
to identify if an approach is able to handle any attributes
element.

A. DATA STORING RESULTS
In this section, each dataset will be stored seven times and the
first reading will be eliminated to avoid calculation of execu-
tion plan and buffering effects. Thus, the average of six times
of data storing are taken as the final result. Table 10 shows
the result of data storing for all three selected datasets. The
best reading in the table are in bold. From the table, it can
be observed that our proposed approach (XML-REG) shows
the fastest storing results as compared to the rest of the
approaches.

Bar charts are constructed for each dataset for illustra-
tion to ease the visual comparison. Figure 12 shows the
result of insertion on Sigmod dataset in millisecond (ms).
As mentioned earlier, Sigmod dataset represent small size
XML document. The result shows that XML-REG lead-
ing as the fastest approach to store the document, followed
by XMap [3], Mini-XML [8], XAncestor [11] and lastly,
XRecursive [15].

177632 VOLUME 8, 2020



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

TABLE 10. Data storing time for Sigmod, DBLP and PSD7003
datasets IN MS.

FIGURE 12. Storing result on Sigmod dataset.

Other datasets such as Mondial and Yahoo datasets (from
Washington University XML repository) were also used
as the representation of small-sized dataset, nevertheless,
when it comes to storing the data, it shows inaccurate
result, many attributes were not stored correctly. This is
because XAncestor algorithm unable to support more than
one attributes in an element. For fairness comparison, Sig-
mod was then employed to represent the small-sized dataset
instead.

Figure 13 illustrates the result of approaches on storing
DBLP dataset. The result can be seen showing slight dif-
ferences for three recent approaches. Similarly, to Sigmod,
XML-REG shows the fastest storing result, next is XMap [3],
XAncestor [8], Mini-XML [11] and finally, XRecursive [15].
As the dataset grows, the efficiency of the approach can be
perceived clearly. XRecursive approach takes longer time as
it recursively calling the child node and stores unnecessary
data into the database. On the other hand, XML-REG only
stores unique path of element node and node values with its
unique label id to identify its position and hierarchy in the
document. Thus, XML-REG takes lesser time than compare
to XRecursive [15], and ultimately all other approaches.

To represent large dataset, PSD7003 dataset was selected
as it is the largest dataset in the benchmark dataset repos-
itory [4]. The storing result of this dataset can be viewed
in Figure14. The pattern of the result on PSD7003 dataset was
quite similar to DBLP dataset, except that XMap approach
comes first prior to XAncestor. Previously, the reason on

FIGURE 13. Storing result on DBLP dataset.

TABLE 11. Overall result of database size on all approaches in kb.

why XRecursive tends to take more time compare to other
approaches was explained. Contrarily, for XMap approach,
it takes longer time as compare to XML-REG due to the
time taken to store the data into three tables, namely Path
table, Vertex table and Data table. For XAncestor, despite
of having the drawback which unable to support more than
one attributes for each element, this approach efficiency
is reduced as it stores its hierarchy via Ances_Pos, which
requires it to store and regularly retrieve its ancestor position
via Parent position. Come last among the three recent existing
approaches is Mini-XML. The result was affected on how the
data were stored in the table, especially for the path table,
whereby it stores all unique position of the path. In another
word, all the inner nodes of the document need to be stored.

B. DATABASE SIZE RESULTS
Aside from the time taken to store XML document into RDB,
storage space consumption of each approach is also being
evaluated in the evaluation test. Table 11 shows the full results
of database size on all the approaches. The smallest storage
consumption results among the approaches are in bold. From
the overall view, it is noticeable that XML-REG utilizes the
least space, followed by XAncestor, Mini-XML, XMap and
XRecursive respectively.

Figure 15 illustrates the bar charts on database size of all
the approaches. In the chart, we can see that result for XML-
REG, Mini-XML and XRecursive approaches are constant

VOLUME 8, 2020 177633



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

FIGURE 14. Storing result of PSD7003.

FIGURE 15. Bar chart of database size storage for all approaches.

throughout all the datasets. Nevertheless, XAncestor and
XMap approaches have varying results depending on the
structure of datasets. XAncestor keeps track of the hierarchy
of XML document by storing inner node path in path table
and leaf node details in leaf table. Meanwhile, XMap stores
XML data into three table, one for data table to store node
values and two other tables are used to store hierarchy of
document. The design of data table causes XMap database
size increase as it stores unnecessary information in the table.
The result can be compared for datasets DBLP and PSD7003.
XMap require more database size in DBLP and lesser for
PSD7003 dataset compares to Mini-XML.

Table 12, Table 13 and Table 14 show the details of
database size for each approach. The number of tables and

TABLE 12. Details of database size on Sigmod.

TABLE 13. Details of database size on DBLP.

tuples used in each approach, partially give effects on the
storage consumption. Moreover, to reduce the storage space
of the database, it is needed to be strategically design of the
table column, so that, it is able to keep the document structure
while minimizing the use of space in the database.

C. DATA RETRIEVAL RESULTS
As mentioned in previous section, the structure of the six
queries consists of three path queries and three twig queries.
Among the three queries, three types of relationship will be
tested. These are the P-C relationship, A-D relationship and
mixture of both. Each query will be tested six times and the
average of the result is taken as the final result.

In the retrieval evaluation of every dataset, XRecursive is
unable to support any A-D relationship related query. As the
name of the approach indicated, XRecursive stores the data
in such a way that it needs to recursively find the parent and
ancestor node. As a matter of fact, one will not know what
is the nodes that existed in-between a particular node to its
ancestor node. Thus, it is impossible to retrieve the results for
any query involving A-D relationship.

a: Query response time on Sigmod dataset
Table 15 shows the query response time of each approach on
Sigmod dataset.

177634 VOLUME 8, 2020



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

TABLE 14. Details of database size on PSD7003.

TABLE 15. Query response time on Sigmod dataset.

Figure 16 illustrates the result of path queries (PQ1-PQ3),
while Figure 17 illustrates the result of twig queries (TQ4-
TQ6). The same query patterns were prepared on DBLP
and PSD7003 datasets. Apart from the XRecursive draw-
back in handling A-D relationship, the fastest query retrieval
approach is XML-REG, followed by XMap, XAncestor,
Mini-XML and at the last place is, XRecursive. XRecur-
sive takes the longest time to retrieve data as it needs to
recursively join the tables to find the parent and ancestor
of the node.

As for twig query, it is shown obviously that Mini-XML
takes the longest time (see Figure 17). This is because Mini-
XML approach needs to select the data from the database and
compare first part of twig query with second part of the query
with join operation. Still, the design of approach in mapping
and data storing is inadequate enough for query retrieval
process. It is important to note that query retrieval could not
be performed onXRecursive approach, as this approach could
not support A-D retrieval.

b: Query response time on DBLP dataset
Table 16 shows query response time for DBLP dataset. The
order of the results is same as Sigmod dataset result where

FIGURE 16. Path query retrieval on Sigmod dataset.

FIGURE 17. Twig query retrieval on Sigmod dataset.

XML-REG come first, then XMap, XAncestor, Mini-XML
and finally, XRecursive. Figure 18 and Figure 19 shows result
of query retrieval on DBLP dataset in bar chart to ease the
viewing of results. The reason on whyXMap is more efficient
than XAncestor is because, XAncestor store path of nodes
until the last inner node, in addition of that, instead of appoint-
ing unique id node for the element, approach utilize path-
based technique, which stores node position via ancestor path
position. When retrieving data from the table, join operation
between tables with multiple of where condition needs to be
done, thus, it makes sense on why XAncestor require more
time to retrieve data.

Figure 19 illustrates the result of twig queries for DBLP
dataset. From the figure, we observed that for TQ3, the result
is not in the same pattern as the result exhibited from the other
datasets. This is due to the complexity of query. Since XMap
is using three tables, for TQ3, the amount of join operation
used are more as it need to find two paths from joining path

VOLUME 8, 2020 177635



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

FIGURE 18. Result of path query for DBLP dataset.

FIGURE 19. Result of twig query for DBLP dataset.

table and vertex table, and then, find the intersection data to
retrieve the desired data.

c: Query response time on PSD7003 dataset
Last but not least, for the largest dataset, PSD7003,
Table 17 shows the query response time for the dataset,
followed by Figure 20 and Figure 21 to illustrate the results
into bar chart. The results depict the similar pattern as in
the previous dataset, which indicated that XML-REG is
the most efficient approach in data retrieval process. This
is due to the fact that XMap stores the data into three
tables, consequently, increase the number of join operation
to retrieve data. Moreover, the design of data storing in
XMap value table increase the retrieval time as query needs

TABLE 16. Query response time for dblp dataset.

FIGURE 20. Result of path query for PSD7003 dataset.

to browse through empty value field rows and eliminating the
null value at the end of the query.

D. DYNAMIC UPDATES
The ability of an approach to support insertion dynamically
and yet no changes to the existing row is one of the criteria
for good mapping scheme. Assume that Table 18 shows the
content of original table before the dynamic updates take
place. During dynamic updates, some new nodes are to be
inserted as depicted in Table 19. Three types of insertions
are tested against XML-REG, (i) Left insertion, (ii) right
insertion and (iii) in-between insertion.

Table 20 depicts the original content of Path table before
insertion takes place. For any new element inserted, it will be
updated in the Path table (see Table 21). The position of path
id is defined with.0 for new path and consecutively adding

177636 VOLUME 8, 2020



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

FIGURE 21. Result of twig query for PSD7003 dataset.

FIGURE 22. Storing time evaluation on various data sizes of DBLP dataset.

0 as the path with the same id is added. There is no restriction
on how the path id should be updated as the most important
part of this table is path expression column that stores the
hierarchy of the document.

E. SCALING RESULTS
d: Datasets for scalability evaluation
Finally, the last part of the evaluation test is to perform
scaling on each approach and evaluate on its scalability as
data size grows larger. Scalability evaluation is done to check
on how each approach handle huge datasets as it grows. For
this purpose, the DBLP dataset are multiple by 5 times up
to 15 to demonstrate the scalability performance of each
approach. Table 22 shows the document size of the scaled

TABLE 17. Query response time for PSD7003 dataset.

TABLE 18. Original Content of Value Table Before Insertions.

TABLE 19. New Content Of Value Table After Insertions.

datasets. The ability of an approach to support insertion
dynamically and yet no changes to the existing row is one
of the criteria for good mapping scheme.

e: Scalability Evaluation Result
Scalability test are conducted to evaluate the capability of
approaches in handling the situation where dataset is grow-
ing. Table 23 shows the time taken for each approach to store
the datasets while Figure 22 depicts the results in line graph.

VOLUME 8, 2020 177637



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

TABLE 20. Original Content Of Value Table Before Insertions.

TABLE 21. New Content Of Value Table After Insertions.

TABLE 22. Scalability of DBLP datasets.

TABLE 23. Time taken for approaches to store the datasets in Min.

From Figure 22, XML-REG shows the closest to linear
graph compared to the other approaches. On the other hand,
the XRecursive approach has a sharper increase, and hence,
it is the least scalable. To calculate the bearing of angle,
assuming the result of DBLP is the start point and result of
DBLP15 as the end point, the smallest the degree of angle
is considered as the best. Calculation can be done by using
following formula:

First, get the radian of linear line by using formula:

2 = atan2(b1− a1, b2− a2)

TABLE 24. Degree of angle for each approach.

Then, get the degree of line from previous radian:

Degrees = (radian/π)× 180

Table 24 records the degree of angle calculation. It can be
seen that the smallest angle is XML-REG, followed by Mini-
XML, XMap, XAncestor and XRecursive respectively.

In all the evaluations, proposed approach XML-REG
shows the best results. For data storing and query retrieval
process, XML-REG takes the least time to process. This
is due to the number of tables and data selected to be
stored. Apart from that, for storage space usage, XML-REG
able to save space by storing selective data and the result
shows that as dataset size increases, space usage for the
approach grows consistently. On scalability evaluation, graph
presented depicts time taken for the compared approaches
when datasets are scaled to larger size. Proposed approach
responds a linear graph and takes the least time compares to
other. The complexity of proposed algorithm is represented
with O(n).

VI. CONCLUSION
This paper has three main objectives. The first objective of
this research is to study existing mapping approaches on
model-based mapping approaches. Some existing mapping
approaches were reviewed and analysed on the drawbacks
and advantages. Although the aim of this research is to
propose and design an efficient mapping approach, labelling
schemes were studied so that the proposed approach is able to
support dynamic updates operations especially on insertion.
Thus, lead this paper to its second objective, which is to
propose an efficientmodel-basedmapping approach to bridge
the technology of XML and RDB.

A newXML to RDBmapping approach namedXML-REG
is proposed in this research. XML-REG is a hybrid of node-
based and path-based mapping approaches, which means that
this approach takes the best of path-based mapping and node-
based mapping to produce a hybrid outcome. XML-REG
stores data into two tables which are Path and Value table.
Path table stores the unique path expression of the XML.
As STaX parser does not support XPath technology directly,
the path is stored into string and stack before it is map into
RDB. On the other hand, for the Value table, it stores data
of text node. It adopted the node-based technique, whereby
each node is uniquely assigned with an id to represent their
position in the document.

For the final objective of this paper, the proposed approach
is compared against four existing approaches, Mini-XML
[8], XAncestor [11], XMap [3], and XRecursive [15].

177638 VOLUME 8, 2020



E. Song, S.-C. Haw: XML-REG: Transforming XML Into Relational Using Hybrid-Based Mapping Approach

Performance tests were conducted on storing process, query
retrieval process, database size and scalability test. The result
of each test shows that XML-REG outperformed the existing
approaches as it able to store XML into databasewith the least
time required and least storage space. For retrieval process,
proposed approach returns accurate result in the shortest
time. Scalability test were also being conducted to see how
each approach perform as the data sizes grows on the DBLP
dataset. XML-REG shows also linear result as compared
to the rest of the approaches. This indicated XML-REG is
scalable to support huge datasets.

The contributions of the research presented in this paper
can be summarized as follows:

1) Summary of existing mapping approaches and
labelling method.

2) A new mapping technique which exploits the advan-
tage of path and node-based mapping technique. It has
been demonstrated that the XML-REG approach can
efficiently transform XML document into RDB.

3) An improved labelling technique was created and
adaptedwithinXML-REG to support dynamic updates.

REFERENCES
[1] C. Li and T. W. Ling, ‘‘A novel quaternary encoding to completely avoid

re-labeling in XML updates,’’ in Proc. 14th ACM Int. Conf. Inf. Knowl.
Management., New York, NY, USA, 2005, pp. 501–508.

[2] A. Qtaish and K. Ahmad, ‘‘Query mapping techniques for XML docu-
ments,’’ in Proc. 5th Int. Conf. Electr. Eng. Informat., 2015, pp. 529–534.

[3] Z. Bousalem and I. Cherti, ‘‘XMap: A novel approach to store and
retrieve XML document in relational databases,’’ J. Softw., vol. 10, no. 12,
pp. 1389–1401, 2015.

[4] UW.Washington University XML Repository. (2015). [Online]. Available:
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/
www/repository.html

[5] A. Qtaish and K. Ahmad, ‘‘Model mapping approaches for XML docu-
ments: A review,’’ J. Inf. Sci., vol. 41, no. 4, pp. 444–466, Aug. 2015.

[6] H. Lu, W.Wang, and J. X. Yu, ‘‘Path materialization revisited: An efficient
storage model for XML data,’’ in Australian Computer Science Communi-
cations. Darlinghurst, Australia: Australian Computer Society Inc., 2002,
pp. 85–94.

[7] J. Qin, S. M. Zhao, S. Q. Yang, and W. H. Dou, ‘‘XPEV: A storage model
for well-formed XML documents,’’ in Proc. Int. Conf. Fuzzy Syst. Knowl.
Discovery, 2005, pp. 360–369.

[8] H. Zhu, H. Yu, G. Fan, and H. Sun, ‘‘Mini-XML: An efficient mapping
approach betweenXML and relational database,’’ inProc. IEEE/ACIS 16th
Int. Conf. Comput. Inf. Sci. (ICIS), May 2017, pp. 839–843.

[9] A. Gabillon andM. Fansi, ‘‘ANewPersistent Labelling Scheme for XML,’’
J. Digit. Inf. Manage., Digit. Inf. Res. Found., vol. 4, no. 2, pp. 112–116,
2006.

[10] S. Subramaniam, S.-C. Haw, and P. K. Hoong, ‘‘S-XML: An efficient
mapping scheme to bridge XML and relational database,’’ Knowl.-Based
Syst., vol. 27, pp. 369–380, Mar. 2012.

[11] A. Qtaish and K. Ahmad, ‘‘XAncestor: An efficient mapping approach for
storing and querying XML documents in relational database using path-
based technique,’’ Knowl.-Based Syst., vol. 114, pp. 167–192, Dec. 2016.

[12] M. Yoshikawa, T. Amagasa, S. Shimura, and S. Uemura, ‘‘XRel: A path-
based approach to storage and retrieval of XML documents using relational
databases,’’ACMTrans. Internet Technol., vol. 1, no. 1, 2001, pp. 110–114.

[13] F. Abduljwad, W. Ning, and X. De, ‘‘SMX/R: Efficient way of storing and
managing XML documents using RDBMSs based on paths,’’ in Proc. 2nd
Int. Conf. Comput. Eng. Technol., Apr. 2010, pp. 143–147.

[14] J. Ying, S. Cao, and Y. Long, ‘‘An efficient mapping approach to store
and query XML documents in relational database,’’ in Proc. 2nd Int. Conf.
Comput. Sci. Netw. Technol., Dec. 2012, pp. 2140–2144.

[15] M. A. I. Fakharaldien, J. M. Zain, and N. Sulaiman, ‘‘XRecursive: An
efficient method to store and query XML documents,’’ Austral. J. Basic
Appl. Sci., vol. 5, no. 12, 2011, pp. 2910–2916.

[16] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang, ‘‘Storing and querying ordered XML using a relational database
system,’’ inProc. ACMSIGMOD Int. Conf.Manage. Data SIGMOD, 2002,
pp. 204–215.

[17] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury,
‘‘ORDPATHs: Insert-friendly XML node labels,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data SIGMOD, 2004, pp. 903–908.

[18] D. Florescu and D. Kossmann, A Performance Evaluation of Alternative
Mapping Schemes for Storing XML Data in a Relational Database. Paris,
France: Institut National de Recherche en Informatique et en Automatique,
1999.

[19] H. Jiang, H. Lu, W. Wang, and J. Xu Yu, ‘‘XParent: An efficient RDBMS-
based XML database system,’’ in Proc. 18th Int. Conf. Data Eng.,
Feb. 2002, pp. 335–336.

[20] S. Prakas, S. S. Bhowmick, and S. Madria, ‘‘SUCXENT: An efficient path-
based approach to store and query XML documents,’’ in Proc. Int. Conf.
Database Expert Syst. Appl., 2004, pp. 285–295.

[21] P. Suri and D. Sharma, ‘‘A model mapping approach for storing XML
documents in relational databases,’’ Int. J. Comput. Sci. Issues, vol. 9, no. 3,
pp. 495–498, 2012.

[22] J. Ahn, D.-H. Im, T. Lee, andH.-G.Kim, ‘‘A dynamic and parallel approach
for repetitive prime labeling of XML with MapReduce,’’ J. Supercomput.,
vol. 73, no. 2, pp. 810–836, Feb. 2017.

[23] E. Khanjari and L. Gaeini, ‘‘A new effective method for labeling dynamic
XML data,’’ J. Big Data, vol. 5, no. 1, pp. 1–17, Dec. 2018.

[24] J. Ahn, D.-H. Im, T. Lee, and H.-G. Kim, ‘‘Parallel prime number labeling
of large XML data using MapReduce,’’ in Proc. 6th Int. Conf. IT Converg.
Secur. (ICITCS), Sep. 2016, pp. 1–2.

[25] Sun Microsystems, Streaming APIs for XML Parsers, Java Web Services
Performance, Team White Paper, Oracle Corp., Redwood City, CA, USA,
2005.

[26] S. C. Haw and C. S. Lee, ‘‘Node labeling schemes in XML query optimiza-
tion: A survey and open discussion,’’ IETE Tech. Rev., vol. 26, no. 2, 2009,
pp. 89–101.

[27] A. Saikia, S. Joy, D. Dolma, and R. Mary. R, ‘‘Comparative performance
analysis of MySQL and SQL server relational database management sys-
tems in windows environment,’’ Int. J. Adv. Res. Comput. Commun. Eng.,
vol. 4, pp. 160–164, Mar. 2015.

EMYLIANA SONG is currently pursuing the mas-
ter’s degree with the Faculty of Computing and
Informatics, Multimedia University. Her research
interest includes XML data mapping scheme
in transforming XML document into relational
database.

SU-CHENG HAW (Member, IEEE) is currently
an Associate Professor with the Faculty of Com-
puting and Informatics, Multimedia University,
where she leads several funded researches on
the XML databases. She has published more
than 120 articles in reputable journals and con-
ferences. Her research interests include XML
databases, query optimization, data modeling,
semantic web, ontology, data management, and
data warehousing.

VOLUME 8, 2020 177639


