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ABSTRACT Modeling Internet graphs at the autonomous-system (AS) level is helpful for recognizing and
predicting the development trend of evolving Internet topology from a macro perspective. In contrast to the
global statistical models such as the power-law distribution of node degrees, the structural decomposition
models can more effectively represent the local connection. In this paper, we propose a structure-based
model. Starting with the classification of links among the AS nodes, the proposed model partitions the core
and periphery of Internet graphs into 16 atomic-level solid and dotted components. Additionally, the model
captures the stable evolving features of these components based on the UCLA dataset that continuously
explore Internet graphs over a long historic period from 2001 to 2015. Finally, according to the structure-
based model, we design a new Internet-topology generator. Compared with the recently proposed generators,
the advantages of our generator are as follows: (1) it accurately captures the structure decomposition property
studied in this work, (2) it performs best on three statistical properties of the distance, assortativity coefficient,
and maximum degree, and (3) it exhibits the best comprehensive performance in terms of runtime and
multiple graph properties.

INDEX TERMS Internet topology, structural model, power-law distribution, graph decomposition, complex
network, scale-free network.

I. INTRODUCTION
The autonomous-system (AS)-level Internet topology has
evolved over time, and its size (i.e., the number of AS nodes)
has rapidly grown from 10,000 in 2001 to approximately
50,000 in 2015 [1]. In addition, many potential Internet
structures, e.g., named data networking [2], [3], information
centric networking [4], and location-based networking [5],
may make the Internet evolve to a new era. Thus, predicting
the evolution trend of the topology is critical. Moreover,
topological models are commonly used tools to test network
technologies, such as routing protocol [6]. In contrast to
the large-scale realistic networks, these models can gener-
ate small-scale graphs with adjustable characteristics, which
greatly reduce the cost and provide a variety of topological
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scenarios for testing. Therefore, accurately modeling and
recognizing the evolution of Internet topology is important.

The development of Internet-topology models has gone
through three stages, namely, random, power-law and
structure-based graphs. Random graphs are generated by ran-
domly connecting the edges of node pairs independent of
one another, such as the Waxman model [7]. Although the
random-graph models are easy to use, they are not capable
of better capturing the statistical features of the Internet [8].
One of the important metrics used in topology analysis is
the distribution of the node degrees. Faloutsos et al. [9]
demonstrated that this property is well described by the
power-laws in the Internet topology. In addition, more studies
have focused on power-law models [10], such as the Inet-
3.0 model. However, the inherent biases of the traceroute
sampling and collection of border gateway protocol (BGP)
data from limited vantage points have led researchers to
investigate the true existence of power-laws in the topology,
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although the degree distribution is widely accepted to be
heavy-tailed [11].

In contrast to the power-lawmodels, which focus on global
statistical properties, the structure-based models pay more
attention to the local structures, which represent the unique
characteristics of the Internet. AS is a set of routers within a
single administration domain, and the Internet is built on two
domain categories, i.e., transit and stub [12], where the transit
AS usually carries traffic among other domains and a stub AS
that is connected to the end hosts relies on at least one transit
AS for connectivity to the rest of the Internet. According to
the physical interpretation, transit-stubmodels [12], [13] have
been widely used to represent the hierarchical structure of the
Internet. However, fewer types of AS categories usually lead
to poor performance of the generators that use these models
in terms of statistical properties, such as the power-law of the
node degrees [13]. In addition, more studies investigated the
local structures [14]–[23]. Zhou et al. [16] found that the rich-
club connectivity phenomenon, namely, the Internet core, has
a high connection density. Carmi et al. [17] partitioned the
Internet using k-shell decomposition. Çetinkaya et al. [18]
analyzed the Internet backbone. Jia et al. [19] studied the
structure of the evolving IPv6 Internet. Liu et al. [20] par-
titioned the Internet into single-edge, binary, and triangular
components. Accongiagioco et al. [21] found that the Internet
core can be broken down into two layers. Lei et al. [22]
studied the structure entropy. Zu et al. [23] proposed a city-
level IP geolocation algorithm that decomposed the Internet
through the geographical location of nodes. However, the
structural models that capture the evolution features of the
Internet topology need to be further studied.

Recently, we have partitioned the Internet transit and
stub AS nodes into seven categories by analyzing the phys-
ical mean of the normalized Laplacian spectral proper-
ties [24]–[29]. However, these works only provided a static
node classification and have not yet structurally distinguished
the core from the periphery. In this paper, the novelty is
twofold. First, we establish an Internet core-periphery struc-
tural model composed of 16 atomic-level solid and dotted
components and find many uniform distribution features that
exist in the decomposed components based on the UCLA
dataset that spans 15 years [1]. In addition, we observe
that most of the node and edge properties of these compo-
nents remain constant except for the top five highest degrees
of transit AS nodes in the process of historical evolution
from 2001 to 2015. Second, we propose an Internet-topology
generator based on our structural model and numerically
verifies that the generator demonstrates the best comprehen-
sive performance in terms of runtime and multiple graph
properties compared with the recently proposed generators.

The remainder of this paper is organized as follows.
Section II describes the background and related work.
Section III presents our Internet core–periphery structural
model. Section IV presents the investigation of the evolu-
tionary stability of the different components of our model
using the UCLA dataset. Section V proposes a new generator,

namely, SICPS (Simulates Internet graphs using the Core-
Periphery Structure). Section VI shows the results obtained
by SICPS. Finally, Section VII concludes this paper.

II. BACKGROUND AND RELATED WORK
The Internet topology is usually studied at two levels: router
and AS levels [30], [31]. The former adopts routers as nodes,
whereas the latter, which is the focus of our research, maps a
set of routers to an AS node and describes the BGP connec-
tions among these AS nodes.

A. GLOBAL STATISTICAL PROPERTIES
The AS-level Internet topology represents simple and undi-
rected graph G = (V ,E), where V and E are the AS node
and edge sets, respectively. Because the topology inherits
the non-trivial property of complex networks, it is usually
described using some statistical properties such as degree,
distance, and clustering [30]–[36]. A commonly used degree
property is degree distribution P(k), which is the probability
that a randomly selected node has k degrees. However, the
Internet topology is usually represented by another degree
property, namely, the complementary cumulative distribu-
tion function (CCDF) degree, which is defined as F (k) =∑

d>k P(d), because this degree property is closer to the
power-law [10].

The average neighbor connectivity is a degree correlation
property [32], which is defined as

K (k) =
∑kmax

k ′=1
k ′
(
kP(k, k ′)

)/
kP(k), (1)

where P(k, k ′) denotes the joint degree distribution, namely,
the probability that a randomly selected edge connects k-
and k ′-degree nodes, and kmax and k are the maximum and
average degrees, respectively.

In addition, the assortativity coefficient [33] shows the
statistic of the node interconnectivity, which is defined as

r=
‖E‖−1

∑‖E‖
i=1 jiki−

[
‖E‖−1

∑‖E‖
i=1

1
2 (ji+ki)

]2
‖E‖−1

∑‖E‖
i=1

1
2

(
j2i +k

2
i

)
−

[
‖E‖−1

∑‖E‖
i=1

1
2 (ji+ki)

]2 ,
(2)

where ji and ki are the degrees of the nodes at the ends of the
ith edge and ‖·‖ denotes the cardinality of a set.
This paper chooses spectral property R =

∑‖V‖
i=1 (1− λi)

4

to describe the distance, where λi (i = 1, 2, · · · , ‖V‖) are all
the eigenvalues of the normalized Laplacian matrix of graph
G [34] because our recent work has demonstrated that the
spectral property R is a good indicator of the average path
length [26]. However, the former can be calculated faster
using the circle enumeration method than the latter [28].

Moreover, clustering is usually described by clustering
coefficient C (k) = 2m (k)

/
(k (k − 1)), where m(k) is the

average number of links between the neighbors of k-degree
nodes. Specifically, C(k) can be summarized as average clus-
tering coefficient C =

∑
k C(k)P(k) [33].
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Whereas the aforementioned properties represent the
global statistical features of the topology, they neglect the
local structure of the Internet, which is an essential factor that
distinguishes the Internet from other complex networks.

B. INTERNET TOPOLOGY MODELS
1) INET-3.0 MODEL
Inet-3.0 is a classical power-law model of the Internet topol-
ogy [10]. First, it generates n nodes and uses two power-laws,
namely, the degree-rank and degree CCDF, to respectively
determine the degrees of the top three and the other nodes.
Second, it uses a preference connection rule and the fraction
of degree one to construct a tree that includes n nodes. Finally,
it fills all free degrees of the n nodes and outputs a graph.

2) ORBIS MODEL
ORBIS uses dK to characterize an Internet graph [14], where
dK describes the correlations among the degrees of nodes
in subgraphs with d nodes. In particular, 1K and 2K repro-
duce the degree and joint degree distributions, respectively.
In addition, ORBIS uses two random-graph-construction
algorithms to simulate the 1K and 2K Internet graphs.
Mahadevan et al. [14] found that the 2K random graphs could
capturemore properties of the Internet topologies except clus-
tering and indicated that the clustering could be reproduced
by 3K random graphs. However, the design of 3K generators
is still a problem that needs to be resolved [14].

3) S-BITE MODEL
S-BITE is a model based on the core structure [21]. The
model partitions the Internet topology into two distinct
blocks: the core, where the nodes are tightly intercon-
nected, and the periphery. Moreover, it separates the core
into two layers: the centrum, whose density curve remains
almost constant during the five-year evolution of Internet
from 2007 to 2011, and layer-1, whose degree distribution
in the vertical networks, which is composed of the centrum
nodes plus all the layer-1 nodes and their connections to the
centrum, is approximately uniform. The model simulates the
peripheral nodes using three global statistical parameters: p,
P1, and P2. Specifically, p is a probability that a peripheral
node connects to two interconnected core nodes. P1 and P2
describe two statistical curves that are respectively related to
the edge-number and preference distributions of connecting
to the core for each newly-added peripheral node. In other
words, the local structures of the peripheral nodes are not
considered. We note that preference distribution P2 is time-
dependent [21], i.e., the distribution is not constant during the
Internet evolution from 2007 to 2011.

4) SINETL MODEL
According to Faloutsos’ transit-stub model [9], [37],
as shown in Fig. 1(a), we add more multi-homed links to
construct a static-node-classification model [25], as shown
in Fig. 1(b), in which the red dotted lines represent the

FIGURE 1. Two transit-stub models of the Internet topology.
(a) Faloutsos’s star-based model [9], [37]: deleting all the links between
the transit AS nodes results in a non-connected graph that is constituted
by the union of star subgraphs. (b) Our static node classification
model [24], [25]: adding more multi-homed links for better
fault-tolerance.

multi-homed links. Fig. 1(a) shows that each stub AS node
is directly connected to a transit AS node through only one
link in the early Internet topology, which is called a single-
homed network. However, in terms of better fault tolerance,
an increasing number of stub AS nodes tend to be connected
to transit AS nodes through more links, which is called a
multi-homed network. Fig. 1(b) shows that more dotted (i.e.,
multi-homed) edges result in the transit and stub AS nodes to
be partitioned into seven categories, namely, Q, S, P, I , J , K ,
and L. The seven node categories are defined as follows [25]:

P = {v ∈ V |dG (v) = 1 }

Q = {v ∈ V |∃w, (v,w) ∈ E,w ∈ P }

K =
{
v ∈ VI

∣∣dGI (v) = 1 ∧ ∀ (v,w) ∈ EI , dGI (w) > 1
}

S = {v ∈ VI |∃w, (v,w) ∈ EI ,w ∈ K }

I =
{
v ∈ VI

∣∣dGI (v) = 0
}

J =
{
v ∈ VI

∣∣dGI (v) = 1 ∧ ∀ (v,w) ∈ EI , dGI (w) = 1
}

L =
{
v ∈ VI

∣∣dGI (v) ≥ 2 ∧ ∀ (v,w) ∈ EI ,w ∈ S
}
,

(3)

where GI = (VI ,EI ) is a subgraph of G that is induced by
node set V

/ (
P
⋃
Q
)
and dG (v) and dGI (v) are the degrees

of node v in graph G and subgraph GI , respectively.
According to Eq. (3), all one-degree nodes in Internet graph

G are marked as P, and all nodes that are connected to P are
marked as Q. If all the P and Q nodes are removed from G,
the following would result in remaining graph GI , in which
all one-degree nodes with neighbors whose degree is not less
than two are marked as K , all nodes that are connected to K
are marked as S, all one-degree nodes whose neighbors have
a degree of one are marked as J , all zero-degree nodes are
marked as I , and all d-degree nodes (d ≥ 2) that can only be
connected to S are marked as L. In addition, we consider all
nodes in Internet graphG that have not been marked as noise.
Using the UCLA dataset [1] that contains AS graphs

from 2001 to 2015, we find that the average percentage of
noise nodes is 3.7% and the average percentage of the L nodes
is 1.6%. Thus, the six nodes marked as Q, S, P, I , J , and K
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TABLE 1. Cognitive perspectives of different models

can be used to accurately model the static-node-classification
of the Internet graph.

Recently, we have designed a model SInetL to sample
a given Internet graph using the static-node-classification
feature [29]. The model extracts a subgraph using a sampling
method of the six types of marked nodes. However, the model
neglects the evolving correlation of the Internet graphs at
different snapshots. The input of the sampling model is a
complete graph that already contains all the topological infor-
mation, whereas the input of the evolving simulation models
only contains some topological features, which are more
conducive to human cognition for a nontrivial topological
structure. The samplingmodel is oriented to a static graph and
is not suitable for structural cognition and trend prediction.

5) COMPARISON OF THE AFOREMENTIONED MODELS
The AS-level Internet topology is nontrivial [9]. Thus,
researchers must recognize the topology from different per-
spectives. In general, a model is built from a cognitive
perspective. Table I lists the cognitive perspectives of the
aforementioned models. However, researchers usually do
not care about the advantages and disadvantages of the dif-
ferent perspectives but pay more attention on whether the
model properties from these perspectives exist in the explored
graphs [10], [14], [21]. Thus, in Sections III and IV, we show
that we use a series of explored AS graphs in the UCLA
dataset to mine the properties of our model.

In the existing literature [10], [14], [21], [29], comparison
of the models was mainly realized through comparison of
the AS graphs that were simulated by generators because the
purpose of the generators was to simulate AS graphs that
contained properties of these models.

III. CORE-PERIPHERY STRUCTURAL MODEL
Eq. (3) shows that Internet graph G has many one-degree
P nodes, and each Q node must be connected to at least
one P node. If the one-degree nodes are called pendants
and the nodes connected to the one-degree nodes are called
quasi-pendants, subgraph GI is also composed of pendants
(K and J nodes), quasi-pendants (S nodes), and the remaining
zero-degree I nodes, as expressed in Eq. (3), which exhibits
the fractal structure of an Internet graph. We need to note
that in subgraph GI , each one-degree J node can only be

FIGURE 2. Connection relationships among the six node categories Q, S,
P , I , J and K of Internet graph G, where the symbol XY denotes the set
that consists of all the X nodes connected to Y nodes. Note that the solid
lines represent different types of edges that really exist in the graph, and
the unidirectional and bidirectional dotted lines respectively establish the
injective and bijection relationships between two node sets that belong
to the same category. Specific-ally, A and B are the same node if the
dotted line relation maps A to B.

connected to another J node. In addition, Eq. (3) shows that
in graph G, each I node must be connected to at least two Q
nodes and each K (or J ) node must be connected to at least
one Q node.

According to the aforementioned analysis, we derive the
connection relationships amongQ, S,P, I , J , andK , as shown
in Fig. 2, which classify all the edges of Internet graph
G to six bipartite-graph sets and three interconnected sets,
where a bipartite-graph set means that a traveler can move
from one node set to another by one jump. By considering
bipartite-graph edge set IQ − QI in Fig. 2 as an example, the
subgraph induced by the edge set is a bipartite graph, where
IQ and QI are two disjoint node sets, and only edges from IQ
to QI are included in the subgraph.
In addition, Fig. 2 shows that the nine subgraphs induced

by the distinct edge sets can be merged again using the nine
injective or bijection relationships. According to Eq. (3), the
structure shown in Fig. 2 can be analyzed as follows.
• First, we neglect the Q nodes that are not connected to
other Q nodes because the percentage of such nodes is
extremely small. According to this simplification, at the
center in Fig. 2, theQ subgraph that is induced by all the
edges linking two Q nodes includes all the Q nodes that
are defined in Eq. (3). Except for the Q nodes, S repre-
sents the set of remaining transit AS nodes. However, the
probability of connecting two S nodes is significantly
less than that of connecting two Q nodes because the
vast majority of the S nodes have low degrees. In other
words, as shown in the lower right corner in Fig. 2, the
SS subgraph that is induced by all the edges linking two
S nodes includes only part of the S nodes that are defined
in Eq. (3).

• Second, according to Eq. (3), we can determine P = PQ,
I = IQ, J = JQ = JJ , K = KS = KQ,Q = QP,QI ⊆ Q,
QJ ⊆ Q, Qk ⊆ Q, S = SK , SS ⊆ Sk , SQ ⊆ Sk , and
QS ⊆ Q.

• Finally, we use X − Y to define a bipartite subgraph
induced by all the edges that link the XY and YX nodes,
where X ,Y ∈ {P,Q,K , S, I , J}, and analyze some
characteristics of these subgraphs as follows. (1) The
degrees of all the PQ nodes in the P − Q subgraph are
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one. (2) The degrees of all the KS nodes in the K − S
subgraph are one. (3) The degrees of all the IQ nodes in
the I −Q subgraph are not less than two. (4) The J − J
subgraph has even nodes, and the degree of each JJ node
in the subgraph is one.

To extract the core, which is tightly interconnected, from
the structure shown in Fig. 2, we predefine low-degree thresh-
old d tralow for the transit AS nodes, high-degree threshold dcorhig
for the core, and set d tralow = 10 and dcorhig = 100, which can
capture the more stable characteristics of the evolution of the
Internet (a detailed analysis is presented in Section IV).

In addition, we use the following steps to separate the Q
subgraph denoted byQ−Q, which is induced by all the edges
between the Q nodes, into five subcomponents.
Step 1: Derive a low-degree node set

QBbip (l) =
{
v
∣∣v ∈ Q ∧ dQ (v) ≤ d tralow },

where dQ (v) is the degree of node v in Q − Q. We let
QUbip = Q

/
QBbip (l) and obtain first subcomponent Qbip, i.e.,

a subgraph of Q−Q that is induced by all the edges between
the QBbip (l) and Q

U
bip nodes.

In addition, we partition QUbip into low-degree node set

QUbip (l) =
{
v
∣∣∣v ∈ QUbip ∧ dQbip (v) ≤ d tralow }

and high-degree node set QUbip (h) = QUbip
/
QUbip (l), where

dQbip (v)is the degree of node v in subcomponent Qbip.
Step 2: Let Qcor be a subgraph of Q−Q that is induced by

node set QUbip and decompose QUbip into
low-degree node set

QUcor (l) =
{
v
∣∣∣v ∈ QUbip ∧ dQcor (v) ≤ d tralow },

high-degree node set

QUcor (h) =
{
v
∣∣∣v ∈ QUbip ∧ dQcor (v) ≥ dcorhig

}
,

and middle-degree node set

QUcor (m) = QUbip
/(

QUcor (l) ∪ Q
U
cor (h)

)
,

where dQcor (v) is the degree of node v in subgraph Qcor .
Then, we derive second-fourth subcomponents
QUcor (h)−Q

U
cor (h),Q

U
cor (h)−Q

U
cor (m, l), andQ

U
cor (m, l)−

QUcor (m, l), namely three subgraphs of Qcor induced by
different types of edges among node sets QUcor (h) and
QUcor (m, l) = QUcor (m) ∪ Q

U
cor (l).

Step 3: Let QBred (l) be a subset of node set Q
B
bip (l), where

eachQBred (l) node has at least oneQ
B
bip (l) neighbor inQ−Q.

Then, we can obtain fifth subcomponent

QBred (l)− Q
B
red (l),

which is a subgraph of Q − Q that is induced by all edges
between the QBred (l) and Q

B
red (l) nodes. �

Because node set Q is derived by P, the topological struc-
ture associated with the Q and P nodes is shown in Fig. 3,
in which the structural partition of the P − Q subgraph is

FIGURE 3. Structural partition of the subgraph induced by Q and P nodes,
where the solid ellipses represent the distinct types of edges that really
exist in Inter-net graph G, the dotted ellipses establish the mapping
(injective and bijection) relationships described in Fig. 2, and the
rectangles denote node sets. Note that the left solid connected
component is the P-Q subgraph, QU

bip
(
h, l
)
= QU

bip
(
h
)
∪QU

bip
(
l
)

and

QU
cor

(
h,m, l

)
= QU

cor
(
h
)
∪QU

cor (m) ∪QU
cor

(
l
)
.

on the left and that of the Q − Q subgraph is on the right.
We define QUcor (0) as the set of zero-degree nodes in Qcor
andQBbip (0) as a set ofQ

B
bip (l) nodes that are not connected to

theQUbip nodes. In Fig. 3, we neglect theQ
U
cor (0) andQ

B
bip (0)

nodes because the percentage of such nodes is much less than
that of the rest of the topology. In the P − Q subgraph in
Fig. 3, PQ (l) = PQ means that all the PQ nodes have low
degrees. In addition, QP can be divided into low-degree node
setQP (l) =

{
v
∣∣v ∈ QP ∧ dP−Q (v) ≤ d tralow } and high-degree

node set QP (h) = QP
/
QP (l), where dP−Q (v) is the degree

of node v in the P−Q subgraph. As well known, Fig. 3 shows
the extraction of the coreQcor and other two components, i.e.,
Qbip and P − Q, from the perspective of edge classification.
We need to note that the dotted ellipses in Fig. 3 can also be
viewed as edge connections.

Fig. 2 shows that the Q subgraph forms the connec-
tion center of the other peripheral structures. At the center
of Fig. 4, we reduce the Q subgraph into four types of
node sets, namely, QUcor (h), Q

U
cor (m), Q

U
cor (l), and Q

B
bip (l),

which include all the Q nodes. Using the UCLA dataset [1],
we confirm that all stub AS nodes P, I , J , and K have
low degrees because the maximum degree of these nodes
did not exceed 30 from 2001 to 2015. Thus, Fig. 4 shows
the corresponding node sets as IQ (l), JQ (l), JJ (l), KQ (l),
and KS (l). However, transit AS nodes Q and S have two
types of degrees, i.e., low and high degrees. Thus, in each
subgraph X–Y shown in Fig. 4 (X ,Y ∈ {P,Q,K , S, I , J}),
which is induced by node sets XY , YX and all the edges
between XY and YX , we partition YX into low-degree node
set YX (l) =

{
v
∣∣v ∈ YX ∧ dX−Y (v) ≤ d tralow } and high-degree

node set YX (h) = YX
/
YX (l), where Y ∈ {S,Q} and

dX−Y (v) is the degree of node v in the X–Y subgraph.
We note that threshold d tralow is reset to 30 for QS (l) and
SQ (l) in the S–Q subgraph based on the analysis presented
in Section IV.F . According to the node-set decomposition,
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FIGURE 4. Structural partition of Internet graph G except for P nodes,
where the solid ellipses represent the distinct types of edges that really
exist in the graph, the rectangles denote node sets, and the dotted
ellipses U-W establish the map-ping relationships between two node
sets U and W that belong to the same cat-egory, for example,
SQ
(
h
)
,SQ

(
l
)
− SK

(
h
)
,SK

(
l
)

means U = SQ
(
h
)
,SQ

(
l
)
= SQ

(
h
)
∪ SQ

(
l
)

and W = SK
(
h
)
,SK

(
l
)
= SK

(
h
)
∪ SK

(
l
)
.

we extend the relationships shown in Fig. 2 to the structural
model shown in Fig. 4.

In summary, the combination of Figs. 3 and 4 shows
our core-periphery structural model of the Internet topology.
Figs. 3 and 4 show eight solidly connected branches in which
each branch consists of one solid component and some addi-
tional edge sets. Eight dotted-connected branches are also
present in which each consists of one dotted component. The
sixteen components of our model are listed in Table 2.

In Section IV, we present the similarity between the
Accongiagioco’s core model [21] and our model. In addition,
our model exhibits a peripheral structure using fruitful
bipartite-graph connection relationship in detail. Further-
more, we explore the stable characteristics of our model using
the UCLA dataset, as presented in Section IV.

IV. EVOLUTIONARY STABILITY ANALYSIS
Our analysis uses the UCLA dataset because it provides pub-
lic AS graphs that span 15 years from January 2001 to January
2015 [1]. This section first lists some notations associated
with our structural model in Table 3 and then presents the
analyses of the evolutionary stability of the distinct compo-
nents of our model, as shown in Figs. 3 and 4 and Table 2.

A. Qcor COMPONENT
First, we analyze the node properties of the Qcor component,
which has three node sets, namely, QUcor (h), Q

U
cor (m), and

TABLE 2. Sixteen solid and dotted components of our structural model.

FIGURE 5. Evolving node properties of the Qcor component in the UCLA
dataset. (a) Node number vs. t (the number of months since January
2001). (b) Degree distribution vs. low- and middle-degrees, where QU

cor
(
l
)

is a low-degree node set and QU
cor (m) is a middle-degree node set.

QUcor (l). Fig. 5(a) shows that
∥∥QUcor (h)∥∥ and

∥∥QUcor (l)∥∥ lin-
early increases and

∥∥QUcor (m)∥∥ quadratically increases with
exploration time t , which is defined as the number of months
since January 2001. In addition, Fig. 5(b) shows that the
degrees of the QUcor (l) nodes range from 1 to 10, whereas
those of the QUcor (m) nodes range from 11 to 99. From the
statistical curves of the UCLA graphs shown in Fig. 5(b),
we observe that the low degrees of the QUcor (l) nodes and
the middle degrees of the QUcor (m) nodes obey two distinct
power-law distributions.

Fig. 5(b) shows that the low and middle degrees have con-
stant distributions and do not change with time, whereas the
high degrees tend to increase with time. We sort the degrees
of the nodes in QUcor (h) by decreasing order and let the ith
highest-degree be dhcor (i). Fig. 6(a) shows that the dhcor (i)
versus t curve approximately obeys a linear relationship when
i ≥ 6, which is defined as

dhcor (i) = mi · t + bi, (4)

where mi and bi are the slope and intercept of the linear
relationship, respectively.
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TABLE 3. Notations of our structural model.

However, the dhcor (i) versus t curve approximately exhibits
some piecewise linear features when i ≤ 5, which means that
the evolutionary trends of the top five highest-degrees are not
constant over the long historical process in 15 years. From
the comparison of Figs. 6(a), (b), and (g), we observe that the
high-degree feature widely exists in other components of the
Internet topology. In addition, Figs. 6(a), (b) and (g) show
the following characteristics.

• In Qcor and Qbip that consist of transit AS nodes,
the probabilities of the top five highest degree nodes
connected to other transit AS nodes rapidly increases
because the slope of the lines shown in Figs. 6(a) and (b)
indicates an increasing trend with time.

• In subgraphs X − Q, where X ∈ {P, I , J ,K }, the prob-
abilities of the top five highest degree nodes connected
to stub AS nodes do not significantly changed, as shown
in Fig. 6(g).

In addition, Fig. 6 shows that the high degrees in the
peripheral structure that consists of Qbip and X–Y subgraphs

FIGURE 6. Evolving properties of high-degrees in the UCLA dataset.
(a) Degree of QU

cor
(
h
)

nodes in the Qcor component vs. t (the number of
months since Ja-nuary 2001). (b) Degree of QU

bip
(
h
)

nodes in the Qbip
component vs. t . (g) Degree of QI

(
h
)

nodes in the I −Q component vs. t .
In terms of (a), (b) and (g), when i ≥ 6, the i th highest-degree vs. t
approximately obey a linear relation that can be represented by a tuple
consisting of slope mi and intercept bi . Specifically, in (c) and (e), the
parameter i is defined as the rank of QU

cor
(
h
)

nodes sorted by the
decreasing order of degree in Qcor ; in (d ) and (f ), the parameter i is
defined as the rank of QU

bip
(
h
)

nodes sorted by the decreasing order of
degree in Qbip; in (h), the parameter i is defined as the rank of QI

(
h
)

nodes sor-ted by the decreasing order of degree in I −Q.

exhibit better power-law relationships in the mi (bi) versus i
curve when i ≥ 6.
Next, we analyze the edge property of the Qcor com-

ponent and point out the similarity between Qcor and the
Accongiagioco’s core model [21]. In [21], the core nodes are
divided into two layers, namely, centrum and layer-1. The
core is divided into three networks, namely, centrum net-
work that consists of all the centrum nodes and their mutual
connections, vertical network that consists of the centrum
network plus all the layer-1 nodes and their connections to
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FIGURE 7. Evolving edge properties of the Qcor component in the UCLA
dataset. (a) Density curve D

(
i
)

of the QU
cor

(
h
)
−QU

cor
(
h
)

edge
connections vs. rank i of QU

cor
(
h
)

nodes. (b) Connection probability
Pc
(
k
)

vs. degree k of QU
cor

(
m, l

)
nodes. (c) Joint degree distribution

P
(
k1,k2

)
of the QU

cor (m)−QU
cor (m) edge connections (k1 = 11,50 and

99) vs. degree k2 of QU
cor (m) nodes. (d ) Connection probability Pl

(
k
)

vs.
degree k of QU

cor (m) nodes.

the centrum, and horizontal network that consists of only
the layer-1 nodes plus their connections to other layer-1
nodes. Fig. 3 shows that our model also decomposes core
Qcor into three subgraphs, which are respectively induced
by three types of edges in core Qcor , namely, QUcor (h) −
QUcor (h),Q

U
cor (h)−Q

U
cor (m, l), andQ

U
cor (m, l)−Q

U
cor (m, l).

In [21], the centrum network contains stable density curve
D (i) = 2e

/
(i (i− 1)) (i = 1, 2, · · · , nc), where 1, 2, · · · , nc

represents all the nodes in the network sorted according to a
certain order and e is the number of edges in the subgraph of
the network induced by the first i nodes, 1, 2, · · · , i. In the
present study, we also use the density curve to present the
edge property in the QUcor (h)−Q

U
cor (h) subgraph and sort all

the nodes in the subgraph according to a decreasing order of
degree dQcor (v). Fig. 7(a) shows that the Q

U
cor (h)− Q

U
cor (h)

subgraphs of our model also exhibit a stable density curve on
the UCLA dataset that spans 15 years.

Moreover, the degrees of the layer-1 nodes in the ver-
tical network follow a uniform distribution [21]. To cap-
ture the feature, we define Pc (k) as the probability that an
QUcor (h) − QUcor (m, l) edge connects a k-degree QUcor (m, l)
node in core Qcor . Fig. 7(b) shows that the Pc (k) ver-
sus k curve also approximately obeys a uniform distri-
bution as k falls in the middle degrees from 11 to 99.
Thus, we infer that the QUcor (m) node set is associated with
layer-1. We note that Fig. 5(a) shows that

∥∥QUcor (m)∥∥ �∥∥QUcor (l)∥∥, i.e., QUcor (m) occupies most of the nodes in core
Qcor . In addition, Fig. 7(b) shows that the Pc (k) distribu-
tion remains stable in the UCLA dataset over the span of
15 years.

Because the degrees of the QUcor (l) nodes are obviously
less than those of the QUcor (m) nodes in the Qcor component,
the QUcor (m)−Q

U
cor (m) edges represent the principal part of

the QUcor (m, l) − QUcor (m, l) connections. We use the joint
degree distribution, which is defined as [32]

P (k1, k2) = µ (k1, k2) · m (k1, k2)
/
(2m), (5)

wherem (k1, k2) is the number of edges connecting the nodes
with k1 and k2 degrees, m is the total number of edges, and
µ (k1, k2) is one if k1 = k2 and two otherwise to characterize
the QUcor (m) − QUcor (m) connection feature. Specifically, k1
and k2 represent the degrees in coreQcor . Through the UCLA
dataset analysis that spans 15 years, we find that P (k1, k2)
of the QUcor (m) − QUcor (m) connections obeys a uniform
distribution where k1, k2 ∈ [11, 99], which is the range of the
middle degrees, as shown in Fig. 7(c). We note that Fig.7(c)
includes three extracted distributions P (11, k2), P (50, k2),
and P (99, k2). Moreover, we define Pl (k) as the probability
that a QUcor (l)−Q

U
cor (m) edge connects a k-degree Q

U
cor (m)

node in core Qcor . Fig. 7(d) shows that the Pl (k) versus
k curve also approximately obeys a uniform distribution.
We note that the QUcor (l) − QUcor (l) edges are neglected in
our model because the number of such edges is very small.

B. Qbip COMPONENT
First, we analyze the node properties of the Qbip component,
which contains three node sets, namely,QUbip (h),Q

U
bip (l), and

QBbip (l). Fig. 8(a) shows that the cardinalities of these node

sets
∥∥∥QUbip (h)∥∥∥, ∥∥∥QUbip (l)∥∥∥, and ∥∥∥QBbip (l)∥∥∥ linearly increases

with exploration time t . From the statistical curves shown in
Figs. 8(b) and (c), we observe that the degrees of the QUbip (l)
and QBbip (l) nodes have constant distributions. We note that
the feature of high degrees associated with QUbip (h) has been
analyzed, as shown in Figs. 6(b), (d), and (f ).
Next, we analyze the edge properties of the Qbip compo-

nent. Specifically, QUbip (h)−Q
B
bip (l), Q

U
bip (l)−Q

B
bip (l), and

QBred (l)−Q
B
red (l) represent the corresponding edge connec-

tions in the component.
Because the QBbip (l) degree distribution is constant in the

UCLA dataset over the span of 15 years, we adopt Pb (k),
which is defined as the probability that a QUbip (h) − Q

B
bip (l)

edge connects a k-degree QBbip (l) node in Qbip, to study the
QUbip (h) − QBbip (l) connection feature. Fig. 9(a) shows that
the Pb (k) versus k curve obeys a constant distribution in the
UCLA dataset that spans 15 years.

In addition, because both the QUbip (l) and Q
B
bip (l) degree

distributions are constant in the UCLA dataset over the span
of 15 years, we use joint degree distribution P (k1, k2), which
is defined in Eq. (5), to analyze theQUbip (l)−Q

B
bip (l) connec-

tion feature, where k1 and k2 are the degrees of the QUbip (l)
and QBbip (l) nodes in Qbip, respectively. According to the
UCLA dataset, we observe that P (k1, k2) of the QUbip (l) −
QBbip (l) connections for each given k2 approximately follows
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FIGURE 8. Evolving node properties of the Qbip component in the UCLA
dataset. (a) Node number vs. t (the number of months since January
2001). (b) Degree distribution of QU

bip
(
l
)

nodes. (c) Degree distribution of

QB
bip
(
l
)

nodes. (d ) Edge (or node) number vs.t (the number of months

since January 2001), where
∥∥∥QB

bip
(
l
)∥∥∥ denotes the number of QB

bip
(
l
)

nodes and
∥∥∥QB

red
(
l
)
−QB

red
(
l
)∥∥∥ denotes the number of edges connecting

two QB
bip
(
l
)

nodes in the component.

FIGURE 9. Evolving edge properties of the Qbip component in the UCLA
dataset. (a) Probability Pb

(
k
)

vs. degree k of QB
bip
(
l
)

nodes. (b) Joint

degree distribution P
(
k1,k2

)
of the QU

bip
(
l
)
−QB

bip
(
l
)

connections where

k2 = 1 and 10 vs. degree k1 of QU
bip
(
l
)

nodes. (c) Probability PS
(
k2
)

vs.

degree k2 of QB
bip
(
l
)

nodes. (d ) Joint degree distribution P
(
k1,k2

)
of the

QB
red

(
l
)
−QB

red
(
l
)

connections vs. rank of degree-pairs
(
k1,k2

)
sorted by

Algorithm 1.

a uniform distribution for k1 ∈ [1, 10], i.e., the range of the
degrees of QUbip (l) nodes, as shown in Fig. 9(b).

For given k2, we derive the following probability

PS (k2) =
∑d tralow

k1=1
P (k1, k2), (6)

and learn that the distribution of thePS (k2) versus k2 relation-
ship is constant in the span of 15 years, as shown in Fig. 9(c).
According to the aforementioned analysis, we can determine
that

P (k1, k2) ≈ PS (k2)
/
d tralow, (7)

where d tralow = 10 is the maximum degree of theQUbip (l) nodes
in the Qbip component.

According to the list in Table 3, the QBred (l) − QBred (l)
edges are not included in Qbip, but each QBred (l) − QBred (l)
edge connects two QBbip (l) nodes (with degrees k1 and k2)
in Qbip, i.e., the edge corresponds to degree pair (k1, k2),
where k1, k2 ∈

[
1, d tralow

]
and k1 ≤ k2. We sort the degree

pairs associated with theQBred (l)−Q
B
red (l) connections using

Algorithm 1.

Algorithm 1 Degree-Pair Sorting
1: Input: Upper bound Ubof the degrees.
2: Output: Degree-pair list DPL sorted by a certain order.
3: Initialize len← 2 and DPL ← ∅.
4: Whilelen ≤ 2Ub do
5: Initialize k1← 1 and k2← len− k1.
6: While k1 ≤ k2 ∧ k1 ≤ Ub ∧ k2 ≤ Ub do
7: Add degree-pair (k1, k2) to the end of the degree-pair

list DPL.
8: Update k1← k1 + 1 and k2← len− k1.
9: End while
10: Update len← len+ 1.
11: End while

In Algorithm 1, line 1 inputs the maximum value of the
degrees that may occur in the degree pairs. If the maximum
value is Ub, line 2 outputs a list that contains all possi-
ble degree pairs (k1, k2), which satisfies k1 ≤ k2 ≤ Ub.
Moreover, lines 3–10 confirm that degree pair (k1, k2) with
a smaller value of len = k1+ k2 is located in front of the list.

We use joint degree distribution P (k1, k2) defined in
Eq. (5) to show the QBred (l) − QBred (l) connections and
use Algorithm 1 to sort all possible degree pairs (k1, k2).
Fig. 9(d) shows that P (k1, k2) of the QBred (l) − QBred (l)
connections also remains stable in the UCLA dataset over
the span of 15 years. Furthermore, Fig. 8(d) shows that
both

∥∥∥QBbip (l)∥∥∥ and
∥∥QBred (l)− QBred (l)∥∥ linearly increases

with exploration time t . Thus, at any t , we can establish the
following relationship:∥∥∥QBred (l)−QBred (l)∥∥∥=0.23 (∥∥∥QBbip (l)∥∥∥−413)+207, (8)

Eq. (8) shows that
∥∥QBred (l)− QBred (l)∥∥ is very small

because the slope of the linear expression of the edge number
relative to the node number is approximately 0.23.
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C. X − Y COMPONENT
This section illustrates that the X − Y component is one of
the five instances, namely, P− Q, I − Q, J − Q, K − Q and
K − S, which are listed in Table 2. Specifically, X denotes P,
I , J , or K , and Y denotes Q or S. These instances share two
common features. One is that X and Y are stub and transit
AS node sets, respectively, and the other is that XY (l) =
X , i.e., all the X nodes have low degrees and are included
in the X − Y component. YX is divided into high-degree
node set YX (h) and low-degree node set YX (l), where the
corresponding definitions are listed in Table 3. Because the
five instances have similar properties, this section presents
their combined analyses. Specifically, we take the I − Q
subgraph as an example to analyze the X − Y component
because the subgraph contains the largest number of edges
in these instances.

First, we analyze the node properties of the I − Q com-
ponent, which contains three node sets: QI (h), QI (l), and
IQ (l). Figs. 10(a)–(c) show that ‖QI (h)‖, ‖QI (l)‖, and∥∥IQ (l)∥∥ linearly increases with t and that the degrees ofQI (l)
and IQ (l) nodes follow constant power-law distributions.
We note that the property of high-degrees of QI (h) has been
analyzed, as shown in Figs. 6(g) and (h).

Next, we analyze the edge properties of the I −Q compo-
nent, which contains edge sets QI (h) − IQ (l) and QI (l) −
IQ (l). For the QI (h) − IQ (l) connections, Fig. 10(d) shows
that the Pi (k) versus k curve obeys a constant power-law
distribution over a span of 15 years, where Pi (k) is defined as
the probability that aQI (h)−IQ (l) edge connects a k-degree
IQ (l) node. In addition, Fig. 10(e) shows that for each k2, joint
degree distributionP (k1, k2) of theQI (l)−IQ (l) connections
is approximately uniform for k1 ∈ [1, 10], where k1 and k2 are
the degrees ofQI (l) and IQ (l) nodes in the I−Q component,
respectively. Furthermore, Fig. 10(f ) shows that the curve of

the probability PS (k2) =
∑d tralow

k1=1
P (k1, k2) versus the degree

k2 of IQ (l) nodes obeys a constant power-law distribution,
where d tralow = 10. In the summary shown in Figs. 10(e)
and (f ), we can deduce that P (k1, k2) ≈ PS (k2)

/
d tralow when

PS (k2) is known.
We omit the repetitive analyses of the P − Q, J − Q,

K − Q and K − S components because they are similar
to the I − Q component. We note that in the P − Q and
K − S components, the degrees of all the PQ (l) and KS (l)
nodes are one; namely, the analysis shown in Figs. 10(c)–(f )
can be neglected for the two components. According to the
comparison presented in Sections IV.B and IV.C , we can find
plenty of similarities between the Qbip and X − Y compo-
nents. However, an obvious difference exists between the two
components, namely, more distribution characteristics in the
X − Y component obey the power-law.

D. JJ
(
l
)
− JJ

(
l
)

EDGE SET
Please note that the definitions of all notations presented
in this section are listed in Table 3. Fig. 4 shows that
JJ (l) − JJ (l) connects two JQ (l) nodes in the J − Q com-

FIGURE 10. Evolving node and edge properties of the I −Q component in
the UC-LA dataset. (a) Node number vs. t (the number of months since
January 2001). (b) Degree distribution of QI

(
l
)

nodes. (c) Degree
distribution of IQ

(
l
)

nodes. Note that the degrees of IQ
(
l
)

nodes are not
less than 2 and not more than 30. (d ) Probability Pi

(
k
)

vs. degree k of
IQ
(
l
)

nodes. (e) Joint degree distribution P
(
k1,k2

)
of the QI

(
l
)
− IQ

(
l
)

connections (where k2 = 2 and 5) vs. degree k1 of QI
(
l
)

nodes. (f )
PS
(
k2
)

vs. degree k2 of IQ
(
l
)

nodes, where PS
(
k2
)

is defin-ed as∑
k1

P
(
k1,k2

)
and P

(
k1,k2

)
is the joint degree distribution in (e).

ponent. Section III confirms that JJ (l) = JQ (l) = J and
dJ−J (v) = 1 for each node v in the J − J subgraph,
which mean that each JQ (l) node is connected to only one
JJ (l) − JJ (l) edge, i.e., edge number ‖JJ (l)− JJ (l)‖,
is strictly equal to half of the number of J nodes, and node
number ‖J‖ is even.

To study the JJ (l) − JJ (l) connection feature, we sort
all possible pairs of degrees dJ−Q (v) where v ∈ JQ (l)
using Algorithm 1 whose design is presented in Section IV.B
and create degree pair

(
dJ−Q (v1) , dJ−Q (v2)

)
for each

JJ (l) − JJ (l) edge that connects nodes v1 and v2,
where v1, v2 ∈ JQ (l) and dJ−Q (v1) ≤ dJ−Q (v2) .
We note that 1 ≤ dJ−Q (v) < 30 for each node
v ∈ JQ (l). Fig. 11(a) shows that the joint degree distribution
P (k1, k2) versus the degree-pair rank of the JJ (l)−JJ (l) con-
nections is constant in the UCLA dataset that spans 15 years
and is similar to the power-law.

E. S − S SUBGRAPH
Fig. 4 shows that the SS node set is decomposed into SS (h) =
SS ∩ SK (h) and SS (l) = SS ∩ SK (l), where SK (h) and
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SK (l) are high- and low-degree SK node sets in the K − S
component, respectively. Thus, the S − S subgraph con-
sists of three types of edge sets, namely, SS (h) − SS (h),
SS (h)− SS (l), and SS (l)− SS (l).
According to the analysis presented in Section III, SS ⊆

SK = S. Thus, degree pair (dK−S (v1) , dK−S (v2)) can be
used to characterize each SS (l) − SS (l) edge that connects
two SK (l) nodes v1 and v2, where dK−S (v1) ≤ dK−S (v2).
We sort all the degree pairs using Algorithm 1, and Fig. 11(b)
shows that the joint degree distribution P (k1, k2) versus
degree-pair rank of the SS (l)−SS (l) connections is constant
in the UCLA dataset over the span of 15 years and is similar
to the power-law.

Moreover, to study the SS (h) − SS (l) connections,
we define Psl (k) as the probability that an SS (h) − SS (l)
edge connects a k-degree SS (l) node, where k is the degree
of the SS (l) node in the K − S component. Fig. 11(c) shows
that the Psl (k) versus k curve obeys a constant power-law
distribution in the UCLA dataset that spans 15 years.

Finally, we analyze the connection feature associ-
ated with the SS (h) nodes. Fig. 11(d) shows that at
any exploration time t , we can establish the following
relationships:
‖SS (l)− SS (l)‖ = 1.6314 (‖SK (l)‖ − 576)+ 103
‖SS (h)− SS (l)‖ = 0.8328 (‖SK (l)‖ − 576)− 153
‖SK (h)‖ = 0.0239 (‖SK (l)‖ − 576)+ 9
‖SS (h)− SS (h)‖ = 1.0211 (‖SK (h)‖ − 9)− 5.

(9)

Eq. (9) indicates that the SS (h) − SS (h) edges, where
SS (h) = SS ∩ SK (h), are very sparse compared with node
number ‖SK (h)‖. In addition, the difference between the
degrees of the two SK (h) nodes in the K − S component
is not obvious because SK (h) is far away from the core.
Thus, we assume that the SS (h) − SS (h) edges uniformly
connect two SK (h) nodes at random, and the probability that
an SS (h) − SS (l) edge connects a k-degree SK (h) node is
approximately uniform.

F. S −Q COMPONENT
The S − Q component shown in Fig. 4 has two transit AS
node sets SQ and QS , which can be divided into SQ (h),
SQ (l), QS (h), and QS (l). The division method is listed in
Table 3. In addition, the connections in the component are
composed ofQS (h)−SQ (h),QS (h)−SQ (l),QS (l)−SQ (h),
and QS (l) − SQ (l). According to Section IV.C , if all the
SQ (h) nodes are removed from the S −Q component, S −Q
can be viewed as an instance of the X − Y component,
as defined in Section IV.C . Thus, we reset low-degree thresh-
old of the S − Q component dS−Qlow = 30 to reduce the
number of SQ (h) nodes. Fig. 12(a) shows that the node and
edge numbers in the S − Q component linearly increase
except for

∥∥QS (h)− SQ (h)∥∥ and
∥∥QS (l)− SQ (h)∥∥, which

quadratically increase. In addition, Fig. 12(a) shows that
at any exploration time t , we can establish the following

FIGURE 11. Evolving edge properties of the JJ
(
l
)
− JJ

(
l
)

connections and
the S-S subgraph in the UCLA dataset. (a) Joint degree distribution
P
(
k1,k2

)
of the JJ

(
l
)
− JJ

(
l
)

connections vs. rank of degree-pairs(
k1,k2

)
sorted by Algorithm 1, where k1 and k2 are the degrees of J

nodes in the J −Q component. (b) Joint degree distribution P
(
k1,k2

)
of

the SS
(
l
)
− SS

(
l
)

connections vs. rank of deg-ree-pairs
(
k1,k2

)
sorted by

Algorithm 1, where k1 and k2 are the degrees of S nodes in the K − S
component. (c) Probability Psl

(
k
)

vs. degree k of SS
(
l
)

no-des, where k
is the degree of S nodes in the K − S component. (d ) Edge (node) number
vs. t (the number of months since January 2001), where

∥∥SK
(
h
)∥∥ is the

number of SK
(
h
)

nodes,
∥∥SK

(
l
)∥∥ is the number of SK

(
l
)

nodes,∥∥SS
(
l
)
− SS

(
l
)∥∥ is the number of edges connecting two SS

(
l
)

nodes,∥∥SS
(
h
)
− SS

(
l
)∥∥ is the number of edges connecting SS

(
h
)

and SS
(
l
)

nodes, and
∥∥SS

(
h
)
− SS

(
h
)∥∥ is the number of edges connecting two

SS
(
h
)

nodes.

relationships:
∥∥QS (h)− SQ (l)∥∥ = 39.58 (‖QS (h)‖ − 8.62)+ 490∥∥QS (l)− SQ (l)∥∥ = 1.14 (‖QS (l)‖ − 254.5)+ 1315∥∥SQ (h)∥∥ = 1.497 (‖QS (h)‖ − 8.622)− 23∥∥SQ (l)∥∥ = 0.679 (‖QS (l)‖ − 254.49)+ 533.

(10)

Despite the use of a larger low-degree threshold,
Figs. 12(b) and (c) show that the degree distributions of the
QS (l) and SQ (l) nodes in the S − Q component remain
constant and tend toward the power-law. Owing to the simi-
larity between the S − Q and the X − Y (see Section IV.C)
components, such as the high-degree properties shown in
Fig. 12(d), the properties of the edges that connect the
low-degree nodes, and that of the edges that connect the high-
and low-degree nodes, this section only presents the analyses
of the difference, i.e., the property of theQS (h)−SQ (h) edges
that connects the high- and high-degree nodes.
In Algorithm 2, we introduce the given n nodes into c-

ordered categories. Specifically, line 3 ensures that the nodes
with higher degrees are introduced in the categories at the
front of the list. When n < c, lines 4 and 5 separately
introduce one node in the first n category and let the last c−n

VOLUME 8, 2020 175287



B. Jiao, W. Zhang: Structural Decomposition Model for the Evolution of AS-Level Internet Topologies

Algorithm 2 Node Classification and Sorting
1: Input: High-degree nodes 1, 2, · · · , n and their degrees

d1, d2, · · · , dn, category number c.
2: Output: Node category list L1,L2, · · · ,Lc sorted by a

certain order.
3: Initialize Lj← ∅ for j = 1, 2, · · · , c, and sort the

high-degree nodes by decreasing order of their degrees.
Without loss of generality, we assume d1 ≥ d2 ≥ · · ·
≥ dn.

4: If n < c do
5: Update Lj← {j} for j = 1, 2, · · · , n.
6: Elseifn ≥ c do
7: Derive r=n/c, and initialize L1←{1, 2, · · · , round (r)},

where round (r) rounds r to the nearest integer.
8: For j = 2 : 1 : c do
9: Update Lj←

{
max

(
Lj−1

)
+1,max

(
Lj−1

)
+2, · · · , round (j×r)},
where max (X) returns the largest element in X .

10: End for
11: End if

categories be empty sets. Otherwise, lines 6–10 introduce the
n nodes in the c categories and ensure that the cardinality of
each category is approximately equal.

Using Algorithm 2, we classify node sets QS (h) and
SQ (h) into c-sorted categories LQS1 ,LQS2 , · · · ,LQSc and
L
SQ
1 ,L

SQ
2 , · · · ,L

SQ
c , respectively. In addition, we represent

the QS (h)− SQ (h) connections using joint rank distribution
P (r1, r2), which is defined as follows:

P (r1, r2) = m (r1, r2)
/
m, (11)

where m denotes the total number of QS (h) − SQ (h) edges,
m (r1, r2) is the number of edges that connects a node in LQSr1
and another node in L

SQ
r2 , and r1 and r2 are the ranks of L

QS
r1

and L
SQ
r2 , respectively, in the sorted node categories.

Fig. 12(e) shows that for any given r2, joint rank distri-
bution P (r1, r2) tends to be stable and can be characterized
using a quintic fitting curve. In addition, Fig. 12(f ) shows that
the SQ (h) nodes with higher r2 tend to be connected to more
high-degree QS (h) nodes with lower r1.

G. (DOTTED) NODE MAPPING COMPONENT
Figs. 3 and 4 show that except for the solid-edge sets, our
structural model contains dotted-edge sets, which establish
injective or bijection relationships between two node sets U
and W . Specifically, u ∈ U and w ∈ W are in the same
node if the dotted edge maps u to w. Thus, we can derive
that ‖U‖ = e ≤ ‖W‖, where e is the number of dotted
edges. Figs. 3 and 4 show eight node-mapping components
associated with the dotted edges, which implement the merg-
ing of the solid components, as presented in the analysis in
Sections IV.A–IV.F . This section presents the use of a joint
rank distribution to represent the U −W connections.

FIGURE 12. Evolving node and edge properties of the S −Q component in
the U-CLA dataset. (a) Edge (or node) number vs. t (the number of
months since Ja-nuary 2001), where

∥∥QS
(
h
)∥∥,
∥∥QS

(
l
)∥∥,
∥∥∥SQ

(
h
)∥∥∥and∥∥∥SQ

(
l
)∥∥∥correspond to the number of nodes, and

∥∥∥QS
(
h
)
− SQ

(
h
)∥∥∥,∥∥∥QS

(
h
)
− SQ

(
l
)∥∥∥,
∥∥∥QS

(
l
)
− SQ

(
h
)∥∥∥ and

∥∥∥QS
(
l
)
− SQ

(
l
)∥∥∥ correspond to

the number of edges. (b) Degree distribution of QS
(
l
)

nodes. (c) Degree
distribution of SQ

(
l
)

nodes. (d ) The i th highest-degrees of SQ
(
h
)

and
QS
(
h
)

nodes vs. t with 1 ≤ i ≤ 6, which approximately obey linear
relations that can be represented by tuples consisting of slope mi and
intercept bi . (e) Joint rank distribution P

(
r1, r2

)
of the QS

(
h
)
− SQ

(
h
)

co-nnections with r2 = 1 vs. rank r1 of c categories of QS
(
h
)

nodes
where c = 30. (f ) Three quintic fitting curves of the joint rank distribution
P
(
r1, r2

)
of the QS

(
h
)
− SQ

(
h
)

connections with r2 = 1,16 and 29.

For each dotted (node mapping) componentU−W , we let
G (U) and G (W ) be two solid components that include U
and W , respectively, and define dG(U) (u) and dG(W ) (w) as
the degrees of node u ∈ U in G (U) and node w ∈ W in
G (W ), respectively. Then, we can decompose U andW into
high-degree and non-high-degree node sets using dG(U) (u)
and dG(W ) (w), respectively, as listed in Table 4.

In Algorithm 3, we introduce all the nodes in set U , which
belong to dotted component U − W , into c + d ordered
categories, where c is an input number and d is the degree
threshold, as listed in Table 4. Specifically, line 3 decomposes
U into high-degree node set UH and non-high-degree node
set UN based on Table 4. Line 4 calls Algorithm 2 to divide
all nodes UH into top c-ordered categories. In addition, for
any k ∈ {1, 2, · · · , d}, lines 5–10 introduce all nodes u in
UN with dG(U ) (u) = k into the (c+ d − k + 1)th category,
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TABLE 4. Node classifications of different U −W dotted components in
Figs. 3 and 4 (except for KS

(
l
)
)

where dG(U ) (u) is the degree of node u in solid component
G(U ), as listed in Table 4.

Algorithm 3Node Classification and Sorting in Dotted Com-
ponents
1: Input: Node set U , solid component G (U), node degree

dG(U) (u) for ∀u ∈ U and category number c.
2: Output: Node category list L sorted by a certain order.
3: Decompose U into a high-degree node set UH and a
non-high-degree node set UN based on Table 4.

4: Derive the node category list L1,L2, · · · ,Lc of UH using
Algorithm 2.

5: Let d be the degree threshold shown in Table 4 that is
the maximum degree of the non-high-degree nodes.
Initialize k ← d and i← 1.

6: While k ≥ 1 do
7: Derive a node set S =

{
u
∣∣u ∈ UN ∧ dG(U) (u) = k

}
,

and let the (c+ i)th node category Lc+i be S.
8: Update k ← k − 1 and i← i+ 1.
9: End while
10: Update L ← L1,L2, · · · ,Lc,Lc+1, · · · ,Lc+d .

Thus, using Algorithm 3, we can classify node sets U and
W in dotted componentU−W into two sorted category lists,
namely, UL1,UL2, · · · ,ULcu and WL1,WL2, · · · ,WLcw.
Then, we define the joint rank distribution of the U − W

edges as P (r1, r2) = m (r1, r2)
/
m, where m (r1, r2) is the

number of dotted edges that maps theULr2 nodes to theWLr1
nodes and m is the total number of U −W edges.
By considering theQP (h) ,QP (l)−QUcor (h,m, l) ,Q

B
bip (l)

edges as an example, Fig. 13(a) shows that for any given r2,
joint rank distribution P (r1, r2) tends to be stable and can be
represented using a quintic fitting curve. Fig. 13(b) shows that
the QP (h) ,QP (l) nodes with higher r2 tend to be mapped to
the QUcor (h,m, l) ,Q

B
bip (l) nodes with higher r1.

We note that KS (l) in the KQ (l) − KS (l) dotted compo-
nent cannot be classified using Algorithm 3 because all the
degrees of the KS (l) nodes in the K − S solid component
are one. To classify KS (l) into the c categories, we sort

FIGURE 13. Joint rank distribution of the QP
(
h
)
, QP

(
l
)
−QU

cor
(
h,m, l

)
,

QB
bip
(
l
)

dotted component. (a) Joint rank distribution P
(
r1, r2

)
with

r2 = 20 vs. rank r1 of c + d categories of QU
cor

(
h,m, l

)
, QB

bip
(
l
)

nodes
where c = 10 and d = 10. (b) Three quartic fitting curves of the joint rank
distribution P

(
r1, r2

)
+ 0.001 with r2 = 1,11 and 20, P

(
r1, r2

)
+ 0.001

avoids P
(
r1, r2

)
close to 0.

all the SK (h), SK (l) nodes as S1, S2, · · · , Sn according to a
decreasing order of dK−S (v), which is the degree of node v
in K − S, and classify them into c categories:

{S1} , · · · , {Sc−1} , {Sc, · · · , Sn}.

Because each KS (l) node is connected to only one
Si (i ∈ {1, 2, · · · , n}) node in K − S, the Si node in the c
categories can be replaced by all the KS (l) nodes that are
connected to Si, i.e., KS (l) is classified into the c sorted node
categories using the classification of the SK (h), SK (l) nodes.

V. INTERNET-TOPOLOGY GENERATOR SICPS
Our structural model decomposes the Internet topology into
many bipartite-graph components, which remain stable in
terms of statistical features over a span of 15 years except
for the top five highest degrees of transit nodes. However,
the unstable factor shows the trend of the Internet, i.e.,
increasingly more transit nodes tend to be connected to a few
highest degree core nodes. This section describes the design
of Internet-topology generator SICPS based on our structural
model and its evolutionary stability. Specifically, SICPS first
generates eight solid components using the stability of the
node and the edge properties analyzed in Sections IV.A–IV.F .
Then, it realizes the merging of the eight solid components
using the dotted-edge properties analyzed in Section IV.G.

A. Qcor COMPONENT GENERATION
According to the analysis presented in Section IV.A,
we design Algorithm 4 to generate the Qcor compo-
nent, which consists of two steps, namely, node and edge
generations.

In Algorithm 4, lines 3–6 create nodes and their prede-
fined degrees. We note that the free degree of a node is
equal to its predefined degree minus the number of edges
that have been connected to the node. Lines 7–9 use the
density curve to create QUcor (h) − QUcor (h) edges. Lines
10–19 use the preference attachment distribution to create
QUcor (h)−Q

U
cor (m, l) edges, and lines 20–29 use the uniform
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Algorithm 4 Generation of the Qcor Component
1: Input: Exploration time t . Node properties: linear fitting
lines of

∥∥QUcor (h)∥∥ and
∥∥QUcor (l)∥∥, quadratic fitting curve

of
∥∥QUcor (m)∥∥, degree distribution Pl (k) of QUcor (l) nodes

where k ∈ {1, 2, · · · , 10}, degree distribution Pm (k) of
QUcor (m) nodes where k ∈ {11, 12, · · · , 99}, fitting curves
f1 (t) , f2 (t) , · · · , f5 (t) of top 5 highest-degrees of QUcor (h)
nodes, fitting curves S (i) and I (i) associated with the slope
and intercept of the linear relation of the ith highest-degree of
QUcor (h) nodes respectively.
Edge properties: density curve
D (i)

(
i = 1, 2, · · · ,

∥∥QUcor (h)∥∥), preference attachment
distribution Pc (k) defined as the probability that a
QUcor (h) − QUcor (m, l) edge connects a k-degree QUcor (m, l)
node.
2: Output: The Qcor component.
3: Derive the high-degree node number h =

∥∥QUcor (h)∥∥, the
middle-degree node number m =

∥∥QUcor (m)∥∥ and the
low-degree node number l =

∥∥QUcor (l)∥∥ at the exploration
time t .

4: Generate h high-degree nodes 1, 2, · · · , h and assign the
degree di to the node i (i = 1, 2, · · · , h), where

di =

{
round (fi (t)) , 1 ≤ i ≤ 5
round (max (S (i) · t + I (i) , 100)) , 6 ≤ i ≤ h.

(12)

5: Generate m middle-degree nodes h+ 1, h+ 2, · · · , h+m
and assign the degree dh+i = k ∈ {11, 12, · · · , 99}
to the node h+ i (i = 1, 2, · · · ,m) using the distribution
Pm (k). Assume dh+i ≥ dh+i+1 for 1 ≤ i ≤ m− 1.

6: Generate l low-degree nodes h+ m+ 1, h+ m+ 2, · · · ,
h+m+l and assign the degree dh+m+i=k ∈{1, 2, · · · , 10}
to the node h+ m+ i (i = 1, 2, · · · , l) using the degree
distribution Pl (k). Assume dh+m+i ≥ dh+m+i+1 where
i = 1, 2, · · · , l − 1.

7: For i = 2 : 1 : h do
8: Derive x = i (i− 1)D (i)

/
2−(i− 1) (i− 2)D (i− 1)

/
2.

Uniformly at random, extract x nodes from
{1, 2, · · · , i− 1} that still have at least one free degree,
and connect node i to the x nodes.

9: End for
10: Define z (i) = i if 1 ≤ i ≤ 5 and z (i) = h− i+ 6

if 6 ≤ i ≤ h.
11: For i = 1 : 1 : h do
12: Let x be the number of free degrees of node

z (i), and classify the x free degrees into different sets
Rk (k = 1, 2, · · · , 99) according to the preference
attachment distribution Pc (k).

13: For k = 1 : 1 : 99 do
14: Derive y = ‖Rk‖, obtain set Yof all the k-degree

nodes in {h+ 1, h+ 2, · · · , h+ m+ l} that still
have at least one free degree, sort the nodes in Y by
decreasing order of fd (v) defined as the number of
free degrees of node v, extract the first

ak = min (y, ‖Y‖) nodes in Y , and connect node z (i)
to the ak nodes.

15: End for
16: End for
17: For i = 1 : 1 : h do
18: Let x be the number of free degrees of node i and Y

be the subset of {h+ 1, h+ 2, · · · , h+ m+ l} that
still have at least one free degree and have not
been attached to node i. Then, extract the top
ak = min (x, ‖Y‖) nodes in Y with highest
fd (v) values and connect node i to the ak nodes.

19: End for
20: For i = 1 : 1 : l do
21: Let x be the number of free degrees of node h+ m+ i.
22: While x ≥ 1 do
23: Uniformly at random select a k ∈ {11, 12, · · · , 99}.

Extract the k-degree node subset Y in {h+ 1, h+ 2,
· · · , h+ m} that still have at least one free degree,
connect node h+ m+ i to a randomly-selected node
in Y that have not been connected by node h+ m+ i
and update x ← x − 1.

24: End while
25: End for
26: Let x be the total number of free degrees of all the nodes

h+ 1, h+ 2, · · · , h+ m, and initialize tc← 0.
27:While x ≥ 2 ∧ tc < 500 do
28: Uniformly at random select k1, k2 ∈ {11, 12, · · · , 99}.

Extract a k1-degree node v1 and a k2-degree node v2 in
{h+ 1, h+ 2, · · · , h+ m} where v1 and v2 are not
connected and have maximum min (fd (v1) , fd (v2)).
If the two nodes can be extracted, connect the two
nodes and update x ← x − 2, otherwise update
tc← tc + 1.

29: End while

distributions to create QUcor (m, l) − QUcor (m, l) edges. We
note that line 10 defines another sorting method of high-
degree nodes because the experimental results show that this
method can minimize the number of free degrees while main-
taining the Pc (k) distribution and avoiding multiple edges.
Algorithm 4 avoids multiple edges by prejudging whether
the two nodes are connected. Because all the nodes and their
degrees are predefined, we can apply 1 × e array L and two
1 × n pointers P1 and P2 to describe all the edges in the
component, where e is the sum of all the degrees and n is
the total number of nodes. We initialize P1 (i) = P2 (i) =∑i−1

j=1 di + 1 for arbitrary node i ∈ {1, 2, · · · , n}, where di
is the degree of node i, and update P2 (i) ← P2 (i) + 1,
L (P2 (i)) = j, P2 (j) ← P2 (j) + 1, and L (P2 (j)) = i for
each newly added edge connecting nodes i and j. Then, set
L ([P1 (i) : 1 : P2 (i)]) always stores all the nodes that have
been connected to arbitrary node i. We note that in line 4 of
Algorithm 4, the symbol round (x) rounds x to the nearest
integer.
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Algorithm 5 Generation of the X − Y Component
1: Input: Exploration time t . Node properties: linear fitting
lines of ‖YX (h)‖, ‖YX (l)‖ and ‖XY (l)‖, degree distribution
PY (k) of YX (l) nodes where k ∈ {1, 2, · · · , 10}, degree
distribution PX (k) of XY (l) nodes where k ∈ {1, 2, · · · , 30},
fitting curves f1 (t) , f2 (t) , · · · , f5 (t) of top 5 highest-degrees
of YX (h) nodes, fitting curves S (i) and I (i) associated
with the slope and intercept of the linear relation of the ith

highest-degree of YX (h) nodes respectively. Edge proper-
ties: two preference attachment distributions, Pc (k) defined
as the probability that a YX (h) − XY (l) edge connects a
k-degree XY (l) node, PS (k2) defined as the probability that
a YX (l) − XY (l) edge connects a k2-degree XY (l) node.
Note that PX (k) = 0 when k = 11, 12, · · · , 30 for the
Qbip component since the degree of QBbip (l) nodes in the
component is not more than d tralow = 10. Specifically, 30 is
the upper bound of the degrees of all XY (l) nodes.
2: Output: The X − Y component.
3: Derive the three node numbers h = ‖YX (h)‖, y = ‖YX (l)‖

and x = ‖XY (l)‖ at the exploration time t .
4: Generate h high-degree nodes 1, 2, · · · , h and assign the
degree di to the node i (i = 1, 2, · · · , h), where

di =

{
round (fi (t)) , 1 ≤ i ≤ 5
round (max (S (i) · t + I (i) , 11)) , 6 ≤ i ≤ h.

(13)

where round (x) rounds x to the nearest integer.
Note that max and min return the maximum and minimum
values respectively.

5: Generate y low-degree nodes h+ 1, h+ 2, · · · , h+ y and
assign the degree dh+i = k ∈ {1, 2, · · · , 10} to the
node h+ i (i = 1, 2, · · · , y) using the degree distribution
PY (k). Assume dh+i ≥ dh+i+1 where i = 1, 2, · · · , y− 1.

6: Generate x low-degree nodes h+ y+ 1, h+ y+ 2, · · · ,
h+y+x and assign the degree dh+y+i=k ∈{1, 2, · · · , 30}
to the node h+ y+ i (i = 1, 2, · · · , x) using the degree
distribution PX (k). Assume dh+y+i ≥ dh+y+i+1 where
i = 1, 2, · · · , x − 1.

7: Derive the joint degree distribution P (k1, k2) = PS (k2)
/10, which is the probability that a YX (l)− XY (l) edge
connects a k1-degree YX (l) node and a k2-degree XY (l)
node.

8: Derive el which is the total number of YX (l)−XY (l) edges,
namely the sum of dh+1, dh+2, · · · , dh+y.

9: For k1 = 1 : 1 : 10 do
10: For k2 = 1 : 1 : 30 do
11: Derive z = round (el × P (k1, k2)), and initialize

tc← 0.
12: While z ≥ 1 ∧ tc = 0 do
13: Extract a k1-degree node v1 in {h+ 1, h+ 2,

· · · , h+ y} and a k2-degree node v2 in
{h+ y+ 1, h+ y+ 2, · · · , h+ y+ x} where
v1 and v2 are not connected and have maximum
min (fd (v1) , fd (v2)). If the two nodes can be
extracted, connect the two nodes and update

z← z− 1, otherwise update tc← 1. Note
that fd (v) is defined as the number of free
degrees of node v.

14: End while
15: End for
16: End for
17: Define z (i) = i if 1 ≤ i ≤ 5 and z (i) = h− i+ 6 if

6 ≤ i ≤ h.
18: For i = 1 : 1 : h do
19: Let zf be the number of free degrees of node

z (i), and classify the zf free degrees into different sets
Rk (k = 1, 2, · · · , 30) according to the preference
attachment distribution Pc (k).

20: For k = 1 : 1 : 30 do
21: Derive zk = ‖Rk‖, obtain set L of all the

k-degree nodes in {h+ y+ 1, h+ y+ 2,
· · · , h+ y+ x} that still have at least one free degree,
sort the nodes in L by decreasing order of fd (v)
values, extract the first ak = min (zk , ‖L‖) nodes
in L, and connect node z (i) to the ak nodes.

22: End for
23: End for
24: For i = 1 : 1 : h do
25: Let zf be the number of free degrees of node i and L be

the subset of {h+ y+ 1, h+ y+ 2, · · · , h+ y+ x}
that still have at least one free degree and have not been
attached to node i. Then, extract the top
ak = min (zk , ‖L‖) nodes in L with highest fd (v)
values and connect node i to the ak nodes.

26: End for

B. X − Y COMPONENT GENERATION
According to the analysis presented in Sections IV.B and IV.C ,
the Qbip component can be divided into X − Y categories.
Hence, Algorithm 5 is designed to generate the Qbip compo-
nent and other five components, namely, P−Q, I−Q, J−Q,
K − Q, and K − S, as listed in Table 2.
In Algorithm 5, lines 3–6 create nodes and their predefined

degrees. Lines 7–16 use joint degree distribution P (k1, k2)
that is derived by PS (k2) to create YX (l)−XY (l) edges, and
lines 17–6 use preference attachment distribution Pc (k) to
create YX (h) − XY (l) edges. We note that lines 24–26 are
used to fill the remaining free degrees of the YX (h) nodes.
When Algorithm 5 is applied to create the Qbip compo-

nent, we should map QUbip (h), Q
U
bip (l), and Q

B
bip (l) to YX (h),

YX (l), and XY (l), respectively. After the generation of the
aforementioned six components, namely, Qbip, P−Q, I −Q,
J − Q, K − Q, and K − S. According to Sections IV.B,
IV.D, and IV.E , the QBred (l)−Q

B
red (l) connections should be

added to the Qbip component, the JJ (l)− JJ (l) connections
should be added to the J −Q component, and the three types
of connections, namely, SS (h) − SS (h), SS (h) − SS (l), and
SS (l)− SS (l), should be added to the K − S component.
Figs. 9(d) and 11(a) and (b) show that the joint degree

distributions of the QBred (l) − QBred (l), JJ (l) − JJ (l), and
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SS (l) − SS (l) connections remain stable over a span of 15
years. In addition, Eqs. (8) and (9) indicate that the number
of these connections can be calculated using the inputs of
Algorithm 5, namely, the number of nodes. Thus, using the
constant fitting curves of these distributions and the edge
numbers, the three types of connections can be easily added to
the corresponding components. Moreover, Fig. 11(c) shows
that distribution Psl (k), which is defined as the probability
that an SS (h) − SS (l) edge connects a k-degree SS (l) node,
also remains stable. According to the analysis presented in
Section IV.E , the SS (h)−SS (h) edges uniformly connect two
SK (h) nodes at random, and the probability that an SS (h) −
SS (l) edge connects a k-degree SK (h) node is approximately
uniform. Thus, using the above-mentioned stable distribution
and edge numbers, the SS (h) − SS (h) and SS (h) − SS (l)
connections can also be easily added to theK−S component.

C. S −Q COMPONENT GENERATION
The S−Q component is an extension of theX−Y component,
and the main difference between them is that the former
has an additional type of connection, namely, the edges with
two high-degree ends. Hence, the methods for predefining
the degrees, those that connect the high- and low-degree
nodes and those that connect the low-degree nodes in Algo-
rithm 5 can also be reused to generate the S −Q component,
as indicated by lines 3–5 and 15–16 of Algorithm 6. We note
that lines 6–14 of Algorithm 6 use the joint rank distribution
to create the connection of the QS (h)− SQ (h) edges.

D. DOTTED COMPONENT GENERATION
Sections V.A–V.C present the creation of eight solid compo-
nents of the Internet topology. To obtain a complete graph,
we need to merge these components using the eight dotted
connections shown in Figs. 3 and 4, which can be modeled
by U − W that maps each node u ∈ U to only one node
w ∈ W . The instances of U and W and solid components
G (U) ,G (W ), includingU andW , are listed in Table 4. Once
the mapping from u ∈ U to w ∈ W is completed, G (U) and
G (W ) can be combined into one graph by merging u and w
to a single node. The generation method of the U −W node
mapping connections is demonstrated in Algorithm 7.

VI. EXPERIMENTAL RESULTS
This section presents the comparison of the realistic AS
graphs that are provided by the UCLA dataset [1], including
the results obtained by our SICPS generator and those by four
other generators, namely, Inet-3.0 [10], ORBIS [14], S-BITE
[21], and SInetL [29], which are introduced in Section II.B.
Inet-3.0 is a classical Internet-topology generator that con-
siders both the hierarchical structure and degree power-law
properties. ORBIS aims to obtain the 2K degree distribution,
S-BITE captures the topological core structure, and SInetL
extracts a subgraph from a given Internet topology while
maintaining the normalized Laplacian spectral properties.
We note that the comparison uses the graph properties dis-
cussed in Section II.A. First, a comparison of the largest

Algorithm 6 Generation of the S − Q Component
1: Input: Exploration time t . Node properties: linear fitting
lines of ‖QS (h)‖, ‖QS (l)‖,

∥∥SQ (h)∥∥ and
∥∥SQ (l)∥∥, degree

distributions PQ (k) of QS (l) nodes and PS (k) of SQ (l)
nodes where k ∈ {1, 2, · · · , 30}, fitting curves associated
with the slope and intercept of the linear relations of the ith

highest-degree of QS (h) and SQ (h) nodes. Edge properties:
three preference attachment distributions, PQ,c (k) defined as
the probability that aQS (h)−SQ (l) edge connects a k-degree
SQ (l) node, PS,c (k) defined as the probability that a SQ (h)−
QS (l) edge connects a k-degree QS (l) node, PS (k2) defined
as the probability that a QS (l) − SQ (l) edge connects a k2-
degree SQ (l) node. Joint rank distribution P (r1, r2) defined
in Eq. (11), which is the probability that a QS (h) − SQ (h)
edge connects r1-rank and r2-rank node categories.
2: Output: The S − Q component.
3: Derive node sets QS (h), QS (l), SQ (h), SQ (l) and their
degrees using the methods of lines 3-6 in Algorithm 5.

4: Derive the edge numbers
∥∥QS (l)− SQ (l)∥∥ and∥∥QS (h)− SQ (h)∥∥ using Eq. (10) and the sum of QS (h)

degrees.
5: According to el =

∥∥QS (l)− SQ (l)∥∥ and the input PS (k2),
connect QS (l)− SQ (l) edges using the methods of lines
7-16 in Algorithm 5. Note that line 9 in Algorithm 5 should
be replaced by ‘‘9: For k1 = 1 : 1 : 30 do’’.

6: Respectively classify QS (h) and SQ (h) into c = 30
sorted categories LQ (1) ,LQ (2) , · · · ,LQ (c) and
LS (1) ,LS (2) , · · · ,LS (c) using Algorithm 2, and
initialize eh←

∥∥QS (h)− SQ (h)∥∥.
7: For r1 = 1 : 1 : c do
8: For r2 = 1 : 1 : c do
9: Derive z = round (eh × P (r1, r2)), and initialize

tc← 0.
10: While z ≥ 1 ∧ tc = 0 do
11: Extract a node v1 in the category LQ (r1) and a

node v2 in the category LS (r2) where v1 and v2
are not connected and have maximum
min (fd (v1) , fd (v2)). If the two
nodes can be extracted, connect the two nodes and
update z← z− 1, otherwise update tc← 1. Note
that fd (v) is defined as the number of free degrees
of node v.

12: End while
13: End for
14: End for
15: According to PQ,c (k), connect QS (h)− SQ (l) edges

using the methods of lines 17-26 in Algorithm 5.
16: According to PS,c (k) , connect SQ (h)− QS (l) edges

using the methods of lines 17-26 in Algorithm 5.

AS graph of the UCLA dataset, which was investigated in
January 2015, is shown in Fig. 14.

Because the output of SInetL is a series of subgraphs of
the largest AS graph, the simulated SInetL graph related
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Algorithm 7 Generation of the U −W Node Mapping Con-
nections
1: Input: Two node sets U and W where ‖U‖ ≤ ‖W‖ and
U − W is one of the eight dotted connections in Figs. 3
and 4; two solid components G (U) and G (W ) that include
U and W respectively; category numberc; degree threshold
d in Table 2; the joint rank distribution P (r1, r2), which
is the probability that a U − W edge connects two nodes
respectively belonging to r1-rank W category and r2-rank U
category.
2: Output: The U −W node mapping connections.
3: Respectively classify U and W into two sorted category

lists UL (1) ,UL (2) , · · · ,UL (c+ d) and
WL (1) ,WL (2) , · · · ,WL (c+ d) sing Algorithm 3,
sort all the nodes in U as u1, u2, · · · , um and initialize
z (w)← 0 for each node w ∈ W .

4: For i = 1 : 1 : m do
5: Determine rank r2 where ui ∈ UL (r2), and initialize

b← 0.
6: While b = 0 do
7: For the given rank r2, randomly select a rank

r1 ∈ {1, 2, · · · , c+ d} with the rank distribution
P (r1) = P (r1, r2)

/∑
r1 P (r1, r2).

8: If ‖WS = {w |w ∈ WL (r1) ∧ z (w) = 0 }‖ > 0 do
9: Uniformly at random, select a node w ∈ WS,

establish a dotted connection between ui and w,
namely ui and w are viewed as the same
node in the AS-level Internet topology, and
update b← 1 and z (w)← 1.

10: End if
11: End while
12: End for

to January 2015 is the largest AS graph. Thus, the results
of SInetL are not shown in Fig. 14. Fig. 14(a) shows that
SICPS and all other generators perform well in terms of the
degree power-law property because SICPS adopts the local
degree distributions of the different structural components
as inputs and the other three generators use three types of
global degree distributions as inputs. From the comparison of
Fig. 14(b)–(d), we find that SICPS performs best on all three
properties because it partitions the AS graph into atomic-level
components, separately generates diverse solid components,
and merges them using different dotted connections. The
structural decomposition feature enables SICPS to capture
not only the global degree properties but also the correlation
among the different local components. The average neighbor
connectivity represents the correlation of the node degrees,
which is not adopted by Inet-3.0 and S-BITE. Because
ORBIS uses the 2K degree distribution, which is actually
the joint degree distribution, it performs well, as shown in
Fig. 14(b) and (d). However,Mahadevan et al. [14] indicated
that ORBIS does not consider the clustering property.

Fig. 15 shows our comparison of the five generators,
namely, Inet-3.0, ORBIS, S-BITE, SInetL, and SICPS, using

FIGURE 14. Graph properties of the real AS graph explored in January
2015 and the corresponding simulated graphs. (a) Degree CCDF F

(
k
)

vs.
degree k where F

(
k
)
=
∑

d>k P
(
d
)

and P
(
d
)

is the probability that a
randomly selected node is d -degree. (b) Average neighbour connectivity
K
(
k
)

vs. degree k where K
(
k
)

is simply the average neighbour degree of
the average k-degree node [32]. (c) Clustering coefficient C

(
k
)

vs. degree
k where C

(
k
)
= 2m

(
k
)
/
(
k
(
k − 1

))
and m

(
k
)

is the average number of
links between the neighbours of k-degree nodes. (d ) Percentage of total
nodes vs. node categories P , Q, I , J , K and S defined in Eq. (3) that are the
basic node classification of our structure model.

a series of AS graphs in the UCLA dataset investigated from
January 2001 to January 2015.

Figs. 15(a) and (b) show that SICPS performs well on
both the distance and clustering properties because it can
accurately model the local structure and their correlations
using the solid and dotted components, respectively. S-BITE
accurately captures the core structure of the Internet topol-
ogy. However, it does not consider the peripheral structure,
which accounts for more than 95% of the nodes and is more
important for the performance in terms of the statistical char-
acteristics. S-BITE performs well in terms of the clustering
coefficient because it uses statistical parameter p, which is
the probability that a newly added peripheral node connects
to two interconnected core nodes, to control the property [21].
ORBIS performs well in terms of most of the properties but
neglects the clustering property [14]. Inet-3.0 captures the
degree of the power-law properties, but it does not consider
the degree correlation [10]. We note that the degree and
rank correlations are critical tools for modeling the solid and
dotted components of our structural model. Hence, SICPS
also performs best in terms of the assortativity and maximum
degree properties, as shown in Figs. 15(c) and (d). SInetL
extracts a series of subgraphs from the given unique AS graph
that was explored in January 2015 while maintaining some
properties of the AS graph. In other words, it neglects the
evolution of the UCLA dataset from 2001 to 2015, as shown
in Figs. 15(a) and (e). Fig. 15(e) shows that the average
degrees of the graphs simulated by SICPS are less than those
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FIGURE 15. Graph evolving properties on the UCLA dataset from January
2001 to January 2015 and the corresponding simulated graphs.
(a) Distance property R vs. t (the number of months since January 2001)
where R =

∑
i
(
1− λi

)4
/
∥∥V
∥∥ and λi

(
i = 1,2, · · · ,

∥∥V
∥∥) are all the

eigenvalues of the normalized Laplacian spectrum [34]. (b) Average
clustering coefficient C vs. t where C is defined in section II.A.
(c) Assortativity coefficient r vs. t where r is defined in section II.A.
(d ) Maximum degree kmax vs. t . (e) Average degree k̄ vs. t . (f) Runtime of
the five generators vs. t . Note that the number of nodes increases from
10,301 to 49,448 as t grows from 0 to 168.

of the real-world AS graphs because some free degrees pre-
sented in Section V have not been filled and the L and noise
nodes defined in Eq. (3) are removed to simplify the problem.
However, these phenomena also exist in S-BITE, ORBIS, and
Inet-3.0.

Finally, we compare the runtimes of the five generators,
as shown in Fig. 15(f ). SICPS, ORBIS, and Inet-3.0 all gen-
erate graphs by filling the free degrees; thus, the time com-
plexity of the three generators is O (‖E‖), where ‖E‖ is the
total number of edges. In [29], the time complexity of SInetL
was proven to be O

(
‖E‖2

)
. For each newly added peripheral

node, S-BITE first randomly selects a node that already exists
in the network and then connects the peripheral node to the
selected node. Because the peripheral nodes account for more
than 95% of the Internet topology, the generators that are
based on the free-degree filling realize better time efficiency.

To quantitatively compare the five generators using the
results shown in Fig. 15, for each graph property x in explored
graph Ge and corresponding simulated graph GS , we define

TABLE 5. Average deviation degree and average runtime of the five
generators

the deviation degree as follows:

D (x,Ge,Gs) = |x (Gs)− x (Ge)|
/
|x (Ge)|, (14)

where x (Gs) and x (Ge) denote the property values of x in
GS and Ge, respectively, and then define average deviation
degree D (x, y) of the UCLA dataset for a series of graphs
simulated by certain generator y as follows:

D (x, y) =
∑

Ge∈UCLA
D (x,Gs,Ge)

/
‖UCLA‖ , (15)

where UCLA is the set of explored AS graphs included in the
UCLA dataset, ‖UCLA‖ is the cardinality of the set, and y is
the generator that simulates graphs Gs for the explored AS
graphs Ge ∈ UCLA.
In Table 5, for graph properties x ∈ {R,C, r, kmax , k̄} and

y ∈ {Inet − 3.0,ORBIS, S − BITE, SInetL, SICPS}, we list
average deviation degrees D (x, y) and the average runtime
of the five generators. The list in Table 5 illustrates that
SICPS performs best on properties x ∈ R, r, kmax . Further,
we observe that D

(
k̄, SICPS

)
is closer to D

(
k̄, Inet − 3.0

)
andD

(
k̄, S − BITE

)
. Therefore, from the perspective ofmul-

tiple factors, SICPS demonstrates a greater advantage.

VII. CONCLUSION AND FUTURE WORK
The Internet is a complex network system. According to
different requirements, researchers can model the Inter-
net topologies from various perspectives such as macro,
micro, wired, wireless, and information centric network-
ing. From different perspectives, the physical meaning of
nodes and edges in the topology may be quite different.
In the present study, we focus on the AS-level Internet
topology in which the nodes represent ASs and the edges
describe the data-communication paths among these nodes.
Research on the AS-level topology can satisfy many appli-
cation requirements of interdomain systems, such as routing
optimization.

Although many AS-level Internet-topology models have
been studied, the models based on deep structural decompo-
sition still need to be seriously investigated because the expo-
nential growth of the topological scale has become a critical
obstacle in the analysis of the current Internet behavior [38,
39]. Structural decomposition is a useful means to reduce the
complexity of the problems.
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In the present study, we introduce the periphery that
accounts for more than 95% of AS nodes into the structural
model and decompose the Internet topology into 16 atomic-
level solid and dotted components from the viewpoint of local
connection and evolutionary stability. In contrast to the global
statistical characteristics, our structural decomposition model
is helpful for researchers to more precisely distinguish the
Internet interdomain topology from other complex networks.
In addition, our structural model provides many adjustable
local characteristic parameters, which can help engineers
generate topological environments in diverse scenes.

According to the UCLA dataset that spans 15 years,
we obtain many uniform distribution characteristics that exist
in the decomposed components of the Internet topology.
In contrast to the power-law distribution, the uniform distri-
bution is simpler. The discovery of these simpler distribution
characteristics is more conducive to the recognition of the
evolution stability of the Internet topology.

In addition, we find that most of the node and edge prop-
erties of these components remain constant except for the top
five highest degrees of transit AS nodes. The inconstant prop-
erty implies that the top five transit AS nodes are attracting
more nodes (especially other transit AS nodes) to connect
to them. The evolution of the Internet topology cannot be
stable at all times. In other words, capturing the inconstant
property is also important for the recognition and prediction
of the topology. Furthermore, we design topology generator
SICPS based on our structural model. The comparison results
show that SICPS performs best on both global statistical
and local structural properties. Although our generator needs
more detailed statistical parameters from the 16 components
as inputs, we can view the inputs as an accurate portrait of
the Internet topology, which is an important reflection of the
accuracy of the structural models.

In future work, we will analyze the relationship between
the Internet behavior and the 16 decomposed components
and apply our structural model and topological generator to
network management and other engineering fields.
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