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ABSTRACT It is important to learn directly from original texts in natural language processing (NLP). Many
deep learning (DP) models needing a large number of manually annotated data are not effective in deriving
much information from corpora with few annotated labels. Existing methods using unlabeled language
information to provide valuable messages consume considerable time and cost. Our provided sentence
representation based on quantum computation (called Model I) needs no prior knowledge except word2vec.
To reduce some semantic noise caused by the tensor product on the entangled words vector, two improved
models (called Model II and Model III) are proposed to reduce the dimensions of the sentence embedding
stimulated by Model I. The provided models are evaluated in the STS tasks of 2012, 2014, 2015 and 2016,
for a total of 21 corpora. Experimental results show that using quantum entanglement and dimensionality
reduction in sentence embedding yields state-of-the-art performances on semantic relations and syntactic
structures. Compared to the Pearson correlation coefficient (Pcc) and mean squared error (MSE), the results
of 16 out of 16 corpora are better than the results of the comparative methods.

INDEX TERMS Quantum computation, text representation, sentence similarity, tensor product, dimension-
ality reduction.

I. INTRODUCTION
Semantic textual similarity (STS) is a task that measures
the degree of the semantic similarity between two sentences.
There are many applications in natural language process-
ing (NLP) that refer to the textual similarity in semantics,
such as document summarization, semantic search, question
answering, document classification, and natural language
inference (NLI). The main challenge of STS in recent years
is how to mine more semantic information to make the calcu-
lational results infinitely close to those of humans. The only
criterion for evaluating the computational results is the degree
of the approximation to human-made scores. The closer the
calculated result is to the human-made score, the more gen-
eral the model is. With the development and improvement of
word embedding, existing text analysis methods are continu-
ously emerging, which is mainly based on word representa-
tions. Some methods and the calculation results on semantic
analysis based on word vectors are collected in [1].
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Compared to the mentioned models, two problems should
be considered. First, only the semantic information of the
word is considered, but the influence between words is
ignored. Second, the relationship between words is consid-
ered in the methods based on dependency trees but with com-
plex computing processing. To solve the problems mentioned
above, our proposed methods consider the influence between
words and integrate the theoretical knowledge on quantum
entanglement into the textual representation. In the models,
we use the tensor product to extend the dimensionality of
the sentence representation with more semantic information.
Because of the entanglement between the adjoining words,
the impact of the continuous synonyms in any sentence can
widen the semantic differences in the sentence pair.

For the sake of the influence of continuous synonyms,
we provide two approaches of dimensionality reduction to
sentence representation. The one approach introduces sen-
tence level improvement on the sentence representation based
on quantum entanglement, in that we directly decrease the
dimensionality of the sentence embedding. In the other
method, we give an entangled words level advancement to
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the sentence representation-based quantum entanglement by
decreasing some dimensions with relatively small terms of
the entangled words vectors; as a consequence, the ultimate
dimensionality of the sentence representation is also reduced.
Our proposed methods are composed of the three models
mentioned above. Experimental results for STS of the years
2012, 2014, 2015 and 2016 on the similarity in sentence
pairs demonstrate the high performances of our proposed
approaches.

In brief, the innovations are as follows. First, introduc-
ing quantum mechanics methods, two continuous notional
words are entangled together with the numerical computation
method of the tensor product. Taking the entangled words
pair as a whole can mine more semantic information. Then,
by means of the physical ideas on extracting the primary
factors and ignoring the secondary factor, two models of
dimensionality reduction are proposed to optimize the model
of the sentence representation based on quantum entangle-
ment, which is different from the dimensionality reduction
ideas of DP. Last, the experimental results of the proposed
models are excellent, and the algorithms are very simple with
no need for any prior knowledge except for word2vec.

The paper is organized as follows. Section II summarizes
some related literature on quantum computation and sentence
similarity. Section III explains our proposed models in detail.
The detailed comments on the different combinations of the
proposed models are explained in Section IV. Section V
demonstrates the experimental results and lists the compar-
ison to other methods. In Section VI, some conclusions are
drawn.

II. RELATED WORKS
The main idea of this paper is to improve the sentence repre-
sentation based on quantum entanglement with dimensional-
ity reduction. In this section, we review some related works
on quantum computation and sentence similarity.

A. QUANTUM COMPUTATION
In recent years, the integration of quantum computation with
other disciplines has become increasingly popular, such as
the application of machine learning in quantum computa-
tion [2]–[7], the introduction of quantum theory into artifi-
cial intelligence [8]–[11], the application of quantum theory
in information science [12]–[17], quantum chemistry [18],
and quantum annealing algorithms [19]. In [2], experimental
machine learning of quantum states was possible to effi-
ciently learn and classify, which indicates that the classi-
fication of quantum states can be achieved with limited
resources. J. Venderley et al. established a machine-learning-
based approach that can enable rapid exploration of large
phase spaces [6]. In [14], efficient verification protocols for
any stabilizer state were given. C. Guo et al. introduced a
machine learning model in which matrix product operators
were trained to implement sequence-to-sequence prediction
to predict the next sequence [20]. In [3], the number of neural
network features for machine learning was shown, which

could naturally be mapped into the quantum optical domain
by introducing the quantum optical neural network. A frame-
work that captures entanglement distillation in the presence
of natural correlations arising from memory channels was
introduced by Waeldchen et al. [21].

There are very few works integrating natural lan-
guage processing with quantum computation [22]. In [22],
P. Zhang et al. designed a sentence representation using
quantum language for description. The sentence embedding
represented by Dirac symbols was input into deep neural
networks to compute the similarity of the question answer
sentence pair.

B. SENTENCE SIMILARITY
The key to the improvement of many top-level applica-
tions is the development of supporting technologies. In
the big data era, it is important to advance the accuracy
rate of text similarity, as the computation of text similarity
is a significant part of NLP. The common techniques on
word embedding [23] or sentence embedding [24] include
GloVe [25], PSL [26], ST [27], SCBOW [28], PROJ [29],
PP-tf-idf [30], DAN [31], LSTM [32], and RNN [29].
The similarity in semantics can be applied to many NLP
fields [33]–[35]. Z.-T. Guan et al. proposed a cross-lingual
multikeyword ranked search scheme based on the open
multilingual WordNet with flexible keyword and language
preference settings [33]. A. J. M. Traina et al. provided tech-
nologies and tools to meet the variety and veracity charac-
teristics of big and complex data and consider the semantic
information of data [34]. In [35], a method for querying
relational databases with keywords to simplify access to these
data is proposed. An algorithm using latent Dirichlet allo-
cation (LDA) and OpenAI-GPT to generate negative exam-
ples is introduced to multilingual STS [36]. Latent semantic
analysis and LDA are compared to identify the unit [37].
Quan et al. [1] provide an efficient framework for the sen-
tence similaritymerging the attentionweightmechanismwith
a constituency tree and give comparison experimental results
to other methods. All the results of these classic methods are
collected from [1], as shown in Table 2.

The main methods for computing sentence similarity are
text embedding or neural network models [38], [39], [41],
[42]. A multitask learning approach for understanding the
relationship between two sentences is reported by Choi and
Lee [43]. A. Skabar and K. Abdalgader provide an algorithm
that is based on fuzzy relations to identify overlapping clus-
ters of semantically related sentences [44]. A text expansion
and deep model-based approach for service recommendation
is proposed, which can bridge the vocabulary gap between
services and user queries with the collective semantic sim-
ilarity of sentences and descriptions [39]. An interactive
self-attentive Siamese neural network is used to verify the
effectiveness of the interactive self-attention [40]. With the
development of capsule networks, the text representation pre-
processed by neural networks can achieve out-of-state results
as the input of classification and machine translation. ELMo
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transfers the top LSTM layer into a linear combination of the
vectors stacked above each input word for each end task, with
marked improvement [45]. Due to the powerful pretraining
function of the transformer, some new models calculating
classification and language inference have achieved state-of-
the-art results, such as XLNet [46], BERT and its variants
[47]–[50], and UNILM [51], [52]. Minaee et al. provided a
comprehensive review of deep learning-based text classifi-
cation [53]. However, few studies have examined semantic
similarity [54].

Compared to the works mentioned above, existing compu-
tations of sentence similarity mainly focus on the similarity
between word representations and do not consider the simi-
larity in semantics. Considering only the similarity between
words, the calculated sentence similarity is far below the
human-made score when several synonyms are included in
the sentence pair. Some methods combine other datasets or
contexts to infer the implied semantics of sentenceswith com-
plex computational processes or large corpora. Our provided
model (called Model I) that integrates quantum entanglement
into sentence representations can explain the modification
between words and express more semantic information. Con-
sidering that the tensor product can expand the semantic
difference between sentences when several synonyms are
included in the sentence pair, our proposed two advanced
models (called Model II and Model III) based on Model I
reduce the dimensions of the sentence representation to
decrease the semantic difference between sentences. We use
the different combinations of the three models to optimize our
method to mine more semantic information in the sentence
pair. Our provided method can compute the sentence similar-
ity of all the sentence pairs with at least two notional words in
each sentence. Moreover, it integrates quantum entanglement
with sentence embedding and utilizes dimensionality reduc-
tion to reduce the semantic error in the sentence pair, with
experimental results achieving state-of-the-art performances
on 21 corpora.

III. APPROACHES
In this section, we first provide a sentence embedding based
on quantum computation (Model I) and then construct two
advanced models (Model II and Model III) to reduce the
semantic error caused by the tensor product. Considering
the dimensionality of sentence representation expanded to
d2 (the dimension of word2vec is d) by the tensor product,
the high dimensionality of the sentence representation may
give rise to some unnecessary semantic errors that cause the
similarities of sentence pairs to decline. The advancedmodels
have different effects on the sentence similarity in semantics.
Model II that considers the overall influence on sentence
pairs reduces the dimensionality from the sentence level.
Model III that considers the local information of the sentence
pair declines the dimension of the sentence embedding on the
entangled words level. For the combination of the models,
our provided method first considers the effect of Model II on
the sentence pair with a large similarity and then introduces

Model III to decrease the semantic errors of the sentence pair
with a small similarity.

A. MODEL I
1) EXTRACT WORDS
Remove the functionwords to extract the notional words from
the sentence. Store the notional words in an array A with the
original sequences of the words in the sentence,

A = {w1,w2, · · · ,wi, · · · ,wn}, (1)

where wi is the ith notional word in the sentence and n is the
total number of notional words.

2) NORMALIZE WORD VECTOR

|wi〉 =
Esi
|Esi|
, (2)

where Esi is the vector of the ith word and |Esi| is the module
of Esi. |wi〉 representing the normalized word vector is called
a ket. A ket in quantum mechanics expresses a state in the
Hilbert space, which is a column vector. The dimension of
the word vector is d , so |wi〉 is also a d dimensional column
vector.

3) ENTANGLED WORDS VECTOR
Two adjacent words are entangled together in order, forming
the array

B = {(w1w2), (w2w3), (w3w4), · · · , (wn−1wn)}. (3)

The definition of the entangled words vector is

|wi〉|wi+1〉 = |wiwi+1〉 =


u1
u2
...

ud

⊗

v1
v2
...

vd

 , (4)

where wi is the ith word in array A, wi+1 is the right adjoint
word of wi, and ⊗ denotes the tensor product.
The definition of the tensor product of Ea and Eb is

EaEb = Ea⊗ Eb =



a1b1
a2b1
...

aibj
...

anbm


. (5)

V andW are Hilbert spaces withm and n dimensions, respec-
tively, then V ⊗W is an mn dimensional vector space.
Thus, the entangled words vector is

|wiwi+1〉 =



u1v1
u2v1
...

uivj
...

udvd


. (6)
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|wi〉 and |wi+1〉 are d dimensional vectors; then, |wiwi+1〉 is a
d2 dimensional vector.

4) SENTENCE REPRESENTATION
The sentence representation is defined as

|T 〉 =
n−1∑
i=1

|wiwi+1〉, (7)

where we set all the entangled coefficients to 1 to simplify the
sentence embedding.

5) SENTENCE SIMILARITY
The direction cosine of the two sentence representations is
defined as the sentence similarity of the sentence pair. Hence,
the sentence similarity is

cos(|T1〉, |T2〉) =
〈T1|T2〉
||T1〉| · ||T2〉|

, (8)

where 〈T1|T2〉 denotes the inner product of 〈T1| and |T2〉,
||T1〉| and ||T2〉| are the norms of |T1〉 and |T2〉, respectively,
and 〈T1| is the conjugate transpose of |T1〉.

B. ADVANCED MODELS
A vector with n2 dimensions can be performed by the tensor
product on two vectors with n dimensions, so the tensor can
describe the states of the objects more detail than vectors.
Consequently, using tensors to analyze the semantic rela-
tions between words may expand the differences between
sentences, such as the following sentence pair.
Sa: A man is playing on a guitar and singing,
Sb: A woman is playing an acoustic guitar and singing.
The two sentences are different though they have many

of the same words. The human-made score is only 0.44
(divided by 5). Compared to the two sentences, there is
only one word ’man’ in Sa different from Sb and the word
’acoustic’ is absent. If we entangle the adjacent notional
words together, there are 3 out of 5 words entanglement pairs,
which is more than two. Due to the dimensionality expan-
sion of the tensor product, the calculational similarities of
the sentence pairs from the semantic analysis are apparently
lower than human-made scores. The main reason is the tensor
product expressing the semantic relations of the words in a
very particular way. To reduce the impact of secondary fac-
tors, we provide two methods with dimensionality reduction:
Model II and Model III.

1) MODEL II
In Model II, the dimension of the sentence representation is
decreased to D1, which is smaller than d2 (d is the dimen-
sionality of the word2vec). The main idea is to extract the top
D1 values and reorder them by their original indexes from the
sentence representation based on quantum entanglement. The
algorithm is illustrated in Algorithm 1.

Algorithm 1 An Improved Sentence Level Dimension
Reduction Model Based on Quantum Entanglement
Input: array A, B, word2vec, sentence embedding dimen-

sion D, D1.
Output: cosθ
1: Input one sentence of the sentence pair, extract all

the notional words and store in an array A =

{w1,w1, . . . ,wn}
2: Entangle the two adjacent notional words together to

form the array B = {(w1w2), (w2w3), . . . , (wn−1wn)}
3: Obtain the entangled words representation by the tensor

product: |wiwi+1〉
4: Generate the sentence representation by linear superpo-

sitions of all the entangled words representations with D
dimensions: |T 〉 =

∑n−1
i=1 |wiwi+1〉

5: Reduce the dimensionality of the sentence representation
to D1: remove the D − D1 dimensions with smaller
absolute values to achieve the sentence embedding as
|T 8

1〉

6: input the other sentence, repeat Step 1 to 5 to receive the
sentence embedding |T 8

2〉

7: Compute the direction cosine between the sentence pair:
cosθ =

〈T 8
1|T

8
2〉

||T 8
1〉|×||T

8
2〉|

8: return cosθ

2) MODEL III
In Model III, the dimension of the entangled words repre-
sentation declines to D2, which is smaller than d2 (d is the
dimensionality of the word2vec). The main idea is to extract
the top D2 values and reorder them by their original indexes.
Then, the modified entangled words vector is substituted into
the sentence representation; as a consequence, the sentence
embedding is modified to a vector with D2 dimensions.
We show the simulation steps in Algorithm 2.

C. CORRELATION OF THE THREE MODELS
If the dimensions of Model II and Model III are not reduced,
namely, D1 = D2 = D, the three models are equivalent.
When D1 < D or D2 < D, the dimension reduction in
Model II or Model III is effective. Then, they are different
from Model I. The dimension reduction in Model II is on
the sentence level, considering the global semantics of sen-
tences. The dimension reduction in Model III is from the
entangled words level, given the local semantics of sentences.
Therefore, they have different priorities. Moreover, the gran-
ularity of the two advanced models is different. Specifically,
Model II andModel III cannot be converted to each other, and
all three models can be calculated separately on the similarity
of any sentence pair.

IV. EXPERIMENTS
The difference between Model II and Model III is obvious.
Model II decreases the dimensions of the sentence repre-
sentation on the sentence level, but Model III decreases the
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Algorithm 2An Improved EntangleWords Level Dimension
Reduction Model Based on Quantum Entanglement
Input: array A, B, word2vec, entangled words embedding

dimension D, D2.
Output: cosθ
1: Input one sentence of the sentence pair, extract all

the notional words and store in an array A =

{w1,w1, . . . ,wn}
2: Entangle the two adjacent notional words together to

form the array B = {(w1w2), (w2w3), . . . , (wn−1wn)}
3: Obtain the entangled words representation by the tensor

product: |wiwi+1〉
4: Decrease the dimensions of the entangled words repre-

sentation to D2: remove the D − D2 dimensions with
smaller absolute values to achieve the entangled words
embedding as |w8

iw
8
i+1〉

5: Generate the sentence representation by linear superpo-
sitions of all the entangled words representations withD2
dimensions: |T 88

1 〉 =
∑n−1

i=1 |w
8
iw

8
i+1〉

6: input the other sentence, repeat Step 1 to 5 to receive the
sentence embedding |T 88

2 〉

7: Compute the direction cosine between the sentence pair:
cosθ =

〈T 88
1 |T

88
2 〉

||T 88
1 〉|×||T

88
2 〉|

8: return cosθ

dimensions of the sentence representation on the level of
the entangled words. The two methods also have different
effects on sentence similarity. Consequently, we utilize the
different models to discover the different influences on the
semantic analysis and syntax structures. Model II focuses on
the selection of overall sentence attributes, which is suitable
for the semantic analysis of the sentence pair with a large
similarity. However, Model III focuses on the characteristic
distribution of the entangled words and describes the seman-
tics in a more detailed way. Moreover, it can grasp the main
influential factors of the entangled words while ignoring the
secondary factors and is suitable for the sentence pair with
low similarity. Thus, we use Model II and Model III to
optimize the sentence representation differently. Subscripts 1
and 2 identify the physical quantities of Model II and Model
III, respectively.

A. COMBINATION OF MODEL I AND MODEL II
We first define three variables: σ1, E1 and λ1. σ1 means the
threshold of the human-made score y1 of the sentence pair.
The relative error E1 is defined as

E1 =
|y1 − S1|

y1
, (9)

where S1 is the calculational value of the sentence similarity
modeled by Model I. λ1 is defined as the threshold value of
the relative error. When y1 > σ1 and E1 > λ1, Model II is
used to compute the similarity of the sentence pair once more.
For the other sentence pairs, we keep the results of Model I to

calculate the Pearson correlation coefficient (Pcc) and mean
squared error (MSE).

When all the sentence pairs are calculated by Model I, Pcc
and MSE are defined as follows.

Pcc =

∑N
i=1(xi − x)(yi − y)

δxδy

=
N

∑N
i=1 xiyi −

∑N
i=1 xi

∑N
i=1 yi√

N
∑N

i=1 x
2
i −(

∑N
i=1 xi)2

√
N

∑N
i=1 y

2
i −(

∑N
i=1 yi)2

,

(10)

MSE

=

∑N
i=1

√
(xi − yi)2

N
. (11)

where xi denotes the experimental results, yi is the human
score of the ith sentence pair and N is the total sentence
pairs in a corpus. If sentences in one corpus are computed
by two different models, we change the standard deviation of
the calculated sentence similarities as follows, denoted by δx .

δx =

√
(N0 − 1)δ20 + (N1 − 1)δ21

N0 + N1 − 2
, (12)

where N0 + N1 = N . N0 sentences pairs are computed
by Model I with the standard deviation of δ0, and the other
N1 sentences are calculated by Model II with the standard
deviation of δ2. We replace δx in Equation (10) with Equation
(12) to obtain the expression of Pcc.

MSE =

∑N0
i=1

√
(xi − yi)2 +

∑N1
j=1

√
(xj − yj)2

N
, (13)

where xi is the calculated similarity of the sentence pair
modeled by Model I and the total text modeled by Model I is
N0, xj is the calculated similarity of the sentence pair modeled
by Model II, and the total text modeled by Model II is N1.

B. COMBINATION OF MODEL I, MODEL II AND MODEL III
Four variables σ2, γ2, E2 and λ2 are introduced. σ2, E2, y2
and λ2 are defined as the same means of σ1, E1, y1 and
λ1. γ2 is the minimum of the human-made score y2 of the
sentence similarity. When y1 > σ1 and E1 > λ1, Model II
is introduced. When γ2 < y2 < σ2 and E2 > λ2, Model
III is introduced. Where λ1 and λ2 can be selected as the
different values, σ1 and σ2 cannot also be the same, and γ2
cannot be equal to 0. The sentence pairs not satisfying the
two conditions mentioned above are modeled by Model I.
Therefore, all the sentence pairs are computed not more
than twice. When calculating Pcc and MSE, we replace the
similarity of the sentence pair computed by Model I with the
values recalculated either by Model II or by Model III. Con-
sequently, each calculational similarity of the sentence pair
is used one time. There are N1 sentence pairs recomputed by
Model II and N2 pairs recalculated by Model III, so the other
N0 = N − N1 − N2 sentences are modeled by Model I. The
standard deviation of the calculated similarities of sentence
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TABLE 1. Datasets for the SemEval Semantic Textual Similarity Tasks (year 2012, 2014, 2015, 2016). Note that, the figures in bracket refer to the number of
sentence pairs in the corpus.

TABLE 2. Some collected Pearson correlation in each dataset from ’An Efficient Framework for Sentence Similarity Modeling’ [1]. The figures in bold refer
to the maximum Pearson correlation of each corpus in [1].

pairs are defined as δx .

δx =

√
(N0 − 1)δ20 + (N1 − 1)δ21 + (N2 − 1)δ22

N0 + N1 + N2 − 3
, (14)

where δ0, δ1 and δ2 are the standard deviation of the simi-
larities of sentence pairs modeled by Model I, Model II and
Model III, respectively. δx in Equation (10) is replaced by
Equation (10) to achieve Pcc. TheMSE is changed as follows.

MSE =

∑N0+N1+N2
i=1

√
(xi − yi)2

N0 + N1 + N2

=

∑N
i=1

√
(xi − yi)2

N
. (15)

V. EXPERIMENTAL RESULTS
A. DATASETS
In the study, the public word2vec lib is assigned, and every
word is a 300-dimensional vector [55]. Particularly, the sen-
tence pair is deleted if either sentence has fewer than two
notional words. Experiments are carried out with the cor-
pora released by SemEval Semantic Textual Similarity Tasks,
including the years 2012, 2014, 2015 and 2016, as shown in
Table 1 [56]. We only study the semantic textual similarity of
English in corpora and ignore the other language contents.
The corpora of the four years are generated as following.
E. Agirre et al. presented a pilot on semantic textual simi-
larity and provided five corpora including Microsoft research
paraphrases, videos and statistical machine translations [57].
In 2014, E. Agirre et al. added OntoNotes-WordNet sense
mappings, news headlines and new genres to the previous
corpus [58]. Sentence pairs from headlines, image descrip-
tions and committed belief annotations and answer pairs from

tutorial dialog systems and QA websites were introduced in
2015 [59]. The SemEval-2016 task involves plagiarism detec-
tion, postedited machine translations, questions-answers and
article headlines of news [60]. These corpora consist of sen-
tence pairs and their textual similarities ranging from 0.0 to
5.0. To compare with experimental scores, we divide each
human-made score by 5.

B. EXPERIMENTAL SETTINGS
In this subsection, we discuss the results of the designed
experiments in various aspects and then compare them with
the methods that used word/sentence embedding, as illus-
trated in Table 2 [1]. ’ACVT’ is the proposed method, and the
bold-type figures are the best values for every corpus, as indi-
cated in Table 2. The adjustment processes of the parameters
of λ1, σ1, γ2, λ2 and σ2 are as follows. First, for combination
of Model I and Model II, we adjust the parameters λ1 and
σ1 to obtain the best Pcc of each corpus. Second, for the
combination of Model I, Model II and Model III, we first
adjust the parameters λ1 and σ1 to the optimum values and
obtain the best Pcc value by adjusting the parameters γ2, λ2
and σ2. The last Pcc is the optimal value, and the MSE of the
last Pcc is set as the optimum MSE value.

C. COMPARING WITH WORD EMBEDDING-BASED
METHODS
Table 3 lists the comparison of the results of the proposed
methods to the selected results from Table 2 [1]. As illustrated
by Table 3, ’ACVT’ denotes the proposed method in [1],
and ’Best Values’ denotes the maximum Pcc for each corpus
collected fromTable 2. ’Model I and II’ denotes the combined
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TABLE 3. Comparison our methods with other methods of Pearson correlation in each dataset. ’ACVT’ means the experimental results of the model
provided in [1], ’Best Values’ is the best result of each corpus compared with all the results in Table 2. The figures in bold refer to the maximum Pearson
correlation of each corpus.

Model I andModel II method. ’Model I, II and III’ denotes the
proposed combination of Model I, Model II and Model III. In
Table 3, we discover that all Pccs calculated by the proposed
methods for each dataset exceed the best values collected
from Table 2 except for Model I and II on STS’12.MSRpar.
For STS’12.MSRpar, Pcc calculated by our first method is
only less than ’Best Values’ (the relative percentage is just
1.7) by 0.02, but Pcc of our second method increases by 0.01
to 0.59.

For the methods of Model I and II, the corpus with
the greatest improvement rate is STS’12.SMTeuroparl with
an improvement rate to 32.7% relative to ’Best Values’
and an improvement rate of 60.5% relative to ’ACVT’.
The corpus with the second-highest improvement rate is
STS’15.answers-forum with an improvement rate of 23.2%.
The datasets with the third-highest improvement rate are
STS’12.SMTnews and STS’14.deft-forum, with an improve-
ment rate to 16.7%. In addition, the datasets with improve-
ment rates over 10% are STS’12.OnWN and STS’15.belief,
with improvement rates of 13.7% and 10.3%, respectively.
Moreover, Pcc of STS’14.headlines is 0.79, which is more
0.07 higher than ’Best Values’, with an improvement rate
of 9.7%, which is slightly lower than 10%. Contrasting
the influences of the different combinations on Pcc of all
the corpora, the maximum absolute improvement is 0.17
for STS’12.SMTeuroparl, and the next is STS’15.answers-
forums, which achieved 0.15. There are four corpora with Pcc
improvement exceeding 0.1.

Considering the combination of Model I, Model II and
Model III, the results of our proposed method are higher
than ’Best Values’ for all the STS datasets. The corpus with
the greatest improvement rate is also STS’12.SMTeuroparl
with an improvement rate of 32.7% relative to ’Best Val-
ues’ and an improvement rate of 60.5% relative to ’ACVT’.
The corpus with the second-highest improvement rate is
STS’15.answers-forum with an improvement rate of 24.6%.

The datasets with the next highest improvement rate are
STS’12.SMTnews and STS’14.deft-forum, with improve-
ment rates of 22.2% and 18.2%, respectively. Addition-
ally, the datasets with improvement rates over 10% are
STS’12.OnWN, STS’14.headlines and STS’15.belief, with
an improvement rates of 15.1%, 12.5% and 11.5%, respec-
tively. There are 7 out of 16 datasets that improved over
10%, including one corpus that improved over 30% and
two corpora that improved over 20% with rates of 24.6%
and 22.2%, respectively. Compared to the effects of the two
proposed methods, the maximum absolute growth is 0.17 for
STS’12.SMTeuroparl and the next is STS’15.answers-forums
achieving 0.16. In addition, there are three corpora with Pcc
that increased by over 0.1.

Fig. 1 and Fig. 2 illustrate the comparison of the calculated
results of different years of STS with the histogram. The
height of the histogram of the proposed methods for each
corpus is more than that of the best results collected from
other studies listed in Table 2. Excluding MSRpar shown
in Fig. 1, the differences in the heights of the histograms
for all the other corpora are excellent. Consequently, it is
generally accepted that our proposed methods significantly
improve Pcc of every STS dataset, which demonstrates that
the proposed methods are effective and valuable.

D. OVERALL RESULTS
Table 4 evaluates the influence of different combinations of
different models. It is evident that every result calculated by
the combination of Model I, Model II and Model III is no
less than the result of the corresponding corpus computed by
Model I and II. Four corpora increase by 0.03, five corpora
increase by 0.02, ten corpora increase by 0.01, and two
corpora remain unchanged. Moreover, for the combination of
Model I and Model II, the corpus with the maximum Pcc is
STS’14.OnWN, which reaches 0.91. There are fifteen out of
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FIGURE 1. Comparison of Pearson correlation with other methods in
STS1́2 dataset. ’collected’ refers the best value collected from Table 2, and
’proposed’ indicates the experimental result of our proposed method for
each corpus.

FIGURE 2. Comparison of Pearson correlation with other methods in STS
dataset year of 2014 and 2015. ’collected’ refers the best value collected
from Table 2, and ’proposed’ indicates the experimental result of our
proposed method for each corpus.

twenty-one corpora with Pcc exceeding 0.8 and three corpora
close to 0.8, which are 0.77, 0.76 and 0.78. Subsequently,
for the combination of Model I, Model II and Model III, the
maximum Pcc reaches 0.92 from STS’14.OnWN. Pccs of
STS’12.MSRvid and STS’14.OnWN exceed 0.9. It is impor-
tant that the two corpora with Pccs exceeding 0.9 contain 750
sentence pairs. There are sixteen Pccs out of twenty-one that
are higher than 0.8, and two corpora are close to 0.8, which
are the same value of 0.78. It is amazing to find that all Pccs
of STS’15 and STS’16 surpass 0.8, which means that the
influences of the proposed models are predominant.

The MSE of different corpora influenced by the different
models can be observed in Table 5. MSE is a measure reflect-
ing the degree of the difference between the estimated values

TABLE 4. Pearson correlation of our methods in each dataset.

TABLE 5. Mean squared error of our methods in each dataset.

and the measured values. In this work, MSE indicates the
fitting degree between the calculated values and human-made
scores of sentence similarities from the semantic analysis.
The smaller the MSE is, the higher the fitting degree. All the
values in Table 5 are less than 0.05, the minimumMSE is just
0.015 and the maximumMSE is only 0.048. Data fromMod-
els I and II illustrate that theMSE of the corpora STS’14.deft-
forum and STS’16.headlines are 0.048 achieving the peak
though they are infinitesimal. There are five corpora of which
the MSE exceeds 0.04 and seven corpora between 0.03 and
0.039. Compared to the corpora of STS’12, it is evident
from the results that the proposed method performs domi-
nantly because all the MSEs of datasets are less than 0.035.
The dataset with the lowest MSE is STS’12.SMTeuroparl,
just 0.015. As detailed in Table 5 from the combination of
Model I, Model II and Model III, the minimum MSE is
0.016, which is more 0.001 than that of Model I and II.
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The maximum MSE is only 0.044, which is less 0.004
than that of Model I and II. MSEs of the two corpora
STS’12.MSRvid and STS’12.SMTeuroparl are insufficient to
0.02, with 0.019 and 0.016, respectively. There are fourteen
out of twenty-one corpora with MSEs below 0.03, which
demonstrates that the performances of our proposed methods
are perfect. Compared to the results of the two proposed
methods, except for dataset STS’12.SMTeuroparl, all MSEs
of the corpora are decreased by the introduction of Model III.
The MSEs of STS’12.OnWN and STS’16.answer-answer are
reduced by 0.008. The greatest reduction inMSEs is 0.011 for
STS’15.answers-students.

Comparing Table 4 to Table 5, except for
STS’12.SMTeuroparl, all Pccs of the other corpora increase
and the MSEs are reduced by introducing Model III, as illus-
trated in Fig. 3 and Fig. 4. For STS’12.SMTeuroparl, the
Pcc is unchanged but the MSE increases by 0.001 after the
introduction of Model III. For the first three corpora with
the greatest changeable values of MSE, Pcc increases by
only 0.01. The MSEs of the corpora with Pccs exceeding 0.9
are small with values of 0.022, 0.023 and 0.019. However,
we cannot reach such a conclusion as the higher Pcc with
the lower MSE. For example, the Pcc of STS’12.MSRpar
is 0.59 with the value of 0.026 for MSE, but the Pcc of
STS’16.headlines is 0.82 with the value of 0.044 for MSE.
The main reason is that the combination of Model I, Model II
andModel III decreases the difference between the calculated
values and the human-made values of some sentence pairs.
The great reduction in MSE can be explained by the charac-
teristics of Model II and Model III. Moreover, comparing the
variation tendencies between the Pcc and MSE of the same
corpus in Table 4 and Table 5, the conclusion is obtained that
the Pcc and MSE can analyze the semantic information of
sentence pairs from different standpoints.

E. DETAILED RESULTS
In this subsection, we discuss the Pcc and MSE of some
specific corpora by adjusting the parameters of Model II and
Model III. The adjustment process is as follows. First, the
similarities S1 of all the sentence pairs in the corpus are cal-
culated by Model I. Second, Equation (9) is used to compute
the similarity error E1. When the sentence similarity error E1
satisfies the condition E1 > λ1, Model II is selected to recal-
culate the sentence similarity. Subsequently, the combination
of Model I and Model II is formed. Third, the parameters of
Model II σ1, λ1 and D1 are regulated to achieve the optimal
values of Pcc and MSE. Finally, Model III is introduced to
optimize the combination of Model I and Model II, which is
called the combination of Model I, Model II and Model III.
choose some appropriate values for γ2 and σ2 according to the
value of σ1. When the sentence similarity and the similarity
error both satisfy the following condition: E2 > λ2 and
γ2 < y2 < σ2, Model III is used to compute the sentence
similarity. The parameters of Model III σ2, γ2, λ2 and D2
are adjusted to optimize the values of the Pcc and MSE. The
values of σ1 and σ2 satisfy the condition of σ1 > σ2, so all the

FIGURE 3. Comparison of Pearson correlation between the two
combinations of the proposed models. ’I and II’ indicates the combination
of Model I and Model II, and ’I, II and III’ refers the combination of all the
proposed models.
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FIGURE 4. Comparison of MSE between the two combinations of the
proposed models. ’I and II’ indicates the combination of Model I and
Model II, and ’I, II and III’ refers the combination of the three proposed
models.

sentence pairs are recalculated by eitherModel II orModel III
one time. The similarities of all sentence pairs in each corpus
are used just one time for the calculations of Pcc and MSE.
If the sentence pair is recalculated by Model II or Model III,
the sentence similarity computed by Model I is replaced by
the recalculated value when computing Pcc and MSE. All
the parameters of the combination of Model I, Model II and
Model III are adjusted after the adjustments of the parameters
of Model II in the following tables.

1) EXPERIMENTAL RESULTS OF STS’12.SMTeuroparl
Table 6 exhibits the influence of γ2, λ2 and D2 on STS’12.
SMTeuroparl, which is comprised of 459 sentence pairs.
A large number of the annotated similarities of sentence pairs
are greater than 0.8, and no sentence pairs with annotated sim-
ilarities are less than 0.3. As a result, when changing γ2 from
0.2 to 0.3, the Pcc and MSE both remain invariant. Attributed
to the large number of human-made scores over 0.8, the effect
of Model II is better than that of Model III. Therefore, the
Pcc of the combination of Model I and Model II is higher
than that of the combination of the provided three models.
In the majority of cases, MSEs decrease apparently by the
introduction of Model III, as shown in Table 6. The detailed
comparable charts affected by λ2 andD2 are expressed in Fig.
5(a) and Fig. 6(a). Both λ2 andD2 can markedly alter the Pcc
of the datasets.

2) EXPERIMENTAL RESULTS OF STS’14.input.images
Table 7 explains the comparison of the combination of Model
I and Model II to the combination of the three provided mod-
els in STS’14.input.images consisting of 750 sentence pairs
with sentence similarities ranging from 0.0 to 1.0. Compared
to the Pcc and MSE, all the values of MSE are very small but
with high Pccs, which illustrates that Model III can decrease
the semantic error apparently for the sentence pair.

3) EXPERIMENTAL RESULTS OF STS’15.input.images
The effect of the parameters on STS’15.input.images is given
in Table 8, and the detailed comparison charts of Pcc and
MSE are interpreted in Fig. 5(c) and Fig. 6(c), respectively.
The corpus STS’15.input.images is composed of 750 sen-
tence pairs with human-made sentence similarities from 0.0
to 1.0. There are some long sentences with the number of
notional words over 10 in the dataset. The longer the sen-
tence is, the greater the sentence semantic differences are.
The impacts of the entangled words operated by the tensor
product are marked in semantics; as a consequence, Model III
plays an irreplaceable role in the reduction in semantic noise.
As Fig. 5(c) and Fig. 6(c) show, the influences of D2 are
more obvious than those of λ2, which can be attributed to the
considerably transformed Pcc and MSE.

4) EXPERIMENTAL RESULTS OF STS’16.ANSWER-ANSWER
Table 9 shows the influences of different combinations
of different models on STS’16.input.answer-answer, which
contains 259 sentence pairs with the annotated sentence
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TABLE 6. Pearson correlation and mean squared error are influenced by the different models and the parameters of the same combinations of models in
the dataset: STS’12.SMTeuroparl.txt.

TABLE 7. Pearson correlation and mean squared error are influenced by the different models and parameters of the same combinations of models in the
dataset: STS’14.input.images.txt.

TABLE 8. Pearson correlation and mean squared error are influenced by the different models and parameters of the same combinations of models in the
dataset: STS’15.input.images.txt.

TABLE 9. Pearson correlation and mean squared error are influenced by the different models and parameters of the same combinations of models in the
dataset: STS’16.answer-answer.txt.

similarities of 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. The human-made
score of the sentence similarity is just one of the six values.
The lengths of the two sentences are different in some sen-
tence pairs. For example, one sentence of some sentence pairs
in the corpus is very short with just two national words, but
the other sentence is more than five notional words. In the
corpus, many high-frequency words are not considered in
the provided methods according to the abstraction laws of
words. With some colloquial words and short sentence pairs,
the Pcc and MSE are sensitive to changes in the parameters,
as listed in Fig. 5(d) and Fig. 6(d). When σ1 = 0.4, λ1 = 0.3,
D1 = 10000, λ2 = 0.3 and D2 = 85000, comparing Pcc
and MSE of 0.15 < y2 < 0.3 to that of 0.15 < y2 <

0.5, the diversifications are insignificant with only 0.001,
as detailed in the first columns in Fig. 5(d) and Fig. 6(d).
Compared to the second columns in Fig. 5(d) and Fig. 6(d),
when D2 is changed from 85000 to 75000 on the condition
of σ1 = 0.4, λ1 = 0.3, D1 = 10000, 0.0 ≤ y2 < 0.5
and λ2 = 0.3, the Pcc declines by 0.085 varying from 0.859

to 0.774, and the MSE is approximately doubled with the
variation from 0.033 to 0.066. When we only alter γ2 from
0.0 to 0.1, Pcc and MSE, as explained in the third columns
in Fig. 5(d) and Fig. 6(d), respectively, vary dramatically but
are smaller than the influence of D2 shown in the second
columns in Fig. 5(d) and Fig. 6(d), respectively. When σ1 =
0.4, λ1 = 0.3, D1 = 10000, λ2 = 0.3 and D2 = 75000,
comparing the Pcc and MSE of 0.0 ≤ y2 < 0.5 to that of
0.1 ≤ y2 < 0.5, respectively, the alterations are apparent
with the value of Pcc changing from 0.774 to 0.842 and the
MSE changing from 0.066 to 0.042, as displayed in the last
columns in Fig. 5(d) and Fig. 6(d), respectively.

5) SUMMARY
In summary, compared to the Pcc and MSE of the four
corpora influenced byModel II andModel III from Table 6 to
Table 9, the effect of Model III on long sentence pairs with
low sentence similarities is better than the effect of Model II,
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FIGURE 5. Pearson correlation influenced by different parameters.

but for the sentence pairs with high similarities, the effect of
Model II is better. The impact of Model III on the corpus
consisting of more sentences with more notional words is
clearer. Take STS’14.input.images as an example. All Pccs
of the combination of Model I, Model II and Model III are

FIGURE 6. Mean squared error influenced by different parameters.

much higher than that of the combination of Model I and
Model II, and all the MSEs of the combination of Model II,
Model II andModel III are lower than that of the combination
of Model I and Model II. The influence of parameters on the
data with a small number of sentence pairs is more obvious,
as evident from STS’16.answer-answer.
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VI. CONCLUSION
This study demonstrates how to integrate quantum theory into
text embedding to construct sentence representations based
on quantum entanglement. Considering that the dimension
expansion of the entangled words vector caused by the tensor
product may introduce some semantic noise, our models on
dimensionality reduction are reported, which incorporate the
physical idea of identifying the principal contradictions and
ignoring the secondary contradictions. The Pcc and MSE of
each corpus are obtained and compared with the results of
other models. Experiments are implemented on 21 datasets,
including the SemEval Semantic Textual Similarity Tasks
(years 2012, 2014, 2015, 2016). It is clear from the above
discussions that 16 out of 16 datasets outperform the com-
parative methods significantly and need no prior knowledge
except for word2vec. The data from the experiments indicate
the advantage of our approaches in that sentence embed-
ding based on quantum computation taking dimensionality
reduction into account can efficientlymine semantic informa-
tion without complex computing processes. For future work,
we attempt to extend the current framework to some study on
the semantic structure of sentences considering the different
weights of words.
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