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ABSTRACT Five-dimensional (5D) seismic data reconstruction becomes more appealing in recent years
because it takes advantage of five physical dimensions of the seismic data and can reconstruct data with
large gap. The low-rank approximation approach is one of the most effective methods for reconstructing
5D dataset. However, the main disadvantage of the low-rank approximation method is its low computational
efficiency because of many singular value decompositions (SVD) of the block Hankel/Toeplitz matrix in the
frequency domain. In this paper, we develop an SVD-free low-rank approximation method for efficient and
effective reconstruction and denoising of the seismic data that contain four spatial dimensions. Our SVD-free
rank constraint model is based on an alternating minimization strategy, which updates one variable each time
while fixing the other two. For each update, we only need to solve a linear least-squares problem with much
less expensive QR factorization. The SVD-based and SVD-free low-rank approximation methods in the
singular spectrum analysis (SSA) framework are compared in detail, regarding the reconstruction perfor-
mance and computational cost. The comparison shows that the SVD-free low-rank approximation method
can obtain similar reconstruction performance as the SVD-based method but with a large computational
speedup.

INDEX TERMS Multidimensional seismic data, low-rank approximation, seismic data processing, seismic
reconstruction, matrix completion.

I. INTRODUCTION
Data reconstruction is extremely important during the entire
seismic processing chain due to the fact that our acquired
data are never complete and regular in spatial dimensions.
More specifically, abundant physical and economic restric-
tions happen throughout the acquisition phase resulting in
data incompletion, e.g., feathering, near-offset gap, cross-line
under-sampling in towed marine streamer acquisition
and obstacles, terrain restrictions in land acquisition [1], [2],
[4]–[8], [10]–[12], [16], [18]–[20]. Incompletely and irreg-
ularly recorded seismic data always have severely negative
effects on the subsequent data processing workflow, such
as surface related multiple elimination, velocity analysis,
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full waveform inversion, wave equation migration, time-
frequency analysis, amplitude versus offset inversion and
seismic interpretation [21], [24]–[26].

Seismic data reconstruction, therefore, has drawn a large
amount of attention from both academia and industry in the
past several decades. It can be divided into two very basic
categories: model-driven methods and data-driven methods.
Although model driven methods are powerful and could
be highly accurate, a-priori knowledge about the model
needs to be provided, while it is not simple at all to build
such an accurate model. In addition to a-priori knowledge
about the model, computational cost is another big issue
for model-driven reconstruction methods. On the contrary,
data-driven reconstruction methods are significantly popu-
lar among seismic exploration community because of their
higher efficiency and less dependency on model. Usually,
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simple mathematical assumptions are utilized in data-driven
methods for interpolating seismic data, which turn out to be
more solid and effective. Since the last decade, a majority of
researchers have made lots of efforts to investigate all dif-
ferent types of data-driven reconstruction methods. In recent
years, dictionary learning andmachine learning are applied to
the reconstruction of 5D simple data [28]–[33]. Data driven
tight frame (DDTF) is a kind of dictionary-learning method,
which can simultaneously denoise and interpolate 5D seismic
data [28]. In DDTF, a sparsity-promoting algorithm is used to
build the dictionary which can represent the observed data
and estimate the complete data. Reference [30] combined
the DDTF with a classic machine learning method named
support vector regression (SVR) to optimize the learning,
which obtain better performance than theGauss SVRmethod.
With the continuous improvement of intelligent methods,
learning-based 5D data reconstruction will be a hot research
topic in the future.

In the seismic data processing literature, it is also noticed
that the challenge of random noise always comes along with
data reconstruction. In general, random noise suppression is
of significant importance for both increasing the signal-to-
noise ratio (SNR) [35] and improving seismic data recon-
struction performance. Random noise is capable of severely
affecting the final performances of reconstruction meth-
ods, and thus, much attention has been drawn to random
noise attenuation algorithms [35]–[38]. While most random
noise attenuation approaches utilize the signal predictability,
the irregularity of seismic data can directly influence this
predictability and result in unsatisfactory denoising perfor-
mance. Because of these mutual influences mentioned above
between random noise suppression and data reconstruction,
simultaneous reconstruction and denoising approaches are
widely studied in [42]–[45], [46] and [47]. Among all these
approaches, low-rank approximation methods are most com-
monly studied.

Meanwhile in recent years, simultaneous 5D seismic data
reconstruction and denoising has become very popular due
to the fact that it is capable of taking all physical dimensions
of seismic data into consideration [49]–[51], and thus, tak-
ing advantage of more data constraints and correlations to
improve the reconstruction performance even at an extremely
high data missing ratio. Especially when compared with
2D and 3D data cases, 5D data interpolation and denois-
ing can always provide much better results. There exist
two different categories for 5D interpolation: Fourier based
approaches and low-rank approximation based approaches.
Nowadays, 5D Fourier based interpolation methods have
already become a standard for industry due to its stability and
efficiency. Nevertheless, it is reported that the reconstruction
performance of 5D Fourier based methods is less accurate
than the low-rank approximation based approaches especially
when dealingwith curved events. On the other hand, low-rank
approximation methods for simultaneous 5D seismic data
reconstruction and denoising are widely studied during the
last decade.

Low-rank approximation approaches still have two
subcategories: tensor based methods and block Hankel/
Toeplitz matrix based methods. The first category regards
multi-dimensional data as multi-linear arrays and applies
dimensionality reduction on multi-linear arrays, in which
some folding and unfolding operations are utilized. These
methods are usually referred to as tensor completion. The
other category transforms seismic data into multi-level block
Hankel/Toeplitz matrix and a rank reduction algorithm can be
used to recover the data, which can also be named multichan-
nel singular spectrum analysis (MSSA) or Cadzow filtering.
Although simultaneous 5D seismic data reconstruction and
denoising via low-rank approximation becomes more attrac-
tive recently, there are still many challengeswithin this frame-
work.Major issues in low-rank approximation approaches for
5D data interpolation are [53]: (1) high computational cost
during SVD process, (2) the inevitable residual noise [19]
and (3) the rank inconsistency problem [71].

Firstly, high computational cost during SVD process is
the biggest problem we encounter especially for 5D dataset
[54], [55]. Since our target multi-level block Hankel/Toeplitz
matrix or tensor array tends to be extremely large, the trun-
cated SVD process consumes huge amounts of time. Many
researchers have made lots of efforts to solve this prob-
lem. Reference [42] proposed to replace truncated SVD
with randomized SVD to accelerate the MSSA based rank
reduction method. [43] introduced a fast rank reduction
approach along four spacial dimensions based on Lanczos
bidiagonalization. Instead of accelerating low-rank approx-
imation for multi-level Hankel/Toeplitz matrix, [47] pre-
sented a tensor completion based fast algorithm via parallel
matrix factorization to speed up the 5D interpolation process.
Recently, [52] developed a parallel square matrix factoriza-
tion method for efficient 5D data reconstruction without SVD
calculation, which however could be difficult to implement.

Secondly, the recently discovered inevitable residual noise
is another big issue preventing low-rank approximation
approaches from having better performance [56]–[59]. Usu-
ally, conventional low-rank approximation methods can
obtain reasonably good results while there are still amount
of visible residual noise left, which is more severe for land
seismic data. The reason is simply due to the incomplete
decomposition between signals and noise. Reference [61]
first noticed the inevitable residual noise during the truncated
SVD process in MSSA for random noise attenuation and
it is proved that the residual noise comes from the signal-
plus-noise subspace, which is decomposed by the truncated
SVD. Therefore, damped MSSA is proposed to mitigate this
noise leakage problem by introducing a damping factor to
better decompose the signal and noise [61]. Note that the
later proposed double least-squares projection has more or
less the similar concept with damped MSSA [62]. Refer-
ence [63] proposed a multi-step damped MSSA algorithm
to further improve the SNR during reconstruction. Straight-
forwardly, [19] extended damped MSSA to simultaneous
5D seismic data reconstruction and denoising in the condition

175502 VOLUME 8, 2020



J. Wu et al.: Fast and Robust Low-Rank Approximation for 5D Seismic Data Reconstruction

with extremely noisy land seismic data. A much cleaner
and more robust 5D interpolation result can be obtained by
imposing more accurate signal and noise space decomposi-
tion. In addition, [64] presented a novel hybrid rank spar-
sity constraint on seismic data to improve the interpolation
performance with less residual noise. This hybrid constraint
can take advantage of both constraints to upgrade the final
results. A similar hybrid model was proposed in [65] based
on a different framework called the three-operator proximal
splitting scheme.

Thirdly, an easily neglected but highly important issue is
the rank inconsistency problem during low-rank approxima-
tion [27], [66], [67]. Seismic events are usually complicated,
therefore, it is difficult to select a single appropriate rank
value for the whole dataset. If the rank is too large, little
noise will be removed and if the rank is too small, even useful
signals are lost. An effective strategy to mitigate this issue is
to process the data within local windows, which better sat-
isfies the basic linear assumption of low-rank approximation
methods. However, it still fails due to highly nonstationary
property of seismic data in both time and space, for example,
when dealing with crossing events where the rank should be
higher than other local windows. Reference [66] proposed
empirical low-rank approximation, in which the multi-dip
data are decomposed to multiple single-dip data so that the
optimal rank (e.g., one) can be applied to each local window.
More recently, [71] developed an adaptive rank thresholding
method to make the damped rank-reduction method suitable
for local processing.

In this paper, we address the first issue, i.e., the problem of
low computational efficiency, of the low-rank approximation
methods. We discuss an SVD-free low-rank approximation
method for efficient and effective reconstruction and denois-
ing of 5D seismic data that contains four spatial dimensions.
Our SVD-free rank constraint model is based on an alternat-
ing minimization strategy, which updates one variable each
time while fixing the other two. For each update, we only
need to solve a linear least-squares problem with much more
efficient QR factorization. We compare the performance of
the traditional SVD-based and the proposed SVD-free low-
rank approximation methods in detail. Extensive results show
that the proposed SVD-free low-rank approximation method
can obtain similar performance as the traditional SVD-based
method, but with a much higher computing speed. The com-
putational efficiency becomes more noticeable when the data
size becomes larger.

II. LOW-RANK APPROXIMATION FRAMEWORK
FOR 5D SEISMIC DATA
A. THE INVERSE PROBLEM
The 5D reconstruction problem aims to solve the following
inverse problem [42], [43], [68]:

Dobs
= S ◦ Dideal, (1)

where Dobs denotes the observed data, Dideal denotes the
complete data, and S denotes the sampling operator, which

can be more specifically displayed as follows:

S(i, j) =
{
1, for (i, j) ∈ �
0, for (i, j) /∈ �.

(2)

� represents the subset of observed indices. S equals 1 at
the observation point while 0 at the missing traces. ◦ denotes
element-wise product. BothDobs andDideal are considered in
the frequency domain.

The inverse problem can be solved via the rank-reduction
method, based on a weighted iterative algorithm [42], [43]:

Dn = anDobs + (1− an)S ◦MDn−1 + (1− S) ◦MDn−1,

n = 1, 2, 3, · · · , nmax , (3)

where D0 = Dobs. The operator M represents the low-rank
approximation operator that is based on truncated singu-
lar value decomposition (TSVD) for rank reduction. an is
an iteration-dependent scalar that linearly decreases from
a1 = 1 to anmax = 0. The algorithm stops when either
a maximum number of iterations nmax has been reached or
‖Dn − Dn−1‖

2
F ≤ tol. tol denotes a very small tolerance

value. In fact, equation 3 represents the general low-rank
approximation for simultaneous seismic data reconstruction
and denoising. Next, we will introduce the rank constraint
model that is connected with the rank-reduction operator.

B. THE RANK CONSTRAINT MODEL
Presuming the original data matrixX is of low-rank structure,
due to the theory of matrix completion, the randomly missing
data can be reconstructed by a rank-minimizing model:

min
X

rank(HX) s.t. Xi,j,k,l = Yi,j,k,l

for (i, j, k, l) ∈ �, (4)

where rank(HX) is the number of non-zero singular values
of HX. H denotes some mapping operations, for instance,
the blockHankelization/Toeplitization operator in equation 6.
Y is the observed seismic data.
The constrained minimization problem in equation 4 can

be converted to the unconstrained minimization problem in
equation 5 by introducing the balancing parameter:

min
X

rank(HX)+
1
2
µ‖S�(X)− Y‖2F , (5)

where ‖ · ‖F denotes the Frobenius norm. S� denotes trace
sampling.µ denotes balancing coefficient, which can balance
the weight between rank constraint and data misfit. In prac-
tice, this balancing parameter is explicitly connected to the
estimated rank value in the rank constraint.

The transformation of the 4D data matrix into a level-four
block Hankel/Toeplitz matrix can be represented in operator
notation as follows:

M = HD, (6)

where H denotes the level-four block Hankelization/
Toeplitization operator.
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Both missing traces and additive noise increase the rank of
the matrixM, which originally possesses low-rank structure.
We assume that M has full rank, rank(M) = J and the
desired low-rank matrixMK has deficient rank, rank(MK ) =
K < J . Therefore, the desired low-rank approximation can be
obtained by a rank reduction method using truncated singular
value decomposition (TSVD):

MK = UKUH
KM = RKM, (7)

where we use RK as the rank reduction operator via TSVD.
UK resulting from TSVD denotes the first K singular vec-
tors of matrix M. The symbol [·]H represents the conjugate
transpose of a matrix. Due to the TSVD step, the low-rank
approximation method discussed in this paper can also be
understood as a PCA method [62].

After rank reduction, the filtered data can be recovered
with random noise attenuated and missing traces recon-
structed via properly averaging along the anti-diagonals of
the target low-rank approximation matrixMK :

D̂ = AMK = ARKM = ARKHD =MD, (8)

where A denotes the averaging operator.
Here is a complete and detailed description of low-rank

approximation framework for 5D seismic data. We adopt the
following algorithm for reconstructing 5D noisy seismic data
with missing traces:
LR(S,Fd ,Dobs(t, hx, hy, x, y), an, tol,N ,F)
1 Dobs(w, hx, hy, x, y)← Dobs(t, hx, hy, x, y)
2 by 1D forward FFT
3 D0← Dobs
4 for f ← 1, 2, . . . ,F
5 do
6 for n← 1, 2, . . . ,N
7 do
8 Df

n← anD
f
obs + (1− an)S ◦ FdD

f
n−1

9 +(1− S) ◦ FdD
f
n−1

10 if ‖Df
n − Df

n−1‖
2
F ≤ tol

11 then return Df
n

12 return Df
N

13 return Drecoverd
14 Drecoverd (t, hx, hy, x, y)← Drecoverd (w, hx, hy, x, y)
15 by 1D inverse FFT

The iteration terminates after all F frequencies are fin-
ished. For each frequency slice, the iteration terminates after
N iterations or upon reaching convergence to the specified
tolerance tol.

III. FAST AND ROBUST LOW-RANK APPROXIMATION
APPROACH
Both conventional rank constraint and its solution are valid
and robust. However, the computational cost is a major
issue due to SVD in the low-rank approximation framework.
SVD consumes most computational time during the whole
process and it is especially severe for large scale problem,
such as 5D seismic data reconstruction. In order to avoid

SVD-related computations, we introduce a new SVD-free
rank constraint model following Wen et al. (2012) [69].

A. SVD-FREE RANK CONSTRAINT MODEL
Still presuming the original data matrix X is of low-rank
structure, our target level-four block Hankel/Toeplitz matrix
after mapping HX possess the same property. It is common
sense that m by n matrix HX with rank up to K can be
represented by a matrix product HX = PQ where the size
of P is m by K and the size of Q is K by n. A new SVD-free
rank constraint model can be expressed as:

min
P,Q,R

‖PQ− R‖2F , s.t. Ri,j = (HY)i,j, for (i, j) ∈ �,

(9)

where R is introduced mainly for a computational reason.
P and Q are the two low-rank decomposition matrices using
the SVD-free algorithm, such that the product of the esti-
mated P and Q is the low-rank approximated result. The
advantage of this new SVD-free rank constraint model is the
higher computational efficiency without costly SVD-related
process. More specifically speaking, normal QR factorization
instead of full or partial SVD is the principle components for
computation.

Similar to other algorithms, the solution to our SVD-free
rank constraint model should be naturally based on an alter-
nating minimization strategy. That is to say, updating one
variable each time while fixing the other two. For each
update, we only need to solve a linear least-squares prob-
lem with much less expensive QR factorization. In addi-
tion, a more complex nonlinear successive over-relaxation
scheme with dynamically adjusted relaxation weight is
utilized [69]. The detailed updates in each iteration are dis-
played as follows:

P∗ = ωRQT (QQT )† + (1− ω)P, (10)

Q∗ = ω(PT∗P∗)
†(PT∗R)+ (1− ω)Q, (11)

R∗ = P∗Q∗ + SH�(HY− P∗Q∗), (12)

where (.)† denotes the Moore-Penrose pseudo-inverse of a
target matrix, which is implemented by a normal QR algo-
rithm. ω is the relaxation weight parameter and SH� represents
sampling on the Hankel/Toeplitz matrix instead of the origi-
nal data matrix. P∗,Q∗ and R∗ are the updated versions of P,
Q and R.

To improve the efficiency of the introduced algorithm,
an update on the relaxation weight parameter is used based
on the calculation of residual ratio γ [69]:

γ =
‖W∗‖F
‖W‖F

, (13)

where

W = SH�(HY− PQ), (14)

W∗ = SH�(HY− P∗Q∗), (15)

if γ > 1, we simply reset ω to 1 and if γ < 1, we should keep
it unchanged. However, if γ < 1 but is close to 1, we need to
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increase ω to min(ω + τ, ωmax). Here, τ is a tiny increment
and ωmax is the maximum value that ω can be.

B. FAST 5D RECONSTRUCTION
Therefore, according to equations 10, 11 and 12, the new
SVD-free rank constraint model can be effectively solved.
Note that a proof of the convergence of SVD-free low-
rank approximation algorithm can be found in [69]. Due
to the absence of SVD-related calculation, the new model
is generally able to have a large speedup compared to the
conventional model. Besides, it is extremely easy to apply the
new model to the low-rank approximation framework. The
whole solution to new model can be regarded as a low-rank
approximation operator, and then equation 8 can be revised
to:

D̂ = AML = ARLM = ARLHD = LD, (16)

where RL denotes the rank reduction operator based on the
SVD-free rank constraint model and L is its corresponding
low-rank approximation operator. The final fast and robust
low-rank approximation framework for 5D seismic data is
introduced as follows:

Dn = anDobs + (1− an)S ◦ LDn−1 + (1− S) ◦ LDn−1,

n = 1, 2, 3, · · · , nmax . (17)

it is clear that the only difference between equations 3 and 17
is the SVD-free rank constraint based low-rank approxima-
tion operator.

It is the first time that the fast SVD-free low-rank decom-
position method [69] is used in the 5D seismic reconstruc-
tion problem. It is known that the matrix completion is
a common mathematical model. The method developed in
Wen et al. (2012) [69] is a general solution to accelerate a
matrix completion problem. It was developed to accelerate a
variety of real-world applications, like the one in this paper.
Here, we leverage this fast algorithm to accelerate the state-
of-the-art 5D seismic reconstruction framework.

IV. SYNTHETIC EXAMPLES
In this section, we use several synthetic examples to demon-
strate that the proposed SVD-free low-rank approximation
method can significantly accelerate the reconstruction of 5D
seismic data without loss of accuracy. Although Hankel
and Toeplitz matrices [72], [73] seem to be similar as the
low-rank matrix, but in some cases one can lead us to better
results in comparison to the other one. According to our
experience, the Toeplitz matrix results in a slightly better
reconstruction performance. So, here, we prefer to use the
Toeplitz matrix as the low-rank matrix. The first example is
a synthetic example with linear events. We first construct a
clean synthetic data, then we add some random noise to the
data and also randomly remove some traces from the noisy
data to simulate the incomplete seismic data. The size of this
synthetic data is 100 × 10 × 10 × 10 × 10. A comparison
of the clean data, noisy data, and the incomplete data is

presented in Figure 1, from which we can see that the added
random noise is so strong that most useful seismic signals
are not visible. Since 80% of the total traces are removed
from the original noisy data, the observed data is considered
to be highly incomplete. We compare the reconstruction per-
formance between the SVD-based low-rank approximation
method and the SVD-free version in Figure 2. The top row
in Figure 2 corresponds to the results from the SVD-based
low-rank approximation method and the bottom row
in Figure 2 corresponds to the results from the SVD-free
version. In Figure 2, we show the reconstructed data in
common offset gathers in the left column, the removed noise
from the noisy data in the middle column, and the recon-
struction error in the right column. The results show that the
SVD-based and SVD-free low-rank approximation methods
both obtain very successful reconstructions. The gaps in
the observed incomplete data have been filled with seismic
signals for both methods. The removed noise cubes of both
methods do not contain obvious signal patterns, indicating
that there are no significant damages to the useful signals
during the reconstruction. The reconstruction error cubes also
demonstrate that the error is negligible for both methods.
However, for this example, the proposed SVD-free method is
much faster than the SVD-based method. As tested on a Mac
Pro Laptop equipped with an Intel Core i7 CPU clocked at
2.5 GHz and 16 GB of RAM, the SVD-based method takes
603 s to finish the calculation while the proposed one only
takes 153 s. The computational speedup is almost four times.
A comparison of the computational efficiency of different
methods for different data sizes is shown in Table 1.

FIGURE 1. Common offset gathers for the 5D synthetic example with
linear events. (a) Clean data. (b) Noisy data. (c) The observed data with
80% traces randomly removed.

The denoising performance in the common midpoint gath-
ers is presented in Figures 3 and 4. Figure 3 plots the clean
synthetic data, noisy data, and decimated data with 80%
traces randomly removed. Figure 4 shows the reconstructed
data, removed noise, and reconstruction error cubes using the
SVD-based and SVD-free low-rank approximation methods.
A single-slice comparison in the common offset gather is
presented in Figure 5. From the single-slice comparison,
we can see that both methods obtain very similar results
(Figures 5(d) and 5(e)), which are very close to the clean
data (Figure 5(a)). To numerically compare the reconstruction
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TABLE 1. Comparison of computational cost of both the SVD-based and SVD-free low-rank approximation for different data sizes based on
an Intel Core i7 CPU.

FIGURE 2. Comparison of reconstruction performance in common offset
gathers for the 5D synthetic example with linear events.
(a) Reconstructed data using the SVD-based low-rank approximation
method. (b) The removed noise from the noisy data corresponding to (a).
(c) The reconstruction error corresponding to (a). (d) Reconstructed data
using the SVD-free low-rank approximation method. (e) The removed
noise from the noisy data corresponding to (d). (f) The reconstruction
error corresponding to (d).

performance, we use the signal-to-noise ratio (SNR) defined
as follows [61], [70]:

SNR = 10 log10
‖s‖22
‖s− ŝ‖22

, (18)

where s denotes the vectorized clean data and ŝ denotes the
vectorized reconstructed data.

To further compare the amplitude difference among differ-
ent datasets, we extract a single trace from each data cubes of
the clean, noisy, observed, and reconstructed data using two
methods. The trace to be compared is the middle trace in each
dataset. The single-trace comparison is plotted in Figure 6.
The clean data is plotted as the black line. The noisy data
is plotted as the red line. The observed data is not plotted
because in this position it is a blank trace. The blue line
plots the trace using the SVD-based low-rank approximation
method. The green line plots the trace using the SVD-free
method. It is apparent that both SVD-based and SVD-free
methods obtain very successful recovery of the exact solu-
tion, i.e., the clean trace. Although there are tiny differences

FIGURE 3. Common midpoint gathers for the 5D synthetic example with
linear events. (a) Clean data. (b) Noisy data. (c) The observed data with
80% traces randomly removed.

FIGURE 4. Comparison of reconstruction performance in common
midpoint gathers for the 5D synthetic example with linear events.
(a) Reconstructed data using the SVD-based low-rank approximation
method. (b) The removed noise from the noisy data corresponding to (a).
(c) The reconstruction error corresponding to (a). (d) Reconstructed data
using the SVD-free low-rank approximation method. (e) The removed
noise from the noisy data corresponding to (d). (f) The reconstruction
error corresponding to (d).

between the blue and the green lines, they are overall very
similar.

The calculated SNR of the incomplete data is −8.08 dB.
The SNRs of the SVD-based and SVD-free low-rank approx-
imation methods are 9.53 dB and 9.79 dB, respectively.
We find that the proposed SVD-free low-rank approxima-
tion can even obtain a slight improvement in terms of SNR.
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FIGURE 5. Comparison of reconstruction performance in a 2D section.
(a) Clean data. (b) Noisy data. (c) The observed data. (d) Reconstructed
data using the SVD-based low-rank approximation method.
(e) Reconstructed data using the SVD-free low-rank approximation
method.

FIGURE 6. Comparison of the middle trace amplitude of each cubes in
different datasets. The black line denotes the trace from the clean data.
The red line denotes the noisy data. The observed trace cannot be seen
from this FIGURE because it is a blank trace in the selection position. The
SVD-based and SVD-free methods are denoted as blue and green lines,
respectively.

Besides, we also use the local similarity metric [35] to com-
pare the reconstruction performance of different methods.
Figure 7 shows the comparison of local similaritymaps of dif-
ferent datasets. Figure 7(a) plots the local similarity between
clean data and the noisy data, where we can see that the
high local similarity is consistent with the distribution of the
useful signals. Although, it is difficult to observe signals from
the very noisy data, it is possible to use local similarity to
highlight the distribution of the useful signals in the presence
of extremely strong random noise. Figure 7(b) shows the
local similarity map between the observed incomplete data
and the clean data. The right side of the section has dis-
tinctly zero local similarity value, due to the missing traces.

FIGURE 7. Comparison of reconstruction performance in terms of local
similarity. (a) Local similarity of the noisy data. (b) Local similarity of the
observed data. (c) Local similarity of the reconstructed data using
SVD-based low-rank approximation method. (d) Local similarity of the
reconstructed data using SVD-free low-rank approximation method.

Figures 7(c) and 7(d) show the local similarity maps corre-
sponding to the SVD-based and SVD-free low-rank approx-
imation methods. The very close local similarity maps of
two methods indicate that the reconstruction performance is
nearly the same.

Next, we use a synthetic example with hyperbolic events
to test the performance of the proposed method in the case
of curved events. The clean data, noisy data, and incomplete
data with 80% missing traces are shown in Figure 8. The size
of this synthetic data is 101×32×32×5×5. The comparison
of reconstruction results using the SVD-based and SVD-free
methods is presented in Figure 9. The left column in Figure 9
plots the reconstructed data. The middle column in Figure 9
plots the removed noise. The right column in Figure 9 plots
the reconstruction error. From Figure 9, it is clear that both
methods obtain very similar performance. However, the com-
putational costs for the SVD-based and SVD-free methods
are 7226 s, and 1543s, respectively. Figure 10 shows the
comparison of local similarity cubes. Figure 10(a) plots the
local similarity between the noisy data and the clean data.
Figure 10(b) plots the local similarity between the observed
incomplete data and the clean data. Figure 10(c) plots
the local similarity between the reconstructed data and the
clean data using the SVD-based low-rank approximation
method. Figure 10(d) plots the local similarity between the
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FIGURE 8. Common midpoint gathers for the 5D synthetic example with
hyperbolic events. (a) Clean data. (b) Noisy data. (c) The observed data
with 80% traces randomly removed.

FIGURE 9. Comparison of reconstruction performance in common
midpoint gathers for the 5D synthetic example with hyperbolic events.
(a) Reconstructed data using the SVD-based low-rank approximation
method. (b) The removed noise from the noisy data corresponding to (a).
(c) The reconstruction error corresponding to (a). (d) Reconstructed data
using the SVD-free low-rank approximation method. (e) The removed
noise from the noisy data corresponding to (d). (f) The reconstruction
error corresponding to (d).

reconstructed data and the clean data using the SVD-free
lowrank approximation method. From the similarity cubes,
we see that the reconstructions from both methods help
recover most of the useful signals and obtain high local sim-
ilarity measures. The performance of the SVD-free method
is further confirmed to be close to the SVD-based method in
terms of local similarity measure. The SNRs of the recon-
structed data using the SVD-based method and the SVD-free
method are 1.75 dB and 1.92 dB, respectively. Note that the
SNR of the incomplete data of this example is extremely low,
i.e., −13.73 dB. This example also demonstrates the effec-
tiveness of the SVD-free low-rank approximation method in
the case of ultra-low SNR.

FIGURE 10. Comparison of reconstruction performance in terms of local
similarity. (a) Local similarity of the noisy data. (b) Local similarity of the
observed data. (c) Local similarity of the reconstructed data using
SVD-based low-rank approximation method. (d) Local similarity of the
reconstructed data using SVD-free low-rank approximation method.

V. REAL DATA EXAMPLE
Finally, we apply the proposed SVD-free low-rank approxi-
mation method to a 5D field data. The data have been binned
onto a regular grid and a common offset gather of the field
data is shown in Figure 11. In Figure 11, the colored stripes
are the recorded seismic traces. The white blanks denote the
missing traces, which means that we do not observe seismic
data in these positions. The size of this field data is 301×10×
10 × 20 × 20. Because of the difficulty in displaying a 5D
data set, we only show a common mid-point gather here. The
3D common midpoint gather is re-arranged into a 2D matrix
for a better view. The transparent colored windows denote
zooming areas for an amplified comparison. In this example,
roughly 80 percent traces are missing from the regular grids.
Because of the high ratio of missing traces, the observed
seismic traces do not show any spatial coherency. It is dif-
ficult to see the waveforms from the raw data. The results
from the two aforementioned methods, i.e., SVD-based and
SVD-free methods, are shown in Figures 11(b) and 11(c).
After 5D reconstruction, the white blanks in the raw data have
been filled with seismic traces. The waveforms become well
aligned along the spatial direction. Compared with the raw
data, all methods seem to obtain a dramatic improvement on
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FIGURE 11. Comparison of reconstruction performance in common offset gathers for the 5D field data example. (a) Observed data with roughly 80%
traces missing. (b) Reconstructed data using the SVD-based low-rank approximation method. (c) Reconstructed data using the SVD-free low-rank
approximation method. The frame box areas are zoomed and highlighted in FIGURE 12.

the data quality. It is salient that both low-rank approximation
methods obtain much smoother and cleaner results. When
zooming the data in the transparent red rectangles in both

Figures 11(b) and 11(c), the comparison among different
datasets becomes much clearer. From Figure 12, we observe
that both low-rank approximation methods obtain very
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FIGURE 12. Zoomed comparison of reconstruction performance in
common offset gathers for the 5D field data example. (a) Observed data
with roughly 80% traces missing. (b) Reconstructed data using the
SVD-based low-rank approximation method. (c) Reconstructed data
using the SVD-free low-rank approximation method.

similar results. In this example, the SVD-free method takes
15378 s while the SVD-based method takes 92340 s.

The speedup using the proposed SVD-free low-rank approx-
imation is nearly six times.

VI. CONCLUSION
The traditional singular value decomposition (SVD) based
low-rank approximation method suffers from the bottle-
neck of computational cost due to many SVD calculations.
In order to relieve the computation overburden, we develop
an SVD-free low-rank approximation method in this paper.
The SVD-free matrix decomposition is based on an alter-
nating minimization strategy. During the iterative update,
we only need a much faster QR factorization for solving a
linear least-squares problem. The SVD-free low-rank approx-
imation can be easily inserted into the singular spectrum
analysis (SSA) framework. We test the effectiveness of the
SVD-free method on synthetic examples with linear and
curving events, and a real 5D seismic data. The results show
that the proposed SVD-free method does not degrade the
reconstruction performance compared with the traditional
method. However, the proposed SVD-freemethod can greatly
improve the computational efficiency.
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