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ABSTRACT In order to mitigate the hot spot problem and prolong the network lifetime, data gathering with
mobile sink is an effective measure to enhance the system performance. However, the movement strategy
of sink node can be regarded as traveling salesman problem, which can hardly obtain the solution with
polynomial running time. To address above problem, an energy-aware data gathering mechanism for mobile
sink in wireless sensor networks using particle swarm optimization is introduced. Firstly, the mathematical
model is established according to the total energy consumption and delay constraints for mobile sink’s data
collection. Then, the optimal rendezvous points are selected to aggregate data originated from the source
nodes through multi-hop relay, and the aggregation tree will be constructed for data transmission. The
spanning tree is encoded into particles, and the random method is designed to generate the data collection
spanning tree with constrain of tree height limit. Furthermore, a particle swarm optimization strategy with
adaptive elite mutation is designed to improve the population diversity and avoid falling into the local optimal
solution prematurely. Experimental results show that the proposed method can meet the delay requirements

and reduce the total energy consumption of the network.

INDEX TERMS Wireless sensor networks, data gathering, particle swarm optimization, energy efficiency.

I. INTRODUCTION

Wireless sensor networks (WSNs) are composed of plenty
of sensor nodes, which have limited processing power and
wireless communication capability. The sensor nodes moni-
tor the surrounding environment, and then transmit the data
to sink through single-hop or multi-hop mode. Due to high
energy consumption for long-distance wireless communi-
cation, those tiny and resource limited sensor nodes usu-
ally communicate with each other with multi-hop manner.
However, the nodes closer to the sink consume more energy
than other nodes because they undertake more forwarding
tasks. Energy consumption imbalance often leads to energy
holes, network segmentation and other problems [1]. In addi-
tion, some applications with strict real-time requirements
need the sensor nodes to transmit the collected data to the
sink in a short time. Therefore, the lifetime and transmission
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delay will be regarded as important evaluation indicators for
data gathering in WSNs [2], [3].

During the phase of multi hop routing, the sensor nodes
close to the sink should relay the packets of other nodes and
its battery power will be depleted earlier. As the situation
worsened, the entire WSNs will be disconnected and result
in the loss of network coverage and connectivity. Therefore,
the strategy of mobile sink is proposed to address above
problem [4]. The mobile sink or a mobile agent can act
as a data collector, move around the monitoring region and
go through the rendezvous points for data gathering. This
strategy can greatly shorten the communication path from
node to sink and make the load more balanced among the
sensor nodes [5]. Also, it should be noted that the selec-
tion of optimal rendezvous points for the mobile sink is a
NP-hard problem [6]. The complexity of sink mobile strategy
mainly comes from the following two factors: one is that sink
has unlimited possibilities to select the rendezvous points.
The other is that it needs to select a reasonable location
from the feasible resolutions to achieve the optimal data
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gathering performance. The conventional solutions focus on
maintaining the energy consumption balance as much as
possible and reducing the delay of network communica-
tion owing to the mobile sink’s movement [7]. The strategy
adopted by most methods is to reconstruct the whole network
into several routing trees or clusters, and the mobile sink node
polls all relay node to obtain the data of the whole network
(81, [9]-

In this paper, we propose an energy-aware data gathering
mechanism for mobile sink in wireless sensor networks using
particle swarm optimization, which we name it EDGMS for
short. Firstly, the mathematical model is established accord-
ing to the total network energy consumption and delay con-
straints in mobile sink data collection. Then, the optimal
rendezvous points to be visited by a mobile sink will be
selected and the aggregation tree will be constructed for data
transmission. The spanning tree is encoded into particles, and
the random method is designed to generate the data collection
spanning tree with constrain of tree height limit. Furthermore,
a particle swarm optimization strategy with adaptive elite
mutation is designed to improve the population diversity and
avoid falling into the local optimal solution prematurely. The
extensive simulation results show that EDGMS can reduces
the transmission delay, balance energy consumption, and
prolongs network lifetime.

Il. RELATED WORK

In recent years, there have been plenty of WSNs applica-
tions with mobile devices to improve the efficiency of data
gathering [6], [10], [11]. Also, the mobility features brings
new research challenges, such as the movement patterns,
the update of the device’s location, ensure of the network
coverage. The above factors will affect the performance of
the network significantly. Some of the previous works have
considered that the centralized method can be applied by
mobile sinks through the selection of the traversal path.

Guo et al. [12] partitioned the network into several disks,
searched for the rendezvous points of a sink node in each
disk, and solved the shortest path traversing all rendezvous
points by using quantum genetic algorithm. According to the
geographical location of nodes, Kumar et al. [13] proposed
a clustering algorithm, and used the classic traveling sales-
man algorithm to find the shortest path through all cluster
centers. By dividing the monitoring area into several grids,
Wang et al. [14] established the objective function with lim-
ited data transmission delay by one-hop data gathering from
sensor nodes to mobile sink. Genetic algorithm was applied to
solve the problem, and the optimal mobile path of sink nodes
was obtained. According to the number of hops to the nearest
rendezvous point and the number of sub nodes, Salarian et al.
[15] proposed a weighted rendezvous planning algorithm to
assign the weights of all sensor nodes. Several nodes with
larger weight are selected as RP points, and the shortest path
of sink node traversing all RP points is calculated based
on traveling salesman theory. By analyzing the forward-
ing hops and estimating the transmission time, Boler and
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Yenduri et al. [16] designed a simplistic hop resilient
multi-sink routing protocol to generate the routing table by
forwarding hops and estimating transmission time to improve
energy utilization. Wang et al. [17] partitioned the whole
network into several sub-domains with virtual grids, and pre-
sented an intelligent data gathering scheme with data fusion
based on a neural network to improve network performance.
Those methods assume that sink node can collect and analyze
the information of all sensor nodes, and the time complexity
increases rapidly with the increase of the number of sensor
nodes. Therefore, they are more suitable for the network with
sparse density and fewer hops for node’s data transmission.

To further increase the flexibility of the system and meet
the delay limitation, the rendezvous-based data collection
approaches have been emerged. The rendezvous points is
defined as exact locations or data buffer node, which will
be visited by mobile sink and conduct direct delivery of
monitoring data. Without any extra route packet and location
information, Huang et al. [18] presented an adaptive beacon
interval strategy to ensure high-reliability for data gathering.
To achieve low-complexity and reduced control overheads,
Liu et al. [19] designed the proactive data reporting protocols
for mobile sink-based data collection. The main advantages
of the protocols include sufficient flexibility in the movement
of mobile sinks and no requirements of GPS devices or prede-
fined landmarks. Yang et al. [20] introduced a detour-aware
mobile sink tracking method to allocate specific nodes as
region agents, which can increase the packet delivery ratio
and decreased energy consumption. To shorten total length
of routing paths and reduce routing energy consumption,
Zhu et al. [21] proposed a Greedy Scanning Data Collection
Strategy, which can effectively overcome the shortcomings of
determined trajectory or random walk in traditional methods.
By setting the threshold value of energy exhausting nodes,
Wang et al. [22] presented an enhanced power efficient gath-
ering in sensor information systems algorithm to resolve the
hot spot problem.

Some techniques focus on the ultimate objective of
improvement of the network lifetime and maintaining of
the system stability. Basagni et al. [35] presented a linear
optimization model of sink node’s movement based on the
grid distribution of the sensor nodes, defined the coefficient
of variation according to the residual energy and variance of
nodes and used a heuristic method to find a near-optimal tour.
Wang et al. [23] proposed an energy-aware sink relocation
algorithm for wireless sensor networks, which defines the
maximum capacity path for data gathering. By adaptively
adjusting the communication radius and selecting data relay
according to the residual energy level of nodes, the algo-
rithm can achieve the balance of energy consumption under
the condition of mobile sink’s data gathering. Wang et al.
[24] proposed an improved ant colony optimization-based
approach with mobile sink, which employs the cluster heads
to perform data collection and directly deliver to mobile sink
through short-range communications. To maximize the life-
time of large-scale wireless sensor networks, Lee et al. [25]
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introduced a linear programming mode to resolve the optimal
sojourning pattern of mobile sink, and proposed a simple
practical heuristic algorithm to find an optimal mobility tra-
jectory for data gathering. By taking into account of the initial
position, data collection route and residence time of mobile
sink, Kaswan et al. [26] established a mixed integer linear
programming model and proposed a greedy maximum resid-
ual energy algorithm. The sensor nodes with more residual
energy have priority to be selected as relay nodes for data
forwarding, and mobile sink makes path planning to traverse
those nodes to complete the data collection of the whole
network.

Note that when there are enough sensor nodes, the time
complexity of choosing the optimal traversal path will
be exponential. That is ultimately a NP-hard problem.
Therefore, for large-scale WSNs, conventional optimiza-
tion methods may require high computing time and huge
space. Multi objective particle swarm optimization (PSO) is
a promising and reasonable method to solve above problem.
In addition, PSO has the following advantages: 1) using real
numbers to encode the solution; 2) few design parameters;
3) easy to implement.

Ill. SYSTEM MODEL

A. NETWORK MODEL

It is assumed that all sensor nodes are randomly deployed
in a rectangle area with the size of M x M, and most of
the sensor nodes will utilize the multi hop mode to com-
municate with mobile sink. By constructing the virtual tree
structure, the nodes close to the mobile sink’s trajectory will
be selected as access node. The other nodes away from the
mobile sink act as member nodes will choose a certain overlay
node as their destinations. The data gathering occurs when
the mobile sink moves along a fixed path periodically with
constant speed and exchange with the overlay nodes. Some
assumptions are made regarding the deployment of sensor
nodes in the following:

(1) All the chosen nodes are considered as static after
deployment, and they can communicate with other nodes
through single-hop or multi-hop within the communication
radius.

(2) The location of the mobile sink can be sent to the sensor
nodes within a partition rather than all around the network.
In addition, the mobile sink has enough computing capacity,
energy and storage capacity.

(3) Each member node can only select one relay node, and
the sensor node can obtain its own location information.

B. PROBLEM DESCRIPTION

During the process of actual data gathering, the nodes close
to the mobile sink’s trajectory will be chosen as access node,
which is responsible for the data aggregation from all nodes
in a local dissemination tree. Hence, the power consumption
is independent of the transmission distance between adja-
cent nodes. Accordingly, the following energy model can be
adopted to estimate the energy consumption:

E=¢WV 40 (1)
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FIGURE 1. Data collection process based on mobile sink.
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where &, and ¢, denote the transmission and reception power
of each member node for data upload and reception, respec-
tively. Besides, W! and W! denote the receiving bits and
transmitting bits for node i.

All nodes are assumed to have the same total amount of
data collected per traversal round of the mobile sink. Then,
the relationship between the amount of data received and
the amount of data sent by any node i can be written as:
W/ = Wi+g, and g denotes the total amount of data generated
by each node per round.

Considering that all member nodes forward data to their
destinations along the local dissemination trees, then the
relationship between the total amount of data received by all
nodes and the sum of hops can be written as:

n n
S w =Y Hra o
i=1 i=1

where H; denotes the hops from member node i to its
destination access node. If node i itself is a access node, then
H;=0.

Therefore, the total energy consumption per traversal
round of the mobile sink can be expressed as the sum of the

hops as follows:
n n

Eoal = Y (&, W} +&¥) =) " [e/(W] + q) + &, ¥]]

i=1 i=1

= glne; + Z (&1 + &r)H] 3

i=1

Next, the time delay in the process of data collection should
be considered, which is related to the path length from the
access node to the rendezvous points. Suppose Ly denote the
path length from k-th rendezvous point to the mobile sink,
and it is a random variable and obeys the Poisson distribution.
The sum of all sub nodes to the rendezvous points Len =

n
> L;, and the total path length obeys the normal distribution

i=1

approximately. The probability relationship between the total
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path length and the sample expectation can be expressed
as a function:

1 n
¢(y>=nlggoPr{aﬁ (ZLi—nu> sy}, @)

i=1

where © and o represent the expectation and standard
deviation of the total path length, respectively

Let Len,y,, denote the optimal total path length. According
to the central limit theorem, the probability that the total path
length is greater than the optimal total path length can be
calculated as follows:

Pr { Len > Lenapt}
=1- Pr{Len < Lenop,}
1_Pr{Len—n,u < Lenp; —nu}
o/n o /n
Lengp; — np
S

When the probability Pr{Len > Lengy} is low, the
probability to obtain lower value of Lenyy is large.
Otherwise, it indicates that the probability of the path length
approaching the optimal solution is very high. Obviously,
when Pr { Len > Lenop,} is maximum, the total path length
Len = 0, i. e., all nodes in the network will become relay
nodes.

To enhance the scalability of the protocol and balance
the delay and energy consumption, Len;"—’;"“ = 0 and the
probability of getting the maximum value of total path length
will be greater than 0.5.

In order to meet the delay requirements and minimize the
overall energy consumption of the network, it is necessary to
optimize the sink trajectory in wireless sensor networks [23].
With the constraint of the delay limitation, the optimal sink
path is solved to reduce the overall energy consumption of
the whole network. Suppose that in a certain traversal round,
and the moving speed of mobile sink is vk, and the delay
constraint is do. Thus, the upper limit of the sink’s mov-
ing distance can be expressed as L, = vsinkdg. Therefore,
the mathematical description of the optimization problem can
be given by:

min{Elatal}s

1 n
st~ Li < jts TSP(sink) < Ly, Hi < Hyax. (6)
i=1

IV. OPTIMIZATION ALGORITHM

Particle swarm optimization is a random search algorithm
based on swarm intelligence, which was proposed by
Kennedy and Eberhart in 1995 [31]. The main idea is derived
from the simulation of foraging behavior of birds and fish.
The individuals in the population are regarded as particles
without mass and volume in the search space, and each
particle represents a candidate solution with two attributes,
i.e., velocity and position [32]. In addition, the speed updating
of the particles consists of cognitive learning, social learning
and inertia movement.
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During the problem solving, the flight trajectory of
particles is affected not only by their current extreme value
pbest and global extreme value gbest, but also by their own
shift inertia value w [33]. In order to enhance the diversity of
the population and eliminate the influence of the unreason-
able shift inertia value, a particle swarm optimization strat-
egy with adaptive elite mutation is designed to improve the
population diversity and avoid falling into the local optimal
solution prematurely.

A. PARTICLE SWARM INITIALIZATION

It is assumed that m denotes the particle population size, #max
is the maximum number of iterations, ¢ is the number of iter-
ations. Each particle corresponds to a path planning scheme,
which includes the rendezvous points set and traversal
path T),. A sequence P = {Py, P2, - - - , P;,} with the length m
is used to represent a spanning tree, and P; is the parent node
of the i_th node. For node i, it is necessary to find a path
with constrain of the limited hop number to corresponding
rendezvous point. Thus, the specific steps are as follows:

Step 1: Initializing a matrix X of size n xn, and x;; = 0. The
minimum number of hops from each node to the rendezvous
point in the topology graph is calculated. The nodes are
arranged in descending order according to the hop number,
and the sequence is written as 2. If the maximum hop number
is greater than the tree height constraint Hp,y, it can be
deduced that there is no spanning tree satisfying the tree
height limit in above topology graph, and the execution will
end.

Step 2: For the j-th node in the sequence €2, we need to
determine whether it has a parent node. If no parent node
exists, the height H; will be initialized as 1 and x;; = 1.
Subsequently, initializing the empty parent set Spuen; and
saving all relay nodes in the path from the i-th node to
the rendezvous point. Then, the node i can be added to the
sequence P.

Step 3: If node i is a rendezvous point or has a parent node,
go to Step 5.

Step 4: If the neighboring node j of node i satisfies the
following conditions, i.e., the node j is not in sequence P, The
hop number of node j is less than or equal to Hyp,x — 1, and
x;; = 0, the node j can be added to the parent set Sparen; -

Step 5: Enter the process to judge whether the parent_ set
is empty not. If the set Spgrens is not null, choose a node k
randomly from Sprens, set the parent node of node i and the
value of H; plus one.

Step 6: If 1 Z Liy < w and TSP(vsiux) < Ly, push the

node k into the sequence 2 and go to step 3;
Step 7: For all nodes, the optimal path to rendezvous points
has been obtained and the algorithm will be terminated.

B. PARTICLE MUTATION

In this paper, each particle should be randomly selected
and its parent node will be changed dynamically to realize
particle mutation. Besides, the spanning tree after mutation
should meet the tree height limit. Let T be a spanning tree of
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graph G = (V, E), and its corresponding coding sequence is
0 = {01,02,--,0n}, decode p to get the corresponding
spanning tree 7. the specific steps of mutation of spanning
tree are as follows

Step 1: Select a node randomly and remove its connection
with the parent node. Then the original spanning tree 7 will
be evolved to two trees, one of trees T, takes the node i as
the root node, and corresponding rendezvous points act as the
root of other tree 7. continuously.

Step 2: If the height H; of T, is lower than Hpyx, traverse
the tree 7. If node j is the neighbor node of node i and
H; + 1 < Hpyax, node j can be added to the sequence P.
After traversing, the node from parent_set will be selected
randomly as the parent node of node i.

The information of particle i is represented by
d-dimensional vector D, and the particle position is x;(¢) =
(xi1,Xi2, -+, X p). In addition, the velocity of particle i is
vi(t) = (vi1,vi2, -, Vvip), and the velocity of the next
iteration can be calculated as follows:

v,;.,'(t +1)= wv,',j(t) + clrndl(pbesti,j — x,',j(t))
+ caranda(gbest; — xi (1) (7)

where w is the inertia weight. ¢; and ¢, are cognitive learn-
ing factor and social learning factor, respectively. rand; and
rand, are two random numbers with uniform distribution
on the interval [0,1]. Besides, pbest represents the value of
best personal experience, and gbest represents the global best
solutions.

Then, the position of the particle i in the next iteration can
be expressed as:

xij(t + 1) =x;j(1) +vij(t + 1) ®)

To fully obtain the environmental information and
maintain the diversity of the population in the evolution pro-
cess, we use the reverse learning strategy to define general-
ized opposition-based learning action. Then, two individuals
in the population will be randomly selected, and the inertia
weight can be modified by using the difference between
individuals as:

w=34 (xu,j(t) — xv,j(t)) ©

where § is the differential coefficient, which is used to control
the population search range. u and v are two random integers,
and u,v € [1, N].

In addition, in order to further reduce the possibility of
particles falling into local optimum, the adaptive elite muta-
tion strategy is introduced to help the particles jump out of
the local optimum [34], [35]. gbest will be regarded as the
population elite particle, and the value of gbest is adaptively
mutated in the process of population evolution of each gener-
ation. If the fitness value of the mutated new individual gbest*
is better than that of the original gbest, the original value
of gbest should be replaced and participate in next round of
evolution. The new global optimal individual will attract other
particles in the subsequent evolution process, so as to help
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particles jump out of the local optimal position

ghest™ = gbest + T (A(i)) (10)
A() = exp (— o1 ) (1 — ! * |gbest(i)
’max "max
| N
-5 > phest[jlli] (11)
j=1

where I" (+) is the perturbation function, and can be defined as
'x = % arctan(x). The variable A(i) is used to adaptively
control the mutation size. Besides, 6 is an undetermined con-
stant, rmax indicates the largest distance in each dimension,
and pbest[j][i] indicates the position of the particle j in the
i-th dimension.

Next, the mutation operation is analyzed theoretically as
follows. In the initial stage of population iteration, the perfor-
mance of particles may be not ideal, and the mutation value
will be large, which can cause enough disturbance to the pop-
ulation and expand the solution space [36], [37]. However,
with the deepening of iteration, the mutation value will grad-
ually decrease, so as to ensure the smooth convergence of the
problem to the optimal value. Additionally, adaptive muta-
tion will obtain larger mutation value when the population
extremum tends to be consistent, which enhances the search
ability of the algorithm. Conversely, when the population
search is sufficient, the variation value reduction can avoid
the turbulence of the optimal value, and thus accelerating the
convergence speed of the algorithm.

According to the above analysis, the value of gbest can
achieve a large amount of variation through the disturbance
function at the initial stage of the algorithm. Thus, it will
cause enough turbulence to the search space, and enhance the
global search ability of the algorithm. With the proceeding
of the iterations, the mutation rate gradually decreases, thus
effectively avoiding the oscillation of the optimal solution and
accelerating the convergence rate of the population [38], [39].

V. PERFORMANCE EVALUATION

We evaluated the performance of the proposed mecha-
nism via simulations using MATLAB, and compare with
several mobile sink based data gathering schemes. The sensor
nodes are randomly deployed in a field with dimensions
400m x 400m, and the initial energy of sensor node is set
to 2J. Besides, we assume that there is no energy constraint
with mobile sink. The values of the experimental parameters
are shown in Table 1.

Firstly, the performance of the proposed algorithm is eval-
uated in terms of computation time and iteration times, and
the results are shown in Figure 2 and 3. It can be seen from
the experiment that with the increase of the number of sensor
nodes, the maximum, average and minimum computation
time of the algorithm show an overall increasing trend. More-
over, we also can observe that the computation time and
the iteration times will increase linearly with the number of
sensor nodes. It shows that our proposed algorithm has good
scalability.
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TABLE 1. The experimental parameters.

Parameters Value
Target area 400m’400m
Number of sensor nodes 100~800
Initial energy 2]
Transmission range 40m
The transmission power 100nJ
The reception power 20nJ
Moving speed of the mobile sink 10m/s
Number of particles 100
Maximum number of iterations 1000
The constant 6 10
Data generated by nodes per 128bit
round
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FIGURE 2. The computation time with different number of nodes.
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FIGURE 3. The number of iterations with different number of nodes.

Furthermore, we compare the network performance with
DEPSS [40], RPS [41] and EPDS [42] mainly in following
aspects: the mobile sink path length, the total hops, data
gathering delay, network lifetime and the running time [43].
Figure 4 shows the comparison results of trajectory length
of the mobile sink. In mobile sink mode, the path length
can reflect the performance of real-time data transmission,
and the mobility of sink will lead to the change of network
topology and routing. If no reasonable global optimization
strategy is adopted, it may lead to delay of data collection
and deterioration of network lifetime. From the experimental
results, the mobile route of EPDS algorithm is significantly
higher than other algorithms. This is because it uses single
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hop direct access, which will increase the delay of data col-
lection, especially in the scenario of large-scale deployment
of sensor nodes [44], [45].

Figure 5 shows the comparison of the total hops for
different algorithms. With the given delay constraint, our
proposed algorithm can obtain the shorter hops than other
algorithms. In RPS, the cluster heads are randomly selected
to weaken the influence of “hot spot™ problem, but it is
unable to optimize the path length from member nodes to
corresponding cluster head. EPDS combines clustering and
tree topology, and takes the node nearest to the mobile sink as
the root node to dynamically construct the number of routes.
This algorithm is suitable for distributed networks, but it still
does not consider the path optimization problem from the
child node to the sink node, and results in relatively large
trajectory length of data collection. By employing steiner
minimum tree, DEPSS can acquire the relatively shorter total
hops than RPS and EPDS. However, the algorithm of DEPSS
is complex, which will lead to high network maintenance cost
and computational complexity.

Figure 6 shows the data gathering delay under different
number of nodes. From the experimental results, with the
increase of the number of sensor nodes, the data collection
delay of each algorithm will increase. Comparatively, our
proposed algorithm does not increase sharply and meets
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FIGURE 6. Comparison of the data gathering delay with different number
of nodes.

the constraints. In this paper, the particle swarm optimization
strategy with adaptive elite mutation improves the population
diversity effectively and avoids falling into the local optimal
solution prematurely. Also, it ensures that the data collection
delay of mobile sink at each rendezvous point is minimized.
Due to frequent movement of mobile sink and use single hop
direct access for data collection activity, the overall delay of
sink in DEPSS is significantly higher than that of the other
three algorithms. In addition, it can be observed that RPS can
obtain better data gathering delay as the number of nodes is
small. However, the data gathering delay increases signifi-
cantly as well as the number of sensor nodes. It indicates
that the algorithm has poor scalability. The performance of
DEPSS in data gathering delay is not good enough, that is
because the collected data can not be transmitted until the
sink stops moving and it may take a certain amount of time
to reconstruct the routing tree.

The results in Figure 7 show the network lifetime of
those algorithms, reflecting the ability in aspect of energy
consumption balance. It can be seen from the experimental
results that our proposed algorithm fully takes into account
of the location and number of rendezvous points, as well as
the minimization of the sum of hops for data relay. Therefore,
the distribution of energy consumption of the sensor nodes
is more uniform than other algorithms. In RPS, the cluster
heads’ selection adopts random way, which may lead to
uneven distribution of the clusters and unbalanced energy
consumption. Especially when the number of nodes in the
network is large, it is easy to cause the hot-spot problem.
By allowing sink to access the area with higher node density,
EPDS can effectively avoid too large number of communi-
cation hops between the sensor nodes and the rendezvous
points. However, that scheme will form long traversal path
of mobile sink inevitably, and result in uneven node’s energy
consumption and affecting the network lifetime to a certain
extent.

Figure 8 shows the running time with different number of
sensor nodes. It can be seen from the figure that the algorithm
proposed in this paper is basically equal to RPS and performs
better than other methods, and the time complexity of DEPSS
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algorithm demonstrates obviously higher than other algo-
rithms. The reason is that in DEPSS, the beacons should be
required to inform the sensor of obtaining its current position
during the movement of mobile sink. And then, the optimal
route from all sensors to the sink will be updated step by step.
In actual operation, each node needs to determine a latest
route in time and updates frequently, which will results in
large computational cost.

VI. CONCLUSION

In this paper, we propose an energy-aware data gathering
mechanism for mobile sink in wireless sensor networks using
particle swarm optimization. Firstly, the mathematical model
is established according to the total network energy consump-
tion and delay constraints in mobile sink data collection.
Then, the optimal rendezvous points are selected to aggregate
data originated from the source nodes through multi-hop
relay, and the aggregation tree will be constructed for data
transmission. The spanning tree is encoded into particles, and
the random method is designed to generate the data collection
spanning tree with constrain of tree height limit. Furthermore,
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a particle swarm optimization strategy with adaptive elite
mutation is designed to improve the population diversity and
avoid falling into the local optimal solution prematurely. The
simulation results confirmed that our proposed mechanism
outperforms the existing algorithms, regarding the average
energy exhaustion, the network lifetime, and the running
time.
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