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ABSTRACT Deep neural networks are very compelling for medical image segmentation. However, deep
models often suffer from notable performance drops in real clinical settings due to the complex appearance
shift in daily scannings. Domain adaptation partially addresses the problem between imaging domains.
However, it heavily depends on the expensive re-collection and re-training for domain-specific datasets and
thus is not applicable to domain-agnostic images. In this paper, we propose a case adaptation strategy aiming
to bridge the segmentation performance gap on domain-agnostic images. Our contribution is three-fold.
First, we design a general self-supervised learning framework for case adaptation, which exploits its
predictions as supervision to drive the adaptation. Without extra annotations and any burden on model
complexity, the framework enables trained deep models at-hand to directly segment domain-agnostic testing
images. Second, we propose a novel Evolving Shape Prior (ESP) which recursively introduces strong shape
knowledge into networks and evolves with the adaptation procedure to provide adaptive supervision. ESP
can stabilize self-supervised learning and guide it to move towards model convergence. Third, we perform
extensive experiments on 10 datasets with different levels of difficulty and typical appearance shifts blended,
proving our framework is a promising solution in reducing segmentation performance degradation. Through
this work, we investigate the feasibility of case adaptation as a general strategy in enhancing the robustness
of deep segmentation networks, with comprehensive analyses proving its efficacy and efficiency.

INDEX TERMS Deep neural networks, medical image segmentation, case adaptation, self-supervision,
evolving shape prior.

I. INTRODUCTION
The great resurgence of deep learning brings profound and
lasting impact on medical image segmentation [1], [2].
However, due to the data dependency and lack of generaliza-
tion ability, deep segmentation models often lose their power
in practical scenarios, especially in daily clinical settings
[3], [4]. As shown in the left of Fig. 1(a), high accuracies
achieved by deep learning models are often reported within a
pre-defined domain S, where training, validation and testing
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images share a coherent appearance distribution. However,
what has been required in the real clinical settings is that,
the model should be independent of its source domain S
and work consistently on each domain-agnostic testing image
ϕ (Fig. 1(b)) which presents unpredictable appearance shift
(Fig. 2). The segmentation performance gap between the
model development phase on S and the deployment phase on
ϕ can be large and has been recognized in some recent studies
[4]–[6].

Domain adaptation [5] is an alternative approach to deal
with this gap (Fig. 1(a)). It usually unifies model input
or modulating the model itself for a new domain T with
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FIGURE 1. Schematic view to show the difference between (a) domain
adaptation and (b) case adaptation. S and T stand for two independent
domains. Testing image ϕ in model deployment phase is domain-agnostic.

FIGURE 2. Illustration of appearance shift in medical image
segmentation. Top and bottom rows: (a) ultrasound images of fetal
abdomen from different scanners, (b) ultrasound images of fetal head
from different timepoints, (c) X-ray images of chest from different
protocols, (d) cine-MR images of heart from different clinical centres
(e) CT and MR volumes of whole heart. Similar object shape is shared
across datasets in each column.

the assistance from a labeled or unlabeled dataset Tadap.
Drozdzal et al. [7] proposed a lightweight Fully Convolutional
Network to learn to normalize the medical image appearance.
However, the learned normalization is only effective for
small appearance variations. Generative adversarial network
(GAN) [8] can generate realistic style translation between
two distinctive medical image domains [9] and thus enable
the appearance harmonization. To further enhance the bound-
ary sharpness in CT-MR translation results, segmentation
based shape consistency loss was proposed in cycled GAN
[10]–[12]. By aligning features of different domains,
Kamnitsas et al. [13] exploited an adversarial scheme to
teach the network to learn source-invariant representations for
brain lesion segmentation on images from different scanners.
A similar idea also appeared in [14] for appearance-invariant
breast cancer classification in histopathology images.

Despite the effectiveness of domain adaptation, it still has
two critical drawbacks in clinical scenarios. First, it only
extends models in S to a fixed and pre-defined domain T
(Fig. 1(a)). As shown in Fig. 2, there aremany imaging factors
in daily scanning for the same examination, such as different
scanners, operators, protocols, timepoints, etc. These blended
factors make every testing image present a unique appearance
shift and can be domain-blinded against segmentation mod-
els. Thus, it is infeasible to clearly define a bounded domain
to run domain adaptation [3]. Second, domain adaptation
greatly depends on Tadap. However, for each subject, only a

few images (maybe just one) would be acquired for each task
[6]. Collecting a large amount of images and labels on-site
to build a Tadap and then modulating the pre-trained models
are impractical. Therefore, as we propose, case adaptation
(Fig. 1(b)) could be a better strategy to fulfill the requirements
of clinical settings. This new strategy discards Tadap and
focuses on directly deploying the trained deepmodels on each
domain-agnostic image.

Recently, efforts have been devoted to reducing the depen-
dency on Tadap. Gibson et al. [4] proved that utilizing anno-
tated images of as few as 8 subjects from the unseen site
for calibration is possible to address the inter-site prostate
segmentation in MR images. In [15], the model fine-tuned
with a single annotated image achieved comparable results
against full dataset trained competitors for lesion segmen-
tation. However, the choice of annotated images may have
a considerable impact on performances. Wang et al. [16]
relaxed the annotation requirement by proposing an interac-
tive scribble based fine-tuning on images. Huang et al. [17]
made further attempts to re-train student models with pseudo
labels generated by teacher models trained under a data-
and model-distillation scheme. In [6], for prenatal ultrasound
image segmentation, Yang et al. inherited the fine-tuning
fashion. They utilized a network-based renderer to unify input
appearance, and an adversarial structure loss to exempt the
need for extra annotations. These studies suggest that, despite
the slight computation cost, case adaptation, i.e., image-
specific fine-tuning, is promising to bridge segmentation
performance gaps on domain-agnostic images.

Using label proxy generated by the model itself, such
as predictions, to supervise and fine-tune the model,
self-supervised learning sheds light on bypassing manual
annotations for fine-tuning [18], [19]. However, solely resort-
ing to its prediction, vanilla self-supervised learning is
insufficient in combating segmentation performance gaps.
Accurate and informative label proxy is crucial for stable
self-supervised learning and the model convergence.

Model-based methods, i.e. atlas-based model [20], [21],
statistical shape model [22], [23] leverage the shape
prior to guide the model segmentation. For instance,
Cheng et al. [24] introduced an active contour framework
with shape prior for the vessel segmentation. Although effec-
tive, these model-based methods are usually task-specific or
modality-specific. Zheng et al. [25] investigated the effec-
tiveness of shape priors learned from a different modality to
improve the segmentation accuracy on the target modality.
Inspired by [6], [25], we find that shape prior is a strong
knowledge across different imaging conditions (Fig. 2) and is
beneficial to self-supervised learning. Nevertheless, the tradi-
tional shape prior is often modeled with handcrafted features
and limited deformation ranges [25], [26], and thus can not be
easily incorporated into the dynamic self-supervised learning
process.

In this paper, we try to cope with the segmentation
performance gap in real clinical settings by following the
proposed case adaptation. Our contribution is three-fold.
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FIGURE 3. Schematic view of our proposed framework. Segmentor is
firstly trained following a classic pipeline. Our recursive self-supervised
learning scheme then promptly tunes the segmentor to directly segment
the domain-agnostic testing image ϕ without any manual assistance.

First, we design a general self-supervised learning-based
scheme, which is annotation-free and explores its prediction
for fine-tuning. It preserves model complexity and enables
trained models to directly segment domain-agnostic test-
ing images. Second, we propose a novel Evolving Shape
Prior (ESP) which recursively introduces strong shape knowl-
edge into networks and evolves with the fine-tuning pro-
cedure to provide adaptive supervision. ESP proves to be
very effective in making self-supervised learning run stably
and guiding the fine-tuning converge towards a preferred
target. Third, under extensive experiments on 10 datasets with
different levels of difficulty and typical appearance shifts,
our framework proves to be a promising solution in bridg-
ing various segmentation performance gaps. These datasets
include images from different scanners (ultrasound of fetal
abdomen, Fig. 2(a)), timepoints (ultrasound of fetal head,
Fig. 2(b)), protocols (X-ray of lung, Fig. 2(c)), clinical centres
(cine-MR of heart, Fig. 2(d)) and modalities (CT and MR of
whole heart, Fig. 2(e)). As a by-product, our framework also
presents the potentials to be a simple and efficient refinement
strategy to improve segmentation on source domains. Our
proposedmethod is general and easy to implement to enhance
the robustness of deep segmentation networks.

II. METHODOLOGY
Fig. 3 depicts our proposed framework. Top row shows a
typical pipeline to train a segmentor with the loss calculated
between prediction maps and ground truth labels. A certain
amount of paired training images I and pixel-wise labels y
from domain S are required. Bottom row is our proposed
self-supervised learning schemewith ESP for testing. Trained
segmentor deploys on the domain-agnostic testing image ϕ

and generates prediction maps p̂. Segmentation q is then
produced by an argmax layer and goes to combine similar
label candidates in y to recursively stimulate the evolution of
ESP. In a few iterations supervised by ESP, the segmentor
trained in S can quickly and stably learn to tackle the appear-
ance discrepancy in domain-agnostic image ϕ and generate
satisfying segmentation to minimize the self-supervised loss.

A. BACKBONE OF THE SEGMENTATION NETWORK
Our proposed framework is not exclusively designed for
a specific segmentation network. In this paper, as shown

FIGURE 4. Architecture of segmentation network. Digits denote the
number of feature maps. Black stars denote the anchor point of auxiliary
loss functions.

in Fig. 4, we choose a classic and powerful U-net [27]
like network coupled with hybrid loss functions and a deep
supervision scheme as a backbone to achieve competitive
performances.

As datasets depicted in Fig. 2, our segmentation network
needs to overcome several challenges: (i) boundary ambiguity
caused by noise and low contrast, (ii) boundary deficiency
caused by occlusion and signal dropout, (iii) class-imbalance
among different classes. Facing these challenges, we use
a hybrid loss function (Lhyb, Eq. 1) as proposed in [28],
which combines weighted cross-entropy loss (LwCross) and
multi-class Dice Similarity Coefficient based loss (LmDSC ).
Both loss components are helpful against class-imbalance.
The former one is preferred in preserving boundary details
and the latter emphasizes global shape similarity to generate
compact segmentation. A hybrid version of these two losses
performs better than each alone [28].

Gradient vanishing often adversely affects the learning
of deep networks. Deep supervision mechanism can relieve
the problem by exposing shallow layers to the extra and
composite supervision of d auxiliary loss functions via d
side paths. we refer readers to [29] for more details. In this
paper, we attached two auxiliary loss functions in our network
(d = 2), denoted as * in Fig. 4. All loss functions in our
network are in a hybrid version. Final loss function Lseg is
thus formulated as Eq. 2,

Lhyb = LwCross + λLmDSC (1)

Lseg = L0
hyb +

d∑
i=1

ηiLihyb (2)

where λ is set as 100 to balance the scale of LwCross and
LmDSC . L0

hyb is the main loss function, while Lihyb (i ≥ 1)
is the auxiliary loss. ηi is the weight of Lihyb in final loss. The
auxiliary loss in shallow layer is assigned with smaller weight
(η1 = 0.4) than that in deeper layer (η2 = 0.8) to avoid
the network excessively focusing on the boundary details
and ignoring the semantic representations in the shallow
layer [30].

Input images to our network are normalized as zero mean
and unit variance by itself. Small convolution kernel with
size of 3 is utilized in all convolutional layers (2D kernel for
2D segmentation, Fig. 2(a)(b)(c)(d). 3D kernel for volumetric
segmentation, Fig. 2(e)). Each convolutional layer is followed
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by a batch normalization layer and a rectified linear unit. For
the four diverse tasks as shown in Fig. 2, our network design
proves to be general and effective in achieving satisfying
segmentation in each source domain.

B. SELF-SUPERVISED LEARNING SCHEME
It is hard for well-trained segmentors to generalize to unseen
images with appearance shifts. Fully-supervised fine-tuning
tackles the problem with many annotations [4], [15].
Weakly-supervised fine-tuning for a specific image reduces
the need of extra annotations [6], [16], [17]. These studies
provide a strong hint that, under a weakly- or un-supervised
setting, bridging the segmentation performance gap with case
adaptation can be feasible.

Self-supervised learning (SSL) scheme occurs in our view
as an attractive solution for case adaptation. Supervising a
learning process with the label proxy generated by the model
itself and thus being annotation-free is the core idea of the
SSL scheme. After pre-trained on a source domain, the model
in the scheme needs to learn to simultaneously update itself
and also the proxy to achieve reasonable segmentation on
unseen images. As shown in Fig. 3, when applying the SSL
to our case adaptation based segmentation, the problem can
be formulated as follows:

min
w,ŷϕ

LF (w, ŷϕ) =
S∑
s=1

LS (ys, p̂(w, Is))

+Lϕ(ŷϕ, p̂(w,ϕ)) (3)

where Is is the image in source domain S (s = 1, 2, . . . , S),
ys is the pixel-wise label of Is. w is learnable weight of
network, p̂ is the network predictions representing class prob-
abilities. LS is the loss in pre-training network and set as
Lseg in Eq. 2. LS is minimized by optimizing w on S. ϕ is
domain-agnostic testing image. ŷϕ is the proxy to supervise
the case adaptation, which is generated by network itself and
then optimized during case adaptation. Lϕ is self-supervised
loss for case adaptation. Both w and ŷϕ are tuned only on ϕ to
minimize Lϕ .

Vanilla SSL directly and only uses the predicted label of
the network as ŷϕ to self-tune the network. This setting has
shown limited success [31]. The main drawback is that the
tuned network is unable to correct its own mistakes and
it may amplify the error. Since ŷϕ is a pseudo label of ϕ

and often over- or under-estimates the ground truth, how to
generate the pseudo label properly and define an associated
loss Lϕ are important for SSL. Plausible designs of the label
proxy ŷϕ and the self-supervised loss Lϕ should guide the
SSL to move towards a latent convergence and therefore
improve the segmentation. In this work, as explained in
section II-C, we propose to encode adaptive shape knowledge
as ŷϕ to effectively drive the self-learning procedure.

C. EVOLVING SHAPE PRIOR
Vision system of human beings can perceive appearance-
invariant structural information of the same object class
across different imaging conditions. Shape prior shared by

objects plays an important role in guiding the vision system to
conduct case-specific customization. Statistical shapemodels
are robust and often provide clinically more plausible seg-
mentation than classification methods [32], [33]. Shape prior
is even compelling for cross-modality segmentation where
different modalities have very different imaging preferences
[25]. These observations motivate us to investigate the fea-
sibilities of exploring shape prior as a supervision signal in
the SSL.

There are attempts to embed shape prior into deep networks
by taking statistical shape model as constraints on net-
work predictions [34], [35] or as regularizations on feature
maps [36], [37]. However, effectively incorporating statistical
shape model with our SSL scheme is not trivial. First, the fit-
ting process of statistical shape models is often driven by
handcrafted features which are not robust against the image
appearance shift and the shape deficiency in network predic-
tions. Second, shape prior should be adaptive and be able
to synchronize its change with the iterative SSL procedure,
thus providing accurate supervision to guide the learning pro-
cedure. Nevertheless, the fitting process of statistical shape
model and the training of deep network are often optimized
with different goals [35], how to synchronize them is still an
open problem.

In this work, we propose a novel Evolving Shape
Prior (ESP) to circumvent the problems. As shown in Fig. 3,
the ESP serves as the ŷϕ in SSL to provide adaptive shape
prior as supervision. It is seamlessly implanted in the scheme
and independent of feature extraction. Network predictions
stimulate the recursive evolution of ESP and thus syn-
chronize it with our SSL based case adaptation. Different
from the population-restricted shape models, ESP provides
case-specific shape knowledge for case adaptation. It has two
key components: (1) a good starting point to trigger the SSL,
(2) an evolving strategy in order to lead the SSL to stable
model convergence.

1) MEAN SHAPE PRIOR FOR INITIALIZATION
Good initialization is crucial in triggering the SSL.
We propose to initialize the ESP with a mean shape
prior (MSP) map, denoted as Pmsp. Value at the location v
(2D or 3D) in MSP represents the probability of v belonging
to a pre-defined class C . Similar to [36], we estimate the
MSP by computing the pixel- or voxel-wise proportion of
each class C based on the ground truth labels ys in source
domain S. The formulation of Pmsp is

Pmsp(C|v) =
1
S

S∑
s=1

1C (ys,v) (4)

where S is the number of training images in source domain,
1C (ys,v) is an indicator function which returns 1 when
ys,v = C and 0 otherwise. In this work, we verify our
framework with binary segmentation tasks, i.e. foreground
and background, and thus C ∈ {0, 1}. MSP foreground
maps of the 8 datasets involved in this work (Fig. 2) are
illustrated in Fig. 5. MSP maps present high similarity in
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FIGURE 5. Mean shape prior foreground maps of 8 datasets (see Fig. 2
for details): (a) fetal abdomen in ultrasound, (b) fetal head in ultrasound,
(c) human lung in X-ray, (d) whole heart in CT (top row) and MR (bottom
row).

shape across datasets. All the images and labels are roughly
cropped around their centers of mass to ensure an approx-
imate alignment in location. MSP maps capture the main
shape mode of each task but discard minor deformations
(Fig. 5 (a)(b)(c)). Since the variations of heart structure and
angle in 3D are very complex, MSP maps of heart in CT
and MR are rough but still show proper hints of heart spatial
configuration (Fig. 5(d)). As we prove in section III, MSP,
as ŷϕ for unseen images, effectively guides the case adap-
tation to produce initial segmentation with plausible shape
completeness and hence builds a solid foundation for the
followed ESP evolution. Case-specific shape prior will then
be generated during evolution.

2) EVOLVING SHAPE PRIOR TOWARDS CONVERGENCE
Since our proposed SSL is only supervised by the ESP, mak-
ing the ESP case-specific and accurateLY becomes crucial.
In this work, we devise a novel evolution strategy to suc-
cessively modify the ESP and fit it with the learning pro-
cess. We hypothesize that, initialized with the Pmsp, the ESP
will supervise the fine-tuning process to generate gradually
refined segmentation. Segmentation in each iteration should
contain some case-specific information and thus should be
explored to amend the ESP. The ESP map, denoted as Pesp,
can then be enhanced and in turn provides better supervision
to drive the network to produce more precise segmentation.
This loop will be terminated after convergence. Key step
in this loop is to effectively amend Pesp with the network
prediction in each iteration, and further ensure a positive
feedback in the loop to improve the segmentation. To achieve
this, as shown in Fig. 3, we propose the following recursive
evolution strategy,

Dt = argmax
D′⊂S,|D′|=K

∑
d∈D′

DSC(qt , d) (5)

P tame =
K∑
k=1

θkyk , yk ∈ Dt , s.t.
K∑
k=1

θk = 1 (6)

P tesp = αP
t−1
esp + βP

t
ame, t ∈ Z+ (7)

where t is iteration index, qt is the segmentation in iteration
t . qt serves as a query image and is input into a comparator

to retrieve the top K similar labels in S to form a support
set Dt . K is set as 3 to avoid outlier influence. We compare
the similarity between qt and label candidate d with Dice
Similarity Coefficient (DSC). Label yk in Dt are weighted
with θk according to their DSC values and merged into an
image P tame. P

t−1
esp then evolves into P tesp with the weighted

amendment from P tame. P
0
esp is initialized with Pmsp.

The proposed strategy is simple but effective with three
advantages. First, without any extra manual annotations,
amending ESP with the evolving support set Dt can simu-
late an image-specific, visual-plausible shape supervision to
strongly guide the fine-tuning. Second, DSCmetric is utilized
to find the most similar labels d in S to the intermediate
segmentation to prevent the strict image alignment, which
may be unstable or require additional annotation for trans-
form matrix calculation. Third, with this evolving strategy,
the network segmentation and the ESP will simultaneously
move towards a similar shape. The SSL can thus stably
achieve model convergence in only a few iterations.

For the self-supervised loss Lϕ in SSL (Eq. 3), we cus-
tomize it as a regression loss, i.e., Lϕ =‖ p̂t − P tesp ‖1. p̂

t is
the probability map predicted by network in iteration t . The
main reason behind this design is that, as a fusion result of
retrieved similar shape labels, P tesp is often blurry and its soft
version tends to have more shape clues than its binary label
version. Therefore, regression based loss is better than binary
label based cross-entropy in exploring P tesp.

3) FURTHER ENHANCE THE STABILITY
In our practice, we find that ESP based SSL tends to
suffer from sudden performance drops during iteration in
some challenging tasks, like the whole heart segmentation.
We interpret this phenomenon as that, although the evolv-
ing shape prior P tesp and the segmentation qt can be very
close, there still exist some discrepancies between them in
tough tasks. The segmentation may sometimes be closer to
the latent ground truth than P tesp. In this case, forcing the
network to fit the P tesp is destructive. Therefore, we propose
to further enhance the stability of SSL by directly introducing
the segmentation qt into the basic ESP (Eq. 7) as a balance,

P tesp = αP
t−1
esp + βP

t
ame + γ q

t (8)

III. EXPERIMENTAL RESULTS
A. IMPLEMENTATION DETAILS
We implemented our work in Tensorflow, using an NVIDIA
GeForce GTX TITAN Xp GPU (12GB). In training networks
on source corpus, we update the weights of networks with
an Adam optimizer (batch size=2, initial learning rate is
0.001, momentum term is 0.5, total iteration=8000). During
the case adaptation, we update the weights of all networks
with smaller initial learning rates as 0.0001. In adaptation,We
update the weights of networks 3 times referred to Lϕ in each
iteration to properly fit current ESP. θk is set to 0.5, 0.3 and
0.2 for top 3 candidates in Eq. 6, respectively. For each image,
our method is fast and only needs less than 25 iterations
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(about 0.2 sec/iteration for 2D task, 2 sec/iteration for 3D
task) before achieving a satisfying segmentation and stable
convergence, less than 10 seconds in 2D task and 1 minute
in 3D task of the whole initialization and evolution process.
Necessary data augmentation, including flipping and rota-
tion, are conducted as default. All tasks in this paper share the
same parameter setting which proves to be acceptable across
all verifications on source corpora.

B. EVALUATION CRITERIA AND METHOD COMPARISON
We adopt 5 metrics to evaluate the segmentation results from
both shape similarity and boundary similarity perspectives,
including DSC (%), Conformity (%) [38], Jaccard (%), Haus-
dorff Distance of Boundaries (HDB, [pixel] or [voxel]) and
Average Distance of Boundaries (ADB, [pixel] or [voxel]).
For verification, we conduct extensive comparisons among
different methods and ablation studies. For clarity of descrip-
tion, in this paper, we quote all methods with a ’A2B’ naming
format, in which ’A’ is the corpus where the source model
is trained, ’B’ is the corpus in which each image is directly
tested or the subject that case adaptation is applied to. A2A
thus means, the model is trained with training dataset of A
and tested with the testing dataset of A. Histogram match-
ing (HistM) and CycleGAN [39](CyGAN) are considered in
this study for comparison. HistM adjusts the histogram of
a floating image to a reference one. It is a classic method
in dealing with intensity distribution variations [40]. In this
paper, we define the reference histogram (128 bin) as the
averaged histogram over a training dataset.A2B-HistMmeans
that every testing image in B is firstly aligned to the refer-
ence histogram of A and then tested by the segmentor of A.
CycleGANproduces realistic appearance translation between
different image domains [9]. It has high potentials in unifying
image appearances. A2B-CyGAN means that, each testing
image in B is firstly translated into an A-like appearance by a
pre-trained mapping between A and B, and then tested by the
segmentor of A. Training of CycleGAN is time-consuming
and needs two balanced corpora from A and B.
For ablation study, we mainly compare four variations

of case adaptation: (1) A2B-vSSL, vanilla self-supervised
learning (vSSL), which is depicted in section II-B. A2B-vSSL
means that, segmentor of A firstly deploys on the testing
image from B and then is directly and solely fine-tuned by
the generated binary label. (2) A2B-MSP, standing for the
fine-tuning only supervised by the initial, static MSP. With
more complete shape supervision, A2B-MSP may perform
better than A2B-vSSL which often suffers from its own mis-
takes. (3) A2B-ESP, which is our proposed method. It should
output much better results than A2B-MSP. All A2B-ESP
methods adopt α = 0.6 and β = 0.4 in Eq. 7. (4) A2B-EHCE,
which is the stability-enhanced version of A2B-ESP (Eq. 8).
All A2B-EHCE methods adopt α = 0.3, β = 0.2 and
γ = 0.5 in Eq. 8. All case adaptation methods iterate on each
image for 25 iterations. Only the results in iteration 25 are
reported. We keep reasonable settings for all methods for fair
comparisons.

TABLE 1. Method Comparison of Fetal Abdomen Segmentation in
Ultrasound Image (Direction: A2B).

TABLE 2. Method Comparison of Fetal Abdomen Segmentation in
Ultrasound Image (Direction: B2A).

C. QUANTITATIVE AND QUALITATIVE ANALYSIS
We verify our proposed framework with four distinctive tasks
where segmentation performance gaps occur due to different
factors. Each task contains two datasets with recognizable
appearance shift (Fig. 2). We conduct extensive experiments
with a strict bi-directional manner, i.e., A2B and B2A, for
thorough tests.

1) ULTRASOUND IMAGE OF FETAL ABDOMEN
We collected ultrasound images of fetal abdomen to verify
the gap using different scanners. Abdomen circumference is
important for fetal weight estimation. In total, 1540 images
were acquired using a Sonoscope C1-6 ultrasound scanner
(denoted as C) with gestational age from 30 to 34 week.
1515 images were acquired using a Siemens Acuson Sequoia
512 ultrasound scanner (denoted as S), with gestational age
from 24 to 40 week. Free deformation and fetal pose were
allowed during image acquisition (Fig. 2(a)). In both datasets,
we randomly select 900 images with augmentation for train-
ing, the rest for testing. Experienced experts provide the
segmentation ground truth. All images are cropped to center
around the fetal abdomen region and resized to the size of
320× 320.
In Table 1 and 2, models trained and tested in source

corpora (C2C and S2S) achieve acceptable results [41], but
are degraded when applied to new corpora (C2S and S2C).
Histogram matching and CycleGAN only bring about slight
improvement (C2S-HistM/C2S-CyGAN vs C2S) and even
make it worse (C2S-HistM vs C2S, S2C-HistM/S2C-CyGAN
vs S2C). This may indicate that corpus-based intensity dis-
tribution and appearance style are not specific enough in
case adaptation. Case adaptation based variations generally
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FIGURE 6. (a) From top to bottom, an ultrasound image of fetal abdomen
from corpus C, segmentation ground truth and the initial segmentation
result produced by the segmentor trained on corpus S, (b) From top to
bottom, intermediate segmentation results of S2C-vSSL, S2C-MSP,
S2C-ESP and ESP images at iteration 1, 8 and 25, respectively. Yellow
digits denote the DSC measurement of each segmentation result. Color
version for better view.

present better results than competitors as the iteration prop-
agates. Among them, vSSL already get notable improvement
(S2C-vSSL vs S2C). However, since vanilla SSL based meth-
ods (C2S-vSSL, S2C-vSSL) are supervised by its own pre-
diction, they often tend to stick on some wrong candidates,
as shown in Fig. 6 (b).MSP is able to imporve the sgementa-
tion (about 6% DSC in both C2S-MSP vs C2S and S2C-MSP
vs S2C) as it encodes complete shape information. Although
MSP helps in eliminating false positives, it sometimes makes
segmentation converge to the shape prior (Fig. 6(b)). ESP
based methods produce best results in the bidirectional tests
(about 0.9% in DSC over MSP based methods), in all eval-
uated metrics. From Fig. 6 (b), we can see that, S2C-ESP
gradually generates the refined segmentation as iteration
increases. At the same time, the ESP image also evolves to a
case-specific pattern from its prototype (Fig. 5 (a)) to closely
match the learning procedure. We also notice improvements
in C2C-MSP/C2C-ESP vs C2C and S2S-MSP/S2S-ESP vs
S2S.We owe this to the capacities ofMSP/ESP in guiding net-
works to suppress false positives and overcome intra-corpus
appearance variations which may be caused by different
imaging parameters.

2) ULTRASOUND IMAGE OF FETAL HEAD
We also collected ultrasound images of the fetal head. Its cir-
cumference is another basic measurement in prenatal exam-
ination. Besides different scanners, datasets here blend a
factor of different timepoints where fetal head shape does not
change much, but the appearance of its inner structures, like
the thalamus and cerebellum, changes dramatically due to
the fetal growth and increasing acoustic shadows (Fig. 2(b)).

TABLE 3. Method Comparison of Fetal Head Segmentation in Ultrasound
Image (Direction: A2B).

TABLE 4. Method Comparison of Fetal Head Segmentation in Ultrasound
Image (Direction: B2A).

1315 images were acquired using a Sonoscope C1-6 ultra-
sound scanner (denoted as C) with gestational age from 18 to
24week. 1372 images were acquired using a SiemensAcuson
Sequoia 512 ultrasound scanner (denoted as S), with gesta-
tional age from 24 to 40 week. The training and testing are
set like that in section III-C1.

Suffering from the complicated appearance shift caused by
the composite effect of scanners and timepoints, as observed
in Table 3 and 4, much larger gap than that in section III-C1
emerges when we compare C2C vs C2S (6% DSC drop) or
S2S vs S2C (30% DSC drop). Imbalance between the bidi-
rectional drops also shows that segmentors trained on each
corpus captures different features, which then results in the
difference of segmentor robustness. Histogrammatching here
has almost no contribution to the segmentation (C2S-HistM
vsC2S, S2C-HistM vs S2C), while CycleGAN achieves about
6% and 22%DSC improvement on the two directions, respec-
tively. This indicates that, when different scanners and time-
points are blended in imaging, the appearance shift is beyond
what the HistM can capture, but can be partially addressed
by CycleGAN. Case adaptation based methods continue to
present improvements and better results than its competi-
tors, except the vanilla SSL (C2S-vSSL vs C2S-CyGAN,
S2C-vSSL vs S2C-CyGAN). ESP based methods significantly
close the gap and achieve comparable performance to the
model trained on the source corpora (C2S-ESP vs C2C-ESP,
S2C-ESP vs S2S-ESP).

In Fig. 7, we visualize the DSC improvement of C2S-ESP
over initial segmentation along with iteration on 472 images
from S (Fig. 7 (a)), and S2C-ESP on 415 images from C
(Fig. 7 (b)). We can see that, ESP based methods brings about
improvement for almost all the testing cases. The maximum
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FIGURE 7. Curves of DSC improvement over initial segmentation.
(a) C2S-ESP on 472 images from S, (b) S2C-ESP on 415 images from C.
Green dot denotes the averaged DSC improvement at each iteration.

TABLE 5. Method Comparison of Lung Segmentation in X-ray Image
(Direction: A2B).

DSC improvement is about 55% in C2S-ESP, and 60% in
S2C-ESP. The curves of S2C-ESP spans a larger range than
that of C2S-ESP, which may indicate that appearance varia-
tion in C is much larger than S. With the evolution, almost all
curves plateau after only about 5 iterations (about 1 second)
and then keep the trend.

3) X-ray IMAGE OF CHEST
We investigate the segmentation performance gap on X-ray
images of chest acquired in different sites with different pro-
tocols. Lung in the chest has much more complex shape than
fetal abdomen and head. Two publicly available datasets are
included [42]. JSRT Set: a set compiled by the Japanese Soci-
ety of Radiological Technology (denoted as J). It contains
247 images, 154 have lung nodules (100 malignant cases,
54 benign cases), and 93 have no nodules. We randomly split
the dataset into 200/47 for training/testing. Montgomery Set:
a set from the Department of Health and Human Services,
Montgomery County, Maryland (denoted as M). It consists
of 138 images, 80 of them are normal and 58 are abnormal
with manifestations of tuberculosis. We randomly split the
dataset into 90/48 for training/testing. Both training datasets
are augmented to 600 with proper rotation and deformation.
We treat left and right lungs as the same class. All images are
cropped to center around the lung and resized to 256× 256.

As shown in Fig. 2 (c), these two sets have different appear-
ances from each other. In Table 5 and 6, large segmentation
performance drops occur in both directions (34% DSC in J2J
vs J2M, 24% DSC in M2M vs M2J). Histogram matching
contributes to the best results with M2J-HistM in Table 6.
This indicates that the main appearance difference between
these two sets may be intensity distribution variations.

TABLE 6. Method Comparison of Lung Segmentation in X-ray Image
(Direction: B2A).

FIGURE 8. Visual comparison among histogram matching, CycleGAN and
ESP. Results of ESP at iteration 1, 3 and 25 are shown. Yellow digits
denote DSC value, white lines on ESP images for reference. Best view in
color version.

However, since histogram matching is very sensitive to the
reference histogram which is prone to be affected by the
global content of reference images, it therefore only brings
plain improvement in J2M-HistM, see Fig. 8. With a stable
and realistic style translation between two sets, CycleGAN
based methods improve the segmentation by more than 20%
DSC in both directions (J2M-CyGAN vs J2M, M2J-CyGAN
vs M2J). However, as instanced in Fig. 8, improvement
provided by CycleGAN is limited, since the translation
results are subject to content blurry and boundary shift [12].
Compared to competitors, vanilla SSL methods obviously
show no advantages (J2M-vSSL,M2J-vSSL). Same as Fig. 6,
vanilla SSL can improve segmentation but tends to be trapped
by suboptimal segmentation, and the risk is intensified by
the complex shape of lung. Although there still exists a gap
of about 4% in DSC, ESP introduces almost the best results
among all methods and greatly narrows down the initial gap
(J2M-ESP, M2J-ESP). Segmentation is nearly maintained
when apply ESP to J2J/M2M, this might be the guidance
from ESP is subtle when original segmentation achieves good
performance (DSC is 97.49 in J2J, 96.76 in M2M).
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TABLE 7. Method Comparison of MYO, LV and RV Segmentation in
cine-MR images (Direction: A2B).

In Fig. 8, we visually compare the histogram matching,
CycleGAN and ESP in improving the segmentation of an
image from set M. Segmentor trained on J only achieves
an initial DSC of 60.662%. Translation of J2M-HistM and
J2M-CyGAN improve the segmentation but have obvious
flaws. J2M-ESP starts with a poor prediction (iteration 1,
DSC 82.57%), but significantly refines the segmentation as
learning iterates (DSC 92.19% at iteration 3, 94.32% at itera-
tion 25). False positives and negatives are gradually rectified
and finally a clean and complete shape is presented. The
associated ESP image also evolves accordingly to guide the
refinement, although the ESP is not exactly matched with
the ground truth. Reference lines are plotted for readers to
compare the evolution details.

4) cine-MR IMAGES OF HEART
We investigate the effectiveness of our method in bridging
multi-category segmentation performance gap on cine-MR
images of heart acquired from different clinical centres and
vendors. We perform the comparison experiments on two
public datasets including M&Ms [43] and ACDC [44]–[46].
The M&Ms dataset (denoted as M) was collected in three
different countries using three different magnetic resonance
scanner vendors.1 It contains 3284 slices from 150 patients
and we randomly split the dataset into 2332/952 for train-
ing/testing according to patient. ACDC dataset (denoted
as A) was from the University Hospital of Dijon. It contains
1902 slices from 200 patients. We randomly split the dataset
into 1342/560 for training/testing according to patient. Both
of the datasets contain three target segmentation categories
including left (LV) and right ventricle (RV) blood pools,
as well as the left ventricular myocardium (MYO). The
training datasets are augmented with flipping and 90-degree
rotation. All the slices are cropped to center around the heart
and resized to 128× 128.

As shown in Fig. 2 (d), there are large appearance differ-
ences between the two datasets. From Table 8 and Table 7,
we can observe that the segmentation performance suffers
drop in most of the tissues in both directions. The A2M
direction occurs larger decline than M2A direction, e.g. 1%
DSC drop of MYO in M2A vs. 8% in A2M. This is because
a more generalized model can be trained in the dataset M
acquired from multiple data sources. HistM and CyGAN fail

1We only used the released annotated training set of this public dataset.

TABLE 8. Method Comparison of MYO, LV and RV Segmentation in
cine-MR images (Direction: B2A).

FIGURE 9. Visual comparison among initial prediction, vSSL and ESP. The
numbers on the bottom right represent DSC of each method.

in boosting the performance of the baseline due to the com-
plex appearance differences. Particularly, the sensitivity of
HistM makes it unable to perform stable appearance trans-
fer, resulting in worse results. Owing to the effectiveness
of the SSL, the vSSL can bring slight improvement for the
baseline in most of the tissues. After embedding the strong
shape prior by MSP and ESP, the shape prior based SSL
methods can improve the baseline in all of the three tissues of
both directions. As shown in Fig. 9, the ESP contributes the
best segmentation performance compared with the vSSL and
initial prediction. We can also observe that the ESP method
can repair the tattered segmentation map of initial predictions
by introducing the shape prior based supervision. It can be
proved that our proposed methods can not only bridge the
segmentation performance gap in single category but also
boost the accuracy of the multi-category segmentation.

5) CT AND MR VOLUME OF HEART
Wefinally address themost challenging task of cross-modality
whole heart segmentation. Multi-Modality Whole Heart Seg-
mentation Challenge 2017 datasets are used in this study [47].
Datasets consisting of 60 CT and 60 MR volumes (20/40 for
training/testing) are acquired from different patients without
alignment. Seven heart substructures are labeled by experts.
As testing labels are held by Challenge organizers and
unavailable, we split training datasets of CT (denoted as T)
and MR (denoted as R) into 12/8 for our training/testing.
Training and testing parts of T and R are augmented with
rotation and deformation to 228 and 72, respectively. In this
work, we treat the 7 substructures as the same class. All
volumes are cropped to roughly center around the whole heart
and resized to 96× 96×64. The whole volume serves as our
network input, rather than a patch manner.
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TABLE 9. Method Comparison of Whole Heart Segmentation in CT/MR
Volume (Direction: A2B).

TABLE 10. Method Comparison of Whole Heart Segmentation in CT/MR
Volume (Direction: B2A).

Fig. 2 (e) demonstrates the very different appearances of
CT (top row) and MR (bottom row) in imaging the heart,
especially the intensity and contrast of chambers and myocar-
dia. In Table 9, the big difference is reflected by about
40% DSC drop from T2T to T2R. However, the DSC drop
from R2R to R2T is relatively small, only 13% (Table 10).
Better contrast between heart and surrounding tissues in CT
than that in MR may lead to the imbalance. This imbalance
is also observed in the results of CycleGAN. Implemented
in 2D, synthesizing MR-like slices from CT (R2T-CyGAN)
seems to be much harder than the contrary (T2R-CyGAN)
[11]. Stuck in its own mistakes, especially in 3D applica-
tions, vanilla SSL performs worst among all case adapta-
tion methods and becomes even worse than the baseline
(R2T-vSSL vs R2T). MSP also tends to lose power in a 3D
scenario where complex geometry, rotation and deforma-
tion are involved. It only facilitates the segmentation with
T2R-MSP, while degrades the performance in R2T-MSP.
Improvements in both directions firstly occur withESP, about
30% DSC increment from T2R to T2R-ESP and 3% DSC
from R2T to R2T-ESP. However, as illustrated in Fig. 10,
the performance of self-supervised learning process guided
by ESP may suddenly decline on some difficult volumes.
The discrepancy between the accuracy-increasing prediction
of network and the estimated ESP map is the main course.
Network prediction should thus be properly incorporated into
ESP to calibrate the supervision signal. As defined in Eq. 8,
the enhanced ESP finally achieves another 1%DSC improve-
ment (T2R-EHCE, R2T-EHCE) by stabilizing the recursive
case adaptation (Fig. 10).
DSC improvement curves of all fine-tuning methods on

72 testing volumes are shown in Fig. 10. vSSL, MSP, ESP
and EHCE gradually present refined results and finally a
fast, stable and positive convergence trend on almost all

FIGURE 10. Curves of DSC improvement over initial segmentation. Top
row: T2R-vSSL, T2R-MSP, T2R-ESP, T2R-EHCE. Bottom row: R2T-vSSL,
R2T-MSP, R2T-ESP, R2T-EHCE. Green dot is averaged improvement at the
iteration.

FIGURE 11. From left to right, intermediate segmentation and ESP output
of T2R-EHCE at iteration 1, 5 and 25. Green mesh denotes ground truth,
blue surface denotes segmentation. Color bar for ESP. Best view in color
version.

testing cases. At iteration 25, the maximum DSC improve-
ment of T2R-EHCE is about 60%, while it is 12% of
R2T-EHCE. Advantages of methods and differences between
two testing directions are well visualized through the figures.

In Fig. 11, we further visualize the intermediate results of
T2R-EHCE in segmenting anMRvolume fromM (iteration 1,
5 and 25). Segmentor trained on CT volumes only achieve an
initial DSC of 53.183%. From both the front and back views,
segmentation is significantly refined as iteration increases.
High agreement is achieved between segmentation surface
and ground truth mesh at iteration 25. The enhanced ESP vol-
ume also rapidly evolves to be sharp and segmentation-like
from its initial fuzzy and rough form (Fig. 5 (d)). Our
final segmentation results are not that perfect but are com-
parable with single-modality based methods [28]. These
results proves the feasibility of direct cross-modality seg-
mentation and provide good label initializations for further
studies.

6) ANALYZING THE SELF-SUPERVISED LEARNING
To gain more insights about the SSL scheme in bridging
segmentation performance gap, in Fig. 12, we visualize the
maximum absolute change among all feature maps of each
network layer along iteration. All layers in the network are
countered. Specifically, we choose the S2C-ESP on a fetal
head ultrasound image and T2R-EHCE on an MR volume as
exemplars. As we can observe, significant and slight changes
happen to layers in an interleaved way in both figures. This
may indicate that, in case adaptation, some knowledge of
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FIGURE 12. Layer-wise maximum feature map value change along
iteration. Left: S2C-ESP on an ultrasound image, right: T2R-EHCE on an
MR volume.

object is preserved across different imaging conditions while
the rest is discarded and amended. Magnitude change of lay-
ers in T2R-EHCE is much larger than that in S2C-ESP. This
verifies that cross-modality segmentation is more challenging
and the dramatic changes in specific layers help networks
bridge the large segmentation performance gap.

IV. LIMITATION AND DISCUSSION
We investigate the feasibility of self-supervised learning
scheme in helping deep segmentation networks generalize to
different imaging conditions. It is crucial before deep mod-
els can be embedded into real clinical workflow. Extensive
experiments on eight datasets with typical imaging factors
demonstrate the efficacy of our proposed framework.Without
any burden on model complexity, our method narrows down
the segmentation performance gap in an economical, stable
and fast way. With detailed comparisons and visualizations,
we hope to provide readers with insights into this emerging
research direction.

Although being promising, there still exist several key
points in our framework for future study. Currently, we are
using DSC as a key metric to retrieve the most similar
labels (Eq. 5) in source domain to amend ESP. However,
DSC is still not accurate enough in describing the global
and local similarity between segmentation and annotation
label. Directly merging all retrieved labels based on the
DSC values also ignores the importance of each pixel/voxel.
Better label retrieval and fusion strategy should be considered
[31]. Although the coefficients in ESP for evolution (Eq. 7,
Eq. 8) are robust in almost all tasks, they are empirically set,
whichmay limit the iterative refinement and cause the sudden
drop as shown in Fig. 10. Learning to adaptively set these
parameters is an interesting research direction. Furthermore,
there is still a performance gap between our method and the
state-of-art methods, e.g. about 4% DSC gap of our meth-
ods to the ranking top 1 approach in ACDC challenge [44].
Achieving a robust segmentation performance bridging is our
target in the future. Finally, the diseased tissues, i.e. tumors,
usually have irregular shapes, which may affect the perfor-
mance of our methods. We will equip our method with the
advanced technology, e.g. style transfer, to achieve a universal
approach for bridging the segmentation gap. In these scenar-
ios, generating effective ESP and properly coupling it with
the adaptation procedure will be critical.

V. CONCLUSION
In this work, we attempt to narrow the segmentation
performance gap encountered by deep networks under image
appearance shift. The problem is very general as illustrated on
eight typical datasets. We argue that case adaptation should
be more tractable and be considered more than domain adap-
tation in solving the problem for real clinical scenarios. Our
work integrates the strengths of traditional shape prior and
self-supervised learning in a novel way. To the best of our
knowledge, this is the first work exploring self-supervised
learning for medical image segmentation. We extensively
validate the proposed framework and provide diverse results
with insights to prove that, case adaptation is lightweight,
efficient and feasible in helping deep models bridge various
segmentation performance gaps.
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