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ABSTRACT This article proposes a novel approach aimed at estimating the pose of a camera, affixed to a
robotic manipulator, against a target object. Our approach provides a way to exploit the redundancy of the
robotic arm kinematics by directly considering manipulator poses in the model formulation for camera pose
estimation. We adopt a single camera multi-shot technique that minimizes the reprojection error over all
the rigid poses. The results of the proposed method are compared to four other studies employing either
monocular or stereo setup. The experimental results on synthetic and real data show that the proposed
monocular approach achieves better and in some cases comparable results to the stereo approach. Moreover,

the proposed approach is significantly more robust and precise compared to other methods.

INDEX TERMS Pose estimation, multi-view, multi-shot, machine vision, robotic arm, visual servoing.

I. INTRODUCTION

Camera pose estimation with respect to a target object/scene
has been widely researched in the fields of computer and
machine vision, photogrammetry and robotics. Accurate pose
estimation is needed in numerous applications such as cam-
era calibration [1], localization [2], reconstruction [3], robot
visual servoing [4], and augmented reality (AR) [5]. The
advances in these fields have significantly benefited users to
accomplish a variety of tasks with good accuracy. Despite
much progress, there is still need of improvement for appli-
cation specific methods to improve accuracy and robust-
ness. For example, an approach suited for achieving visually
pleasing reconstruction might not be well suited for accurate
localization.

In this study, we focus on the prerequisites of visual ser-
voing of a robotic arm for accurate manipulation. Visual
servoing uses visual information acquired from cameras to
get spatial and semantic understanding of the surrounding to
plan the motion of the robot. The most common applications
are robotic grasping [6] and medical procedures [7]. Visual
servoing depends on many independent components such
as accuracy of robot positioning, hand-eye calibration, and
target pose estimation. For this study, we restrict our scope
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to the accuracy of target pose estimation. Pose estimation of
the camera against a target position/object can be achieved
through various approaches that incorporate different algo-
rithms and/or hardware configurations. Among these, monoc-
ular approaches are widely adopted for AR applications [8].
This primarily means that 6-DoF pose is obtained using a
single monocular image. The depth of the object with respect
to the camera can be estimated from a scaling approach by
forming a geometric relationship between the camera and the
known metric size of an object in view of the camera.

The generic approaches for pose estimation of a single
camera with respect to the object, or vice versa, can be
categorized into two groups. The first category of methods
finds the solution by estimating the plane-to-view homog-
raphy and then decomposing it to obtain the pose. This set
of methods is known as Homography Decomposition (HD)
methods [9]-[11]. Collins and Bartoli [12] proposed a method
that analytically solves the problem after the homography
is computed. They named their method Infinitesimal Plane-
based Pose Estimation (IPPE). The underlying concept is that
even when the estimated homography is noisy, it will still be
close to the true transform between the image and the model
plane at some regions on the plane. The method takes the
points on those regions to solve for a pose using 1st order
PDE. The second category of methods treats it as a rigid
pose estimation problem. It uses 2D-3D point correspondence
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for estimating the pose of the camera relative to the object.
This approach is commonly known as Perspective from n
points (PnP) [13]. PnP methods work by minimizing the cost
function of the correspondence transfer error to estimate a
rigid pose. The correspondence transfer is the error between
the predicted positions of point correspondences compared
with their measured positions. Collins and Bartoli [12], also
makes the argument that IPPE has a deep connection with PnP
problem, where the n points can be centered at infinitely small
separation from each other using the estimated homography.
Lu et al. [14], proposed a provably convergent method called
RPP that iteratively solves the PnP problem. The method
minimizes the collinearity error to estimate the rotation part
of the pose followed by its associated translation. The method
is quite efficient and usually converges in 5-10 iterations
from a random geometric configuration. Schweighofer and
Pinz [15], extended the work presented in [14] and introduced
RPP-SP to handle ambiguous cases that results in the case of
planer targets. The method first computes the pose solution
in a similar way to [14] and then estimates a second pose
solution by minimizing the reprojection error along 1-DoF
rotation and translation at a time. The aim is to find the second
local minimum if such a minimum exists. The limitations
of [15] are that if the first solution is poor, then the second
solution suffers as well. Moreover, it is very difficult to
physically characterize the ambiguous cases since the second
solution is obtained from the roots of a 4th order polynomial,
where two of the roots are imaginary. Li et al. [16], proposed a
non-iterative method that solves the PnP problem numerically
in O(n) by producing subsets of three points. Each subset is
then solved as a separate P3P problem. The final solution is
obtained from the group of solutions that best fits the model.

Alternatively, many studies consider multi-view
approaches to achieve better accuracy. In a multi-view
approach, the feature points or parts of interest are observed
through several views to generate a coherent and accurate
model. These features can be linked across views through
robust tracking and subsequently aligned through relative
geometric transformation. Federico et al. presented a closed-
form method to estimate the pose of an object from multiple
views [17]. The method requires at least one point-point
and two point-ray correspondences from two or more views
to solve a generalized PnP problem. With the ability to
efficiently and accurately match feature point across multiple
views, many studies have opted for structure-from-motion
(SFM) based approaches, also known as full multi-view.
Daniel and Tomas proposed an SFM method that computes
the rotation and translation separately for relative views [18].
The approach then optimizes the relative poses globally and
evenly distributes the pose errors using bundle adjustment.
Typically, approaches that opt for separate estimation of
rotation and translation yield good orientation accuracy.
However, the position accuracy is often compromised as the
errors from rotations estimation step propagate to the trans-
lation estimation step. Nonetheless, in the case of study [18],
these are compensated for in the bundle adjustment step.
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Collet and Srinivasa [19] introduced a modified version of
full multi-view, which they termed as introspective multi-
view approach. This multistep approach first estimates object
and camera pose using a single-view method. Once the
initial estimates are obtained, the points are clustered and
the outliers from matches are removed. Finally, the poses are
re-optimized in a bundle adjustment step using the filtered
matches. According to the authors, the approach provides
a good tradeoff between computational speed and accuracy.
This study is important for our comparative analysis since it
demonstrates its use for robot grasping application.

Some studies utilize multi-camera approaches to solve the
pose estimation problem. Theoretically, multi-camera sys-
tems are similar to multi-view approaches for specific cases
where time is not a relevant factor. Furthermore, Stereo-
scopic approach is a specific case of multi-camera approaches
where two cameras are separated by a fixed baseline. In such
a case, there must exist a considerable overlap between
the views. Stereo approaches can obtain highly accurate
results due to the inherent advantage of constrained two or
more views. The depth estimated from stereo can be con-
siderably more accurate compared to traditional monocular
approaches. Clipp et al. [20], proposed an approach that
estimates the pose in two steps. First, the absolute rotation
and up to scale translation are estimated using a 5-point
algorithm [21] in one of the cameras. The correction factor for
the scale is then computed separately from an additional point
correspondence in the second camera. However, the scale
retrieval approach is not robust and absolute translation can-
not be obtained all the time. Later Clipp et al. presented
a modified approach that estimates the relative pose of a
stereo pair by employing constraints on the feature point
selection for pose estimation [22]. The pose is estimated
using a selection of four feature points, where the first point
is observed in all four views (both stereo-pairs). Two more
points should be observed in two-views of one of the cam-
eras (left or right), while the last point is observed in both
views from the other camera. The results show improvement
over a random selection of points; however, the study lacks
comprehensive testing over real data. Geiger et al., proposed
a novel approach that generates dense 3D maps from high-
resolution stereo sequences in real-time [23]. The authors
claim that the presented approach achieves state-of-the-art
accuracy in terms of pose estimation and its sub-sequent
odometry. The method estimates pose by reprojecting the
world points simultaneously on the stereo views and thereby
constraining the objective function. The objective function
is iteratively optimized using the Gauss-Newton method.
Igor et al. presented a stereo approach for ego-motion esti-
mation called SOFT [24]. The approach focuses on a care-
ful selection of features and robust tracking for improving
the overall accuracy. The author estimates the rotation with
the 5- point algorithm [21] and translation with a 1-point
stereo method that is iteratively optimized in both views.
Raul and Juan presented a similar approach to SOFT for ego-
motion estimation with slightly loose constraint on feature
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selection [25]. The approach first computes the relative cam-
era pose followed by a local bundle adjustment among a few
recent poses. Later, a full bundle adjustment is performed to
optimize the camera locations by minimizing the reprojection
errors in all the observed views. The approaches in [24]
and [25] are more suited for a large amount of data where
the tradeoff is maintained between local accuracy and error
distribution among all the views.

Though multi-camera approaches provide considerable
advantages over monocular approaches, in many cases the
additional hardware and software resources required can
exceed the allocated resource budget of the task. This study
is driven by the motivation to develop an accurate and robust
pose estimation method for the International Thermonuclear
Experimental Reactor (ITER) project using an eye-in-hand
monocular approach. The goal is to perform certain tasks
autonomously using a robotic arm with high precision and
accuracy. In this work, we attempt to achieve compara-
ble results to stereo approaches by proposing a multi-view
monocular approach considering the case of robotic arm
manipulation.

The article is organized as follows: In Section 2, we present
the problem and define the preliminaries for its formula-
tion. In Section 3, we formulate the proposed method along
with other methods considered for comparative analysis.
Section 4 presents the experimental setup, error metrics and
experimental results using both synthetic and real datasets.
Finally, Section 5 concludes the article.

Il. PROBLEM FORMULATION

In this study, we attempt to elucidate the approach
through geometrical relationships for thorough understand-
ing. We adopt various notations to help us describe the
problem and use them consistently throughout the study.
We represent the homogeneous transformation matrix by
the standard notation 7" and support it through various sub-
indices. The sub-indices b, ¢, ¢, and w correspond to the robot
base, robot tool/tool center point (TCP), camera optical center
and world coordinate frames, respectively. These notations
are exemplified in Fig. 1.

The TCP/end-effector pose from the base of the robot,
denoted by ,T7, is provided readily by the control system
associated with the robot. Generally, the robot pose is highly
accurate due to the high precision encoders used in the robotic
arm at each joint. These robots, especially industrial robotic
arms, are designed to perform tasks that require accuracy
and high repeatability with precision around 0.1 — 0.2 mm
of the end effector’s position. The transformation from the
robot TCP to the camera coordinate frame ,7° is known as
hand-eye transformation. We have discussed in detail various
approaches for hand-eye and robot-world-hand-eye calibra-
tion methods in an earlier study [26]. The aforementioned
article can be studied for a thorough understanding of the
methods and their MATLAB implementation. For this study,
we will adopt the reprojection based approach of the robot-
world-hand-eye formulation to estimate ,7°.
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FIGURE 1. lllustration of the setup explaining the geometrical relation
among various coordinate frames.

Finally, the unknown homogeneous transformation 7"
from camera coordinate frame to the world coordinate frame
affixed to the target object needs to be estimated. The estima-
tion of this transformation matrix defines the pose estimation
problem in the described arrangement. Generally, the pose
of the camera against the target object or vice versa can
be computed independently of the robotic arm pose. For
the case of monocular camera with one image (monocular
single shot - MSS), only one camera pose T}" exists at i = 1
pose. This can be estimated directly with the state-of-the-art
methods mentioned in the Introduction Section. Similarly,
in the case of stereo camera with one stereo image (stereo
single shot - SSS), we estimate only the camera pose (T}
which should be able to validate the constrained views of the
stereo image pair. The constraint between the stereo pair is
a fixed transformation obtained during the calibration of the
stereo camera.

In contrast, we can find the reference .T')” using multiple
images from different views (monocular multi shot - MMS).
For i =(1,2,...,n), we estimate n CTl.W transformations
from camera frame, at each pose, to world frame. In the
arrangement shown in Fig. 1, the camera positions at various
poses of the end-effector of the robot can be considered
independent camera bodies floating in space. The position
and orientation of the camera at these n camera poses can
be estimated and optimized freely, independent of the robot
poses. The optimization is typically performed as local and/or
full bundle adjustment [25], where the goal is to distribute the
errors and obtain the best possible 3D reconstruction of the
object/scene. Theoretically, the transformation .7} estimated
through MMS approach is more accurate as it is constrained
with the help of the remaining n-7 .T}" transformations.

In this study, we propose a modified form of MMS
approach where we constrain the free pose optimization of
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cameras in an attempt to model the physical system more
adequately. We estimate only the transformation 7" and
use the prior information (robot poses ;,Tf and Hand-Eye
transformation ,7¢) to constrain and geometrically relate the
camera views from n poses. Unlike the traditional MMS
approaches, the proposed approach does not need to estimate
the additional n — 1 .7}" transformations.

lll. METHODS

In this section we discuss the stereo single-shot approach pre-
sented in [23], the monocular multi-shot approach presented
in [19] and our proposed monocular multi-shot approach. All
these methods solve the problem of camera pose estimation
in the image space. Such a method takes the world points and
estimates a suitable transformation that enables us to repro-
ject the 3D points to the image space at their corresponding
views.

The stereo single-shot approach presented by Geiger
et al. [23] was briefly discussed in Section I. We present here
the mathematical relation that we use to estimate the stereo
pose. The relationship is given as

{Q(c,w) , ctW}
= argmin ([P — TI(K, [qee) » ¥ 1ar, W)I I3
d(c,w) » ot

HIP" = TUK", [geew) » ofIar * 1 T7, WHI3). (1)

Here, IT is the perspective projection function that projects
the 3D points W = (X, Y, Z, l)T from world frame space to
image space using the camera intrinsic (K’ and K”) and the
stereo extrinsic ;7. The superscript T indicates the transpose
of a vector. The subscript or superscript 1 and r indicate the
camera to which the corresponding parameters relate in the
stereo pair. The cameras intrinsic and extrinsic are estimated
using Zhang’s stereo camera calibration approach [11]. The
perspective projection yields ¥ = (i, v, 1)T in the image
space of the camera at the pose of interest. The reprojected
points X are compared directly against the observed/tracked
2D points (P! and P) in the corresponding left and right
image pair. The symbol [ ]yr indicates the conversion from
quaternion ¢, and translation vector .#" to the homo-
geneous transformation matrix .7". The solver minimizes
the error function in quaternion representation of angles.
This helps to reduce the number of unknowns from 12 to
7 parameters. We use the Levenberg—Marquardt algorithm to
search for a minimum in the search space by minimizing the
L2-norm (|| ||%) of the residual scalar values.

The second method is a MMS approach known as Intro-
spective Multiview Approach [19]. The method first extracts
feature points from the scene and estimates a camera pose
for each view using a single-view method. The points are
then clustered, filtered, and matched across the views. Finally,
the individual poses are re-optimized in a bundle adjust-
ment step using the filtered matches/clusters. The study
presents two mathematical relationships for solving the prob-
lem; one is based on reprojection and the other is based
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on back-projection. It then argues that both relations are
equivalent in Euclidean space and one may use either of
the approaches. The reprojection based approach is generally
preferred since it is invariant to projective transformations,
while the back-projection does not provide useful informa-
tion in projective space [19]. The authors opted for back-
projection based approach to extend their implementation to
be used with other sensors e.g. LIDAR data. However, we use
the relationship provided for reprojection based approach as
it concurs to the approach we have adopted throughout this
study. In the original implementation, feature points from
multiple objects in the scene were extracted and multiple
hypotheses are generated; one for each cluster of points
tracked across views. Since we are using one target pattern,
the formulation can be simplified to a single hypothesis
optimization problem. In line with the argument in Prob-
lem Formulation Section, we estimate and re-optimize n CTZ.W
transformations in this MMS approach. The mathematical
relationship is given as

n
(h*) = argmin Y 8|IP) — TI(K, TP Wl ()
TW

et i=1

where h* = {h], h3, .h;} indicates the set of optimal
hypotheses and 8 /l is a logical operator that switches to 1 when
Pli has points in a cluster and 0 otherwise. We have fixed the
lower subscript to 1 since we assume one cluster of points i.e.
the target pattern.

In the proposed method, we use data from n poses and
explicitly take the robot poses into consideration. The pri-
mary difference between our proposed approach and [19]
is that we recommend introducing the robotic arm transfor-
mations in the optimization step to constrain the model and
minimize the number of unknow transformations from rn .T;"
to .T}".

From Fig. 1, we can form the following relationship among
n manipulator poses.

pT] (T¢ TV = Ty (T T)
= T (T¢I}

= T, T T, 3)

During the estimation step, we optimize only for one
homogeneous transformation .7 that transforms a point
from camera frame position in the first/reference view to the
fixed object/world coordinate frame. Hence, we curtail the
geometric relationship in (3) and accumulate the transforma-
tions from world frame to the camera frames at all poses
except the reference pose. The resultant transformation T;
transforms the 3D world points from object/world coordinate
frame, through the first reference pose, to the camera frames
at the remaining n — 1 poses.

Ti= T" T} »T! ,T¢ . T". 4
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Since we use quaternion and translation vector representation
during optimization, we re-write (4) as

— —1 —1 .
Ti= ¢ T’ TP T [qgew» "lur. Q)

We can now estimate 7" by optimizing the following
expression

n
(e » ot} = argmin Y ||Pi — TI(K, Ty, W)l[5. (6)

9(c,w) » otV i=1

Many studies suggest optimizing the camera intrinsic
parameters along the solution estimation to achieve better
results [27]. On the other hand, Koide and Menegatti [28]
contend this argument as an overfitting problem. The ratio-
nale that [28] provides is that upon optimizing the intrinsic
parameters for the reprojection error, the model overfits to the
given samples. This will yield poor results for all error metrics
other than the reprojection error and carry the estimate away
from the true solution. We observed a similar response while
optimizing for ;7. As mentioned before, this transformation
is obtained from the robot-world-hand-eye calibration. The
calibration is performed on a significantly higher number
of poses (10-20) compared to the number of poses used for
object pose estimation (3-5). Due to fewer poses, the result
deteriorates and the errors propagate to the final solution.
Based on the presented argument and experimental results,
we opted for a single camera intrinsic and robot-world-hand-
eye calibration.

It is noteworthy that the proposed approach is not invariant
to the choice of initial estimates for the solver. However,
we have successfully constrained the number of unknown
parameters to just 7, which improves the convergence of
the solution, even with a rough initial estimate. The initial
estimates for [19] and our proposed method are obtained
from MATLAB’s implementation of Zhang’s method [11] for
camera calibration and monocular pose estimation.

IV. EXPERIMENTAL SETUP AND RESULTS

To assess the performance of our proposed method against
other studies, we carry out tests on simulated data with
synthetic images and real data. The motivation for using
simulated data is to check the actual response of the method
against actual ground truth. In contrast, the real data is used
to assess the performance of the methods in a real working
environment where perturbations in the data are higher and
the ground truth is always an approximation.

When estimating the object pose by relaying information
through the image space, the selection of feature points for
tracking plays a significant role in the overall accuracy of
the system. Many studies prefer a markerless approach sim-
ilar to SFM approaches [18], [29]-[31] to make the system
independent of special fiducial patterns. These approaches
use feature point correspondences from the feature-rich scene
and track them through the views. This is immensely useful
for the case where the environment is unregulated and the
use of markers is difficult. However, the drawback of such
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an approach is that the feature correspondence step is prone
to outliers. Even in the presence of powerful consensus gener-
ator algorithms such as RANSAC [32], the approach inherits
additional errors in the form of weak feature correspondence
due to tracking or matching. As a result, the accuracy is
always an approximation of what it can be in the presence of
specialized markers. The study aims to develop an accurate
pose estimation method for robotic arm manipulation, where
the environment is moderately regulated. It is to our advan-
tage to use specialized markers.

For this study, we use classical checkerboard and ChArUco
diamond marker [33], for simplicity referred hereafter
to as diamond marker. The diamond marker consists of
3 x 3 squares with 4 ArUco markers placed inside the white
squares. This pattern and its detection approach are more
robust compared to the use of only markers and compact
compared to the original ChArUco pattern.

In this section, we provide a quantitative analysis of the
proposed method against four other state-of-the-art methods.
Moreover, we discuss the error metrics used to assess the
performance of each method. Among the methods used for
comparison, IPPE [12] and Zhang [11] are based on monocu-
lar single shot (MSS) approaches. Collet and Srinivasa [19] is
a monocular multi-shot/multi-view (MMS) approach, while
Geiger et al. [23] requires a single shot from stereo (SSS)
camera pair. We have not considered a comparison with a
stereo multi-shot approach as it is redundant for this task and
is in conflict with the aim of this study i.e. improving results
with reduced hardware. Finally, we discuss and report the
experimental results of all these methods for each test case.

A. ERROR METRICS

To estimate the error in the computed pose against the ground
truth poses, we use absolute rotation error (deg), absolute
translation error (mm), and reprojection error (px). The abso-
lute errors require that the ground truth poses are known.
In the case of synthetic data, the ground truth poses are
exactly known. In the case of real data, the approximates of
ground truth are found through dedicated manual steps as
explained in later sections. The absolute rotation error e, and
the absolute translation error e, are given as follows

—1
ear = || angle GR" RY) 113, @)

— " 3. ®)

Here the angle() represents the conversion from a rotation
matrix to axis-angle for simpler user interpretation. ,R" and
»t" are the rotation and translation from the base of the robot
to the world frame.

The final metric that we use, is the reprojection root mean
squared error (rrmse). This metric is measured in pixels and is
a good way to assess the quality of the results in image space.
Moreover, it consolidates the absolute error metrics since the
proposed model of reprojection error back-projects the 3D
points onto the images by first transforming them through
the robotic arm. Hence, each pose has to be accurate and in

eqr = || btgrvt
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FIGURE 2. Example of the rendered images from the simulated cases and the 6DoF poses of the camera. (a) The first row of images
exemplifies case 1 with varying number of poses with motion along one axis. Second to the fourth row include extracts from case 2
(subcase 2-4) with varying inter-pose distance. The last row of images exhibits case 3 where all axes are excited during camera motion and
rotation (b-d) Camera poses against the target pattern for each synthetic case shown in (a).

agreement to the overall geometric relationship for the 3D
points to back-project precisely onto these different views
from corresponding robot poses. The transformation is the
same as used in (6) and shown in (4). The reprojection error
is given as

e — —
ermse = |~ Y I1Pi = TUK, Ti, W3- ©)

i=1

B. TESTS ON SYNTHETIC DATA

A significant advantage of using simulated data is the avail-
ability of exact ground truth information. In the case of simu-
lated data, we have the ground truth robot poses hand-to-eye
transformation and the camera to world object transforma-
tion. In real cases, the ground truth hand to eye transformation
is not available as it is not feasible to estimate the exact
location of the optical frame in a physical setup. Moreover,
any ground truth robot pose and the camera pose is only the
best possible approximation of the actual information. For
the simulated case, we generated high-resolution synthetic
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images instead of simulated points, as shown in Fig. 2a.
These synthetic images were generated using Blender, a 3D
computer graphics software. It should be noted that the tripod
in the images is part of the scene and is not to be confused with
the virtual camera that is capturing the scene. To simplify the
experimentation, we assume that the camera and the robot
TCP position is the same for the simulated test cases. This
means the virtual position of the camera is the position of the
robot TCP. Then the homogeneous transformation from hand-
to-eye constitutes of just rotation. This rotation is the result
of the transformation between the Blender world frame and
Blender camera frame.

To study the effect of various parameters, we set up three
test cases for the simulated data based experimentation. The
excerpts from these cases are shown in Fig. 2. The results
from these simulated data aids in selecting suitable param-
eters to use for real data acquisition and testing. Moreover,
we induce visual noise to the points detected for pose estima-
tion. The noise was introduced to study how well the methods
can converge towards an accurate solution in the presence of
uncertainties. The generated noise has a Gaussian distribution

VOLUME 8, 2020
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FIGURE 3. Metric error results for the synthetic data with added Gaussian noise to images (a-c) Results for case 1 of the synthetic data where the
camera moves along one axis (d-f) Results for case 2 of the synthetic data with varying inter-pose distance and one axis motion (g-i) Results for
case 3 of the synthetic data where all axes are excited during camera motion and rotation. The dashed line exhibit extrapolation from the first

pose estimate for the case of monocular methods.

with a mean of 0.5 and standard deviation of 0.5. To avoid a
biased result due to the addition of noise to synthetic data,
we repeat the experiment for 50 iterations. In each iteration,
we introduce the same level of noise, randomly generated,
with a Gaussian distribution. Finally, the mean performance
over these 50 iterations is considered a stable response of the
corresponding method over the given data.

In the first case, we study the effect of varying the number
of poses while moving the camera only in one axis. We choose
the horizontal axis. Few images from this case are shown
in the first row of Fig. 2a, where the camera moves in one
axis only. The camera pose distribution against the calibration
pattern for case 1 can be observed from Fig. 2b. We analyze
the response of the methods when we increase the number of
poses from where the object is viewed. The response of the
methods can be observed in Fig. 3a, 3b and 3c. The rotation
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and translation error show slight improvement especially in
the case of the proposed method. It is noteworthy, that the
confidence interval of the proposed method is the small-
est, which correlates to good precision over varying noise.
On the contrary, Zhang [11] show significant deviation from
its mean results. The rising trend in the reprojection error
can be explained by the fact that the single shot (MSS and
SSS) estimates the pose from one image only. The estimate
might be accurate for that specific viewpoint, however, its
global accuracy is poor as we attempt to use that geomet-
rical information to transform and reproject the points onto
other poses. Moreover, Collets and Srinivasa [19] shows a
similar increase in the reprojection error, even though, it is
based on a multi-shot based approach similar to the proposed
method. IPPE [12] shows significantly better results despite
being a single-shot approach. The proposed method begins
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to reach the minimum error using 5 unique poses for image
acquisition. It is noteworthy, that the rotation and translation
errors are constant over the increasing number of poses for
the single-shot methods. This is because they are extrap-
olated from the first/reference view for which the camera
pose is estimated against the target pattern. The extrapolated
dashed line is intended to assist readers in visually comparing
the single-shot methods with multi-shot methods along the
increasing number of poses. In contrast, the reprojection error
for the single-shot methods is not constant over the varying
number of poses. This is because the mean reprojection error
is estimated over all the views for all methods by using the
estimated first/reference pose and the ground truth poses of
the relative views. This is done to ensure that the estimated
pose from a method is not the result of a local minimum rather
the solution is globally consistent and accurate.

In the second case, we attempt to examine the effect of
interpose distance on object pose estimation. We fix the
number of images for estimating the pose so that the only
varying parameter is the interpose distance. The second case
has further six sub-sequences where each sequence has four
images. In each of the sub-cases, the interpose distance is
varied. In Fig. 2a, we show three sub-sequences (of case 2) in
row 2, 3 and 4, where the interpose distance is 400, 600 and
800mm, respectively. We visualized the camera pose distri-
bution against the calibration pattern for the aforementioned
sub-cases of case 2 in Fig. 2c. The response of the methods
on the data from case 2 can be observed in Fig. 3d, 3e and
3f. A noticeable change can be observed between the results
of case 1 and case 2. The responses on the case 2 are more
sharply varying especially for the single-shot approaches.
This is because the camera pose for the reference image (first
image) changes as we increase the pose distance from the
middle of the scene. In case 1, we started from one side of
the scene and moved the camera along the horizontal axis by
adding more frames. As a result, the reference frame always
remained the same. In contrast, the reference pose/view point
in case 2 changes as we move further from the center of the
scene. Pose estimates of the same object from different view
points may incorporate different levels of uncertainties. As a
consequence, we observe in Fig. 3 (d-f) that the estimates
between two consecutive data points exhibit a sharp change
in response as we vary the interpose distance. This effect
strongly points toward the data dependency of many single-
camera methods. This data dependency results in the form
of imprecise solutions. Here, the primary factor causing this
dependency is variation in the poses chosen for calibration,
however, such an effect may also be observed due to the
model of the robot, and how the robot is mounted, which
may introduce new errors. Nonetheless, the proposed method
yields the best result over varying interpose distance followed
by Geiger et al. stereo based approach [23]. The overall
trend shows that increasing the interpose distance improves
the accuracy of the estimate, with the exception for Zhang’s
response [11]. Moreover, MMS and SSS approaches exhibit
more stable response compares to MSS approaches.
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The final test case of the simulated data focuses on study-
ing the impact of position and orientation change in more
than one axis. The dominant motion is the same as in case 1.
However, small position and orientation changes are also
introduced in other axes as well. Few images from this case
are shown in the last row of Fig. 2a and the camera poses are
given in Fig. 2d. An apparent change between case 1 and case
3 can be observed in the images and the camera poses in the
form of change in yaw angle. All other movements are minute
and cannot be observed from the images. The response of the
methods on the data from case 3 can be observed from Fig. 3g,
3h and 3i. The results follow the trend of case 1, where
IPPE [12], Collet and Srinivasa [19], and Geiger et al. [23]
show almost similar responses with Geiger et al. [23] method
yielding the lowest errors among them. Zhang [11] shows the
largest error while the proposed method yields the best results
on all the error metrics. It is noteworthy that the mean errors
for case 3 are marginally lower than the errors in case 1. This
exemplifies that it is important to excite motion and rotation
around all axes to yield better results.

FIGURE 4. An example of the experimental setup (a) KUKA

KR16L6-2 robotic manipulator used for recording data (b) Close up of the
adaptor with the tool, stereo camera pair and lights affixed to the
manipulator using customized hardware (c) A snapshot from the tool

4 point XYZ-calibration step.

C. TESTS ON REAL DATA

We further study the performance of the methods using real
data. The real data is acquired using industrial-grade equip-
ment for high accuracy. The experimental setup is shown
in Fig. 4. A custom adaptor was designed to fix two Basler
acA1920-50gc cameras to KUKA KR16L6 -2 serial 6-DoF
robot arm, as shown in Fig. 4b. We use 6mm lens with each
camera. The stereo pair has a baseline of 14 cm. Moreover,
we use dedicated lamps to uniformly light the target. The use
of these lamps is not mandatory; however, they are convenient
in maintaining a uniform brightness irrespective of the room
lighting condition. The adaptor not only houses the cameras
but also holds a custom tool. The tool is an aluminum bar
with a Polycarbonate sheet at the end. A cross-hair marker is
drawn on this sheet. The purpose of this tool is to manually
measure the position and orientation of the target object
as accurately as possible. The intersection of the cross-hair
marker helps to pinpoint the position while the planer surface
of tool sheet aids in measuring the orientation of the planer
target. Since the study focuses on accurately estimating the
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TABLE 1. Comparative results using checker board as target object.

Methods Abs. Rotation | Abs. Abs. Rotation Translation Reprojection
Error, ur(deg) | Translation Reprojection std. dev., | std. dev., | std. dev.,
Error, u:(mm) | Error, pre (pz) or (deg) ot (mm) ore (pz)
MSS-Zhang [11] 1.9546 3.4217 1.3194 0.036274 0.19947 0.21217
MSS-IPPE [12] 1.9586 3.6378 1.3345 0.047422 0.2165 0.22098
SSS-Geiger et al. [23] | 1.9325 2.931 1.1621 0.027213 0.22121 0.26702
MMS-Collet et al. [19] | 1.9498 3.4847 1.3306 0.03223 0.20967 0.2204
MMS-Proposed 1.6796 3.1285 1.0733 0.045619 0.15001 0.12447

pose of the camera against the target without target handling;
the tool effectively fulfills the purpose. The tool is calibrated
for the robotic arm using KUKA’s XYZ 4-point method for
position and ABC 2-point method for orientation calibration
as illustrated in Fig. 4c.

We utilize the tool for both initial ground truth measure-
ment and evaluation of the estimated pose. The ground truth
is measured by manually aligning the tool marker on the
target object and recording the robot pose information. The
estimated poses from the experiments are then compared to
this recorded pose.

However, we observed a marginal instability at the base
of the robotic arm used for experimentation. The base insta-
bility is observed near the maximum reach of the arm inside
the workspace. As a result, the manual measurement of the
ground truth has small uncertainties (around 2mm). There-
fore, we refer to it as the desired pose instead of the ground
truth in this work. Nonetheless, the evaluation of our esti-
mates against the desired pose provides us with invaluable
results for relative comparison of the methods under consid-
eration in this study.

FIGURE 5. Example of the captured images using checkerboard and
diamond marker as target objects.

We perform two sets of experiments using different pat-
terns as the target objects, shown in Fig. 5. The first set of
experiments uses a checkerboard of size 18 x 25, while the
other uses a diamond marker. Based on our earlier results
from synthetic data, we can infer that 5 poses are sufficient
for a multishot approach to converge to a stable solution.
The distance of the target object from the tool is kept around
0.76 meters since the reach of the robot with the custom tool
is approximately 2.15 meters. It is not possible to manually
measure the desired pose on the target object for evaluation
after 2.15 meters with the current setup. Each experiment is
repeated multiple times from randomly initialed pose with
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varying additional poses. At each pose, the stereo pair takes
images of the target object. We can easily see the distribution
of the poses in 3D space in relation to the calibration pattern

for the real test cases from Fig. 6.
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FIGURE 6. Camera poses against target pattern for multiple set of
experiments where each color represent a unique set of experiment
(a) Poses for the checkerboard (b)Poses for the diamond marker.

The experimental results for the tests using checkerboard
as the target pattern are shown in Table 1 and Fig. 7. We com-
pute the arithmetic mean (u) and standard deviation (o) of
the corresponding errors from all the test iterations. The tab-
ulated results show that the proposed method yields the least
absolute rotation error (ug) and absolute reprojection error
(tre). The least absolute translation error (u;) is obtained
by the stereo approach in [23], however, the proposed
approach yields a comparative result with the second-best
translation estimate. The results obtained for g, wus,and (e
using [11], [12] and [19] are quite similar for the given set of
experiments.

In addition to accuracy, the system must be consistent
in realizing its accuracy over varying data samples. If a
method achieves good results only half of the time then the
system is not robust and requires improvement in precision.
We also tabulate the standard deviation of the estimates
for quantitative analysis of the robustness of the methods.
It can be observed from Table 1, that the proposed method
yields significantly lower deviations over translation (o;) and
reprojection (oy.) estimates. The least standard deviation for
rotation (oR) is achieved by SSS-Gieger et al. [23]. A com-
parable result is obtained by the proposed method for og
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TABLE 2. Comparative results using diamond marker as target object.

Methods Abs. Rotation | Abs. Abs. Rotation Translation Reprojection
Error, ur(deg) | Translation Reprojection std. dev., | std. dev., | std. dev.,
Error, u:(mm) | Error, pre (pz) or (deg) ot (mm) ore (pz)
MSS-Zhang [11] 2.508 4.0691 2.3638 0.92636 1.0597 0.20078
MSS-IPPE [12] 2.3373 41017 2.2399 0.52881 0.47025 0.18418
SSS-Geiger et al. [23] | 2.3903 4.2761 2.1124 0.20142 0.30155 0.13553
MMS-Collet et al. [19] | 2.3095 4.0959 2.2096 0.25623 0.50482 0.17876
MMS-Proposed 2.1837 4.0628 2.105 0.14443 0.21076 0.15846
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FIGURE 7. A 2D precision plot for the set of experiments using a
checkerboard target. Each data point is the error of the estimate against
the desired pose without the measure from the axis containing the depth
information. The corresponding information from each method is shown
in a unique color. The mean of each set of data points is presented by the
+ symbol and the region encompassing the scattered estimates shows
the spread of estimates from respective methods.

with a significantly small deviation value. To better illustrate
the effect of the standard deviation, we plot the translation
estimates error without its depth dimension in Fig. 7. The
mean of the data points is presented by the 4+ symbol and
the region encompassing the scattered estimates is shown in
a unique color. It can be easily observed from the plot that the
proposed method shows the most consistent results compared
to other aforementioned methods.

We can see from the results that an offset is observed as the
estimated errors lie in the quadrant formed by the negative
X-axis and positive Y-axis. All the estimate errors lie within
this quadrant, which is not common for a natural distribution
of error. The offset indicates an uncertainty produced by a
more direct cause, which is the instability of the robot base,
as mentioned earlier. The effect is more apparent as the tool
moves away from the robot base causing a marginal flex.
However, the comparative performance of the methods under
consideration and their statistical analysis are not directly
affected by this problem.

The results for the second set of experiments using the
diamond marker as the target object are presented in a similar
structure in Table 2 and Fig. 8. The tabulated results show that
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FIGURE 8. A 2D precision plot for the set of experiments using a diamond
marker as target object. Each data point is the error of the estimate
against the desired pose without the measure from the axis containing
the depth information. The corresponding information from each method
is shown in a unique color. The mean of each set of data points is
presented by the + symbol and the region encompassing the scattered
estimates shows the spread of estimates from respective methods.

the proposed method achieved the best results over all metrics
except for o, where it yields a result comparable to the stereo
approach. SSS-Gieger et al. [23] shows a comparable error
distribution to the proposed method.

The monocular single-shot approach by Zhang [11] seems
to have the least consistent performance. The standard
deviation of the estimate errors (og, oy, and o,) is the
highest in this case. The MSS-IPPE [12] performs com-
paratively better among the MSS approaches and yields a
comparative result to the monocular multi-shot approach by
Collins and Bartoli [12].

Moreover, it can be noted that the overall error of this set of
experiments is larger by some factor compared to the results
obtained for the experiments using the checkerboard. This
might be due to the reason that we extract 408 corner points
from a checkerboard of size 18 x 25. On the other hand,
we use only 20 points from the diamond marker as illustrated
in Fig. 1. The number of points is almost 20 times less for the
case of a diamond marker with comparatively small spatial
distribution to the checkerboard. In our opinion, the increase
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in error for such a situation is in accordance with the stated
reason.

The distribution of error estimates can be observed in Fig. 8
for the case of the diamond marker. As before, the proposed
approach yields the most consistent result with its estimates
being more precise and uniformly distributed.

V. CONCLUSION

In this article, we proposed a monocular multi-shot approach
to estimate the 6-DoF pose of the camera against a planar
target (object). The proposed approach models the geometric
relation among various coordinate systems and explicitly
incorporates the robotic manipulator poses into the formu-
lation. It uses a non-linear optimizer to iteratively minimize
the reprojection error based cost function. The experimental
results were compared to four other existing studies, which
included two monocular single shot, one monocular multi-
shot, and one stereo approach. The tests were performed
on both simulated data with synthetic images and real data.
Two target patterns were considered for real data testing. Our
method demonstrates significant improvement and robust-
ness on many metrics in various test cases against other
methods. In addition to improved accuracy, our approach
achieves the most precise results.
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