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ABSTRACT In the process of online prediction of multivariable non-stationary time series by kernel extreme
learning machine (KELM), the dynamic characteristics of the system which are difficult to determine
have always posed a big problem. We propose an online sequential prediction model with an adaptive
forgetting factor (AFF) for multivariable time series to solve this problem. The multivariable time series
instead of variable itself is reconstructed firstly. AFF is introduced into the objective function and can be
adjusted iteratively and adaptively with the system changes. As a result, higher weight can be allocated
for the fresh and more important samples while the old failure samples can be quickly forgotten. The
model sparsification uses a fast leave-one-out cross-validation (FLOO-CV) method to set a prediction
error threshold so that samples can be selected conditionally to form a dictionary. Besides, the dictionary
parameters, including AFF and kernel parameters, are recursively updated simultaneously without increasing
calculation complexity. The experimental results show that, comparedwith four fashionable KLEMmethods,
the proposed AFF-OSKELM has a better dynamic tracking ability and adaptability. Moreover, compared
with single variable prediction, the spatial reconstructed multivariable has higher prediction accuracy and
stability.

INDEX TERMS Kernel extreme learning machine, adaptive forgetting factor, fast leave-one-out cross-
validation, online prediction, multivariable time series.

I. INTRODUCTION
Online prediction of non-stationary chaotic time series is
an important research direction in the field of science and
engineering. It provides an effective method for early fault
detection and has wide application and significant importance
in financial services, meteorological control, traffic guid-
ance, industrial control, safety control, network monitoring,
etc. [1].

Support vector machine (SVM) [2], [3], neural net-
work [4], [5] and other machine learning methods [6] that are
used in early sequence prediction. These methods are widely
applied in various aspects, including real-time monitoring
and control of industrial cyber-physical systems [7], [8] and
freight volume forecasting [9], etc. However, they have some
defects, such as slow convergence speed and ease of falling
into local optimum. Huang et al. proposed a simple and effi-
cient single hidden layer feedforward neural network (SLFN)
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learning algorithm, called extreme learning machine (ELM)
to overcome these shortcomings [10]. In terms of learning
efficiency, ELM is easy to implement and fast to learn [11].
In terms of the theoretical research, ELM generates random
input weights and hidden layer bias values, but it still has
the capability for interpolation, general approximation and
classification [12]. In terms of structural risk minimization,
ELM depends on the number of hidden layer neurons. ELM
achieves a balance between training error and model com-
plexity by adjusting the number of hidden layer neurons to
achieve optimal generalization performance.

To determine the number of hidden layers,
Huang et al. [13] suggests implicit mapping in ELMmapping
mode, i.e. using kernel method to obtain the inner product
between eigenvectors, instead of defining the eigenspace
and mapping function explicitly. Additionally, a kernel-
based extreme learning machine (KELM) model was pro-
posed. Compared with ELM, KELM transforms the data in
the low dimensional input space into the inner product of
the high-dimensional feature space, avoiding the problem
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of dimension disaster [14]. The problem of generalization
and stability degradation caused by random assignment of
hidden layer neurons is effectively improved by replacing
random mapping with kernel mapping, and time is saved
for optimizing the number of hidden layer neurons. It shows
good application value and development potential in fault
identification and sequence prediction of nonlinear systems.

In the practical application of online sequence predic-
tion, samples arrive sequentially in the form of a data
stream. The distribution and change trend differ over time
which requires the learning model to learn new samples and
update [15], [16]. Online sequential ELM (OS-ELM) [17] can
perform accurate and efficient online incremental learning
of data samples [18]–[21] due to the advantages of ELM.
Given that OS-ELM is not a kernel method, its efficiency is
not outstanding in dealing with nonlinear and non-stationary
data [22]. Developing an online learning method based on
KELM (OKELM) is a better choice.

Guo et al. [23] proposes an incremental learning method
of KELM based on the inverse formula of block matrix
termed KB-IELM, which was the first to extend KELM to
online learning. In the case of a large amount of training
data, KB-IELM has the best performance and fastest speed
comparedwith OS-ELM [24], [25]. AsKB-IELMhas learned
all the samples, its model order is equal to the number of
training sample. Therefore, two problems arise: the risk of
overfitting, and the linear increase in computational cost. As a
result, giving up redundant information and selecting more
valuable samples to construct and update the model [26],
known as model sparseness [27], becomes a new direction
of research.

The sparse KELM-based method has recently yielded a lot
of research results. Zhang et al. [28] combines the fast leave-
one-out cross-validation (FLOO-CV) method with OKELM.
FLOO-CV adapts the error threshold and absorbs more valu-
able samples according to the real-time dictionary. Zhou
and Wang [29] proposes a KELM online learning method
based on the traditional sliding time window. The method
uses the samples in the time window to construct a dic-
tionary, with the model complexity and the generalization
performance dependent on the width of the time window.
Scardapane et al. [30] set up approximate linear indepen-
dence (ALD) criterion, which improved the generalization
performance and reduced the computational complexity by
setting the error threshold subjectively. Zhang et al. [31], [32]
proposed a two-step sparse method including ‘‘constructing’’
and ‘‘pruning’’ dictionary, respectively based on instanta-
neous learnable information measurement and cumulative
coherence measurement, to realize the different choice of
samples.

However, over time the distribution and changing trend
of online data change [33], which put forward new model
requirements. Zhang et al. [34] introduced an adaptive reg-
ularization factor to resolve the structural risk of the model
in different nonlinear regions. Updating the kernel weight
coefficient [35] is carried out additionally to improve the

identification accuracy. However, both strategies increase the
complexity of the model and affect the computational effi-
ciency. Guo et al. [23] puts forward the concept of forgetting
factor (FF), making the samples with a closer time in the
dictionary have a higher weight in modeling. To obtain better
predictive results, Liu et al. [36] combined the forgetting
factor and the adaptive regularization factor, but it also costs
more time.

Multivariate chaotic time series widely exist in natural,
economic, social, industrial and other fields. When the pre-
diction model contains multiple variables, the above models
seem to be based on their historical time-series information
for online prediction. In fact, the variables of a system often
interact with each other [37], so the prediction of variables
should take into account not only the historical state of vari-
ables themselves but also the state of related variables [38].
Therefore, this study aimed to reconstruct the space of vari-
ables, to transform the temporal correlation of variables into
spatial correlation.

Considering that the change rate of the data stream may be
irregular in a complex time-varying environment, the fixed
forgetting factor cannot ensure the global adaptability to the
dynamic changes of the time-varying system. Inspired by
reference [39], [40], the paper introduces an element of the
adaptive forgetting factor (AFF). On one hand, AFF should
be reduced to accelerate the forgetting of the old failure state
and to monitor the latest state of the time-varying system in
time when the system is rapidly changing with an increasing
prediction error. On the other hand, AFF should be increased
to improve the prediction accuracy of the system in a steady
state.

The existing KELM methods bring more or less the
increase of calculation. In response to the problem, the
FLOO-CV method is applied in the online sparseness.
The samples which have larger prediction error according to
the real-time dictionary are added to the dictionary. On the
contrary, the samples are abandoned. At the same time, AFF
will be adjusted adaptively. A learning framework based on
the above is derived with KELM, it realizes the synchronous
updating of kernel weight vector while dictionary sparseness.

The rest of this paper is organized as follows. The multiple
variables reconstruction methods and KELMmodel are intro-
duced in Sect. 2. The concrete process of online sparseness
KELM with AFF (AFF-OSKELM) is derived in Sect. 3,
including the construction of dictionary and parameter updat-
ing. Sect. 4 discusses the method complexity while in Sect. 5,
the proposed algorithm is evaluated by both simulation and
real-world data. The conclusion is presented in Sect. 6.

II. MATHEMATICAL MODEL
A. RECONSTRUCTION OF MULTIVARIATE TIME SERIES
In the modeling and prediction of multivariate time series,
phase space reconstruction is usually needed. According to
Takens’ embedding delay theorem [41], the delay variable of
unit chaotic time series can be used as the surrogate variable
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of attractor of reconstructing dynamic system. The phase
space reconstruction of unit chaotic time series has become
a useful tool for analyzing complex nonlinear systems that
widely existing in nature and human world. The results show
that the reconstruction accuracy of chaotic time series can be
effectively improved by adding multiple coupling time series
in the reconstruction.

Suppose there is an M -dimensional multivariable time
series: X1,X2, . . . ,XN , in which Xi = (x1,i, x1,i, . . . , xM ,i),
i = 1, 2, . . .N . After reconstruction, multivariable time
series can be transformed into vn.

vn = [x1,n, x1,n−τ1 , . . . , x1,n−(d1−1)τ1 ,

x2,n, x2,n−τ1 , . . . , x2,n−(d1−1)τ1 ,

· · ·

xM ,n, xM ,n−τ1 , . . . , xM ,n−(d1−1)τ1 ] (1)

where τi, di, i = 1, . . . ,M represent the delay time and
embedding dimension of multivariate time series, respec-
tively. According to Takens’ embedding theorem [41], if di
is large enough, there is a mapping:

F : Rd → Rd (d =
∑M

i=1
di)

v(n+ 1) = F(v(n)) (2)

Eq. (2) can also be expressed as:

x1(n+ 1) = F1(v(n)),

x2(n+ 1) = F2(v(n)),
...

xM (n+ 1) = FM (v(n)), (3)

The output of the prediction model is defined as yn =
[y1n, y2n, . . . , yMn] = [x1(n+ 1), x2(n+ 1), . . . , xM (n+ 1)],
where yin represents the output of a dimension, and yin =
xi(n + 1) = Fi(v(n)), i = 1, . . . ,M . After determining τi
and di in Eq. (3), the reconstructed vector of a multivariate
sequence can be used for modeling and prediction.

B. KELM
At present, most of the neural network models used in time
series prediction are based on gradient descent learning algo-
rithm, which has some defects such as slow convergence
speed and easy to fall into local optimum. For this reason,
ELM is proposed to determine the output weight by linear
regression. The ELM optimization problem with equality
constraints is defined as follows:

min LELM =
1
2
||β||2 + C

1
2

n∑
i=1

ξ2i ,

s.t. h(xi) · β = yi − ξi, i = 1, . . . , n (4)

In Eq. (4), β = [β1, β2, · · · , βn]T is the output
weight connecting the hidden layer and the output layer.
h(xi) = [h1(xi), h2(xi), · · · , hL(xi)] is the mapping relation-
ship between hidden layer neurons and input samples. ξi and

yi represent the error and the target output value correspond-
ing to the input sample. C is the regularization parameter.
Applying KKT optimization conditions into Eq. (4), the

calculation formula of output weight β [22] can be expressed
as Eq. (5). The mapping matrix of the input sample is H =
[hT(x1),hT(x2), · · · ,hT(xn)]T.

β = HT(C−1I+HHT)−1yn (5)

However, the number of hidden layer nodes, which is
an important parameter of ELM crucial to the performance
of prediction model, usually should be selected by some
time-consuming methods according to the learning tasks.
By replacing the hidden layer mapping h(xi) in ELM by the
kernel function mapping, KELM is developed. KELM does
not to determine the number of hidden layers, avoiding the
hidden nodes selection problem. It is proved to have better
generalization performance. The kernel matrix is defined as
� = HHT according to Mercer’s conditions, where�(i, j) =
h(xi)hT(xj) = k(xi, xj). Suppose An = C−1I + HHT, then
the kernel weight vector is θn = A−1n yn.
The output of kernel extreme learning machine can be

expressed as Eq. (6), where kn = [k(·, x1), k(·, x2), · · · ,
k(·, xn)] represents the kernel estimation vector of the time
n.

f (·) = hT(x)β = h(·)HT(C−1I+HHT)−1yn
= [k(·, x1), k(·, x2), . . . , k(·, xn)]A−1n yn
= knθn (6)

III. ONLINE SPARSENESS KELM WITH AFF
A. KELM WITH AFF
The adaptive forgetting factor is defined as a parameter λn of
time n, and 0� λn < 1. λn is adaptively adjusted over time.
KELM with AFF can be defined as:

min
β,ξi

LKELM =
1
2
λi||β||

2
+ C

1
2

N∑
i=1

ξ2i ,

s.t. h(xi) · β = yi − ξi, i = 1, . . . , n (7)

To solve Eq. (7) according to the KKT condition,
the output weight is shown in Eq. (8), where B =

diag{λn−1 , λn−2 , · · · , λ1}.

β = (C−1λnI+HTBH)−1HTByn (8)

According to thematrix inversion formula: (A+ECD)−1 =
A−1−A−1E(C−1+DA−1E)−1DA, we can obtain: (C−1λnI+
HTBH)−1HTB = HT(C−1λnB−1 +HHT)−1. Eq. (8) can be
transformed into:

β = HT(C−1λnB−1 +HHT)−1yn (9)

SupposeAn = C−1λnB−1+HHT, the kernel weight vector
can be obtained as follows:

θn = A−1n yn (10)
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Furthermore, the output form of KELM integrated with
AFF can be expressed as;

f (x) = hT(x)β = h(x)HTA−1n yn
= knθn (11)

B. DICTIONARY SPARSENESS BASED ON FLOO-CV
Suppose that the reconstruction vector of multivariable time
series v(n) in Eq. (1) is represented by xn, and yn is the
predicted target variable value corresponding to xn, the sparse
dictionary of n time is defined as Dn = {k(·, xni )}

m
i=1, where

{xn1, x
n
2, . . . , x

n
m} ⊂ {x1, x2, . . . , xn} and m is the scale of

dictionary, m ≤ n. By multiplying both ends of Eq. (10) by
the matrix An of order m at the same time, we can obtain;[

Ān Vn
VT
n vn

] [
θn
θnm

]
=

[
yn
ynm

]
(12)

where θn is the vector after θn excluding them-th element θnm;
yn is the vector after yn excluding the m-th element ynm; An is
the matrix after An excluding the vector of rowm and column
m; Vn is the vector after An excluding the m-th element of
column m. And vn = C−1λn + k(xnm, x

n
m).

Using the sparse matrix from the first m− 1 sample in the
dictionary to predict xnm, the output weight is θn = Ā

−1
n yn.

Therefore, the prediction value of xnm can be written as:

ŷnm = VT
n θn = VT

n Ā
−1
n yn (13)

From Eq. (12), it can be inferred that:{
yn = Anθn + Vnθnm
ynm = VT

n θn + vnθ
n
m

(14)

By substituting equation (13) into equation (12), we can
get:

ŷnm = VT
n θn + V

T
n Ā
−1
n Vnθnm (15)

According to Eq. (14) and (15), the estimated FLOO-CV
error of (xnm, y

n
m) is as follows:

ξ
(−m)
loo (n) = ynm − ŷ

n
m = (vn − VT

n Ā
−1
n Vn)θnm (16)

Referring to the block form ofAn in Eq. (12), we obtain the
following equation by the inverse formula of block matrix:

A−1n = ρ
−1
n

[
ρnĀ
−1
n + Ā

−1
n VnVT

n Ā
−1
n −Ā

−1
n Vn

−VT
n Ā
−1
n 1

]
(17)

where ρn = C−1λn + k(xnm, x
n
m)− V

T
n Ā
−1
n Vn.

The (i, j) element of A−1n is represented by diag(A−1n )i, and
Eq. (16) can be simplified into:

ξ
(−m)
loo (n) =

(A−1n yn)m
diag(A−1n )m

(18)

Combined with Eq. (17) and (18), the impact of AFF on
ξ
(−m)
loo (n) is only reflected in ρn. According to reference [22],
it is known that the exchange of element order in the Eq. (12)

makes no difference to the solution of the equation. In con-
sequence, the FLOO-CV error of every element in dictionary
can be represented as ξ (−k)loo (n) = (A−1n yn)k

diag(A−1n )k
, k = 1, 2, . . . ,m.

The generalized error vector at time n can be expressed as
En = [ξ (−1)loo (n), ξ (−2)loo (n), . . . , ξ (−m)loo (n)]. Then the average
generalization error of the dictionary can be obtained:

εn =
1
m

m∑
k=1

|ξ
(−k)
loo (n)| (19)

When the new sample (xn+1, yn+1) of time n + 1 arrives,
the estimated value of yn+1 predicted by Eq. (11) is ŷn+1 =
knθn. We first determine whether |yn+1−ŷn+1| > εn is true or
not. If true, dictionary pruning and adaptive forgetting factor
updating are carried out according to Sect. 3.4. Otherwise,
it remains unchanged.

C. ADAPTIVE FORGETTING FACTOR
We incorporate an adaptive forgetting factor based on relative
error into the KELM model to better monitor the dynamic
changes of time-varying systems. First, an intermediate vari-
able is defined as relative error:

φn = µ1φn−1 + µ2

∣∣∣∣yn − ŷnyn

∣∣∣∣ (20)

yn is real value, while ŷn is the estimated value predicted
by Eq. (11).

∣∣∣ yn−ŷnyn

∣∣∣ is the absolute value of relative error.
The intermediate variable of Eq. (20) represents the buffered
average value of relative error in the dictionary before n
time. µ1 is the error balance coefficient used to control the
weight of the preceding value, and 0 � µ1 < 1. µ2 is
the error sensitive coefficient used primarily to control the
rate approaching 0, and 0 < µ2 � 1. The larger the
system convergence error, the smaller the µ2 and vice versa.
Meanwhile, to ensure the monotone descent property in the
late convergence stage, µ1 + µ2 < 1.

AFF can be updated according to Eq. (21) on the base ofφn.
Among Eq. (21), 0.9� λ+ ≤ 1 represents the upper limit of
AFF while 0� λ− < 1 represents the upper limit. Although
the value is related to the specific problem, it should not be
too small to influence the instability of the system. AFF is
obtained as:

λn =

[
1

1+ φn

]λ+
λ−

(21)

From Eq. (20) and (21), we get that the current prediction
error would increase sharply if the system condition changes
significantly. Accordingly, φn increases rapidly in a short
time as λn decreases. As a result, the old failure samples are
quickly forgotten, and by using the latest samples, the new
learning model is established to quickly track the latest state
of the system. The new predictive model would gradually
converge with the continuous learning of new samples. In this
process, φn gradually decreases and approaches to 0, while
λn correspondingly increases and approaches to 1 to increase
AFF of effective data. Theoretically, AFF has both the ability
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to track rapidly in a mutation environment and the ability to
learn continuously in a steady-state environment. It is active
and effective in tracking the time-varying system in real-
time, and its implementation process is also very simple and
effective.

D. DICTIONARY CONSTRUCTION AND PRUNING
Suppose the current dictionary is Dn = {k(·, xni )}

m
i=1, and

An = C−1λnB−1+HHT.When the new samples (xn+1, yn+1)
arrive, if mn < m, it is the construction stage, otherwise it is
a pruning process. In the above, m is the current size of the
dictionary while m is the default size.
1) mn < m
For the new sample (xn+1, yn+1), the dictionary is updated

as Dn+1 = Dn ∪ k(·, xn+1). And An can be updated as:

An+1 =
[

An Vn+1
VT
n+1 vn+1

]
(22)

where Vn = [k(x1, xn+1), k(x2, xn+1), . . . , k(xn, xn+1)]T is
the column n + 1 of An+1 excluding the n + 1-th element
vn+1. And vn+1 = C−1λn+1 + k(xn+1, xn+1).
The inverse matrix of An+1 is expressed in Eq. (23), where

ρn+1 = vn+1 − VT
n+1A

−1
n Vn+1.

A−1n+1=

[
A−1n +A

−1
n Vn+1ρ−1n+1V

T
n+1A

−1
n −A−1n Vn+1ρ−1n+1

−ρ−1n+1V
T
n+1A

−1
n ρ−1n+1

]
(23)

According to Eq. (10), the updating of kernel weight vector
θn+1 is as follows:

θn+1 = A−1n+1yn+1 (24)

where yn+1 = [y1, y2, . . . , yn, yn+1]T, with yi representing
the target value of time n.
2) mn = m
When the dictionary reaches its intended size m, Sect. 3.2

will determine whether the new sample is absorbed into the
dictionary. If the new sample meets the dictionary pruning
condition, it replaces a key point in the current dictionary. The
dictionary is updated as Dn+1 = D(−i)

n ∪ k(·, xn+1), where
D(−i)
n is the dictionary after deleting the i-th key point. The

index of i is:

i = arg min
i∈{1,2,...,m}

(A−1n yn)i
diag(A−1n )i

(25)

To simplify the expression, k(xni , x
n
j ) is written as ki,j and

An is shown in Fig. 1. As shown in Fig. 2, Ãn is the matrix
after moving the i-th row of An to the first row and moving
the i-th column to the first column.

FIGURE 1. An before matrix transformation.

FIGURE 2. An after matrix transformation.

As shown in Fig. 1 and Fig. 2, Ãn =,PAn,PT, where ,P is
the Elementary matrix of order m as follows:

P =



0 0 · · · 0 1 · · · 0
1 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 1


← i-th rank

(26)

There is ,P−1 =,PT.
Suppose Ã

−1
n =,Wn, then we can get that ,Wn = Ã

−1
n =

(PAn,PT)−1 = PAn,PT from the characteristic ofP. Ã
−1
n can

be transformed into:

Ã
−1
n =

[
W(1,1)
n W(1,2:end)

n
W(2:end,1)
n W(2:end,2:end)

n

]
(27)

Ãn can be expressed in block matrix as Ãn =[
vn Vn
V
,T
n A(−i)

n

]
, where vn = C−1λni+k(xi, xi) and A

(−i)
n is the

matrix after removing the key point that need to be removed
from An. According to the inverse formula of block matrix,
we can get (28), as shown at the bottom of the page, where
ρn = vn − Vn(A(−i)

n )−1VT
n . From Eq. (28) and (29), it can be

inferred that that:

W(2:end,2:end)
n = (A(−i)

n )−1V
T
nρ
−1
n Vn(A(−i)

n )−1 + (A(−i)
n )−1

=
[−(A(−i)

n )−1V
T
nρ
−1
n ][−ρ−1n Vn(A(−i)

n )−1]

ρ−1n

+ (A(−i)
n )−1

=
W(1,2:end)
n W(2:end,1)

n

W(1,1)
n

++(A(−i)
n )−1 (29)

Ã
−1
n =

[
ρ−1n ρ−1n Vn(A(−i)

n )−1

−(A(−i)
n )−1V

T
nρ
−1
n (A(−i)

n )−1V
T
nρ
−1
n Vn(A(−i)

n )−1 + (A(−i)
n )−1

]
(28)
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We can obtain that (A(−i)
n )−1 = W(2:end,2:end)

n −

W(1,2:end)
n W(2:end,1)

n

W(1,1)
n

from Eq. (28) and (29). To add the
new sample to the dictionary as a key point, then
An+1 can be expressed as Eq. (30), where Vn+1 =

[k1,n+1, . . . , ki−1,n+1, ki+1,n+1 . . . km,n+1]T and vn+1 =

C−1 + kn+1,n+1.

An+1 =
[
A(−i)
n Vn+1

VT
n+1 vn+1

]
(30)

According to inverse formula of block matrix, we can
obtain (31), as shown at the bottom of the page.

Therefore, the recursion and updating relation of A−1n+1 and
A−1n can be obtained from Eq. (27), (29) and (31), and the
incremental kernel sparseness of the dictionary is achieved.
When the new sample arrives, the updating equation of
kernel weight can be obtained as Eq. (32), where yn+1 =
[yn1, . . . , y

n
i−1, y

n
i+1, . . . , y

n
m, y

n
n+1].

θn+1 = A−1n+1yn+1 (32)

IV. ALGORITHM FLOW AND COMPLEXITY ANALYSIS
A. ALGORITHM AND FLOW CHART
Fig. 3 is the schematic of the model structure, and the details
can be summarized as Algorithm1:

B. THE ALGORITHM COMPLEXITY
During the dictionary construction process, the algorithm
complexity of kn, A−1n+1 and are O(mn), O(m2

n) and O(m)
respectively. During the pruning process, the computational
complexity of Ã

−1
n , (A(−i)

n )−1, k̄n, A−1n+1 and λn are O(m2),
O((m−1)2), O(m−1), O(m) and O(m2) respectively. In con-
clusion, the algorithm complexity of dictionary updating is
O(m). The FLOO-CV method only adds the adaptive thresh-
old estimation, of which the computational complexity is
O(m). However, the size of the dictionary should not be set
too large in the initialization process, so the complexity of
the algorithm in this paper isO(m2), which can fully meet the
online prediction needs.

V. EXPERIMENTAL ANALYSIS
To verify the performance, the proposed AFF-OSKELM is
compared with four latest KELM methods in this section:
(1)KB-IELM [23], (2)ALD-KOS-ELM [20], (3)NOS-
KELM [34], (4)FF-OSKELM [22] (fixed forgetting factor
which 0 � λ < 1). Here OS-ELM methods are not
considered for that the randomness of the initial weight
setting of ELM input layer can lead to the randomness of
the experimental results [19]. And the accuracy of ReOS-
ELM is far worse than KELM methods. Simultaneously, the
outcomes of single-variable and multi-variable predictions

FIGURE 3. Flow chart of AFF-OSKELM.

are analyzed. Three examples are given to demonstrate the
effectiveness of the proposed method. The examples are
classified into an artificial sequence in Sect. 5.1 and two
actual sequences in Sect. 5.2 and Sect. 5.3. Multivariable
Lorenz chaotic time series is the sequence generated by the
differential equation. The actual sequences include annual
sunspot numbers time series [34] and time series of Beijing
PM2.5.

The computational complexity was measured by training
time and test time. The root mean square error (RMSE)
is used to measure the performance of predicting accuracy,
while maximum absolute prediction error (MAPE) and mean
relative error rate (MRPE) are used to measure the prediction
stability. They are defined as:

RMSE =

√√√√1
n

n∑
i=1

∣∣ŷ(i)− y(i)∣∣2
MAPE = max

i=1,··· ,n

∣∣ŷ(i)− y(i)∣∣
MRPE =

1
n

n∑
i=1

∣∣ŷ(i)− y(i)∣∣
y(i)

A−1n+1 =

[
ρ−1n+1(A

(−i)
n )−1Vn+1VT

n+1(A
(−i)
n )−1 + (A(−i)

n )−1 −ρ−1n+1(A
(−i)
n )−1Vn+1

−ρ−1n+1V
T
n+1(A

(−i)
t )−1 ρ−1n+1

]
(31)
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TABLE 1. Parameter setting of example 1.

Algorithm 1
Initialization: Set σ, τi, di,m, λ+, λ−, µ1, µ2, λ1

Let mn = 1, n = 1, compute A1 = C−1λ1B−1 + HHT,
θ1 = A−11 y1, Dn = {k(·, x1)}.
1 n = n+ 1, new sample (xn+1, yn+1) is arrived;
2 If mn < m
3 mn = mn + 1,Dn+1 = Dn ∪ k(·, xn+1);
4 Using (11) to compute ŷn+1 = knθn;
5 Using (20), (21) to update φn+1 and λn+1;
6 Using (22) to computeAn+1 and (23), (24) to compute θn+1;
7 else
8 Using (11) to compute ŷn+1 = knθn, and (18), (19) to
compute εn;

9 If |yn+1 − ŷn+1| ≤ εn
10 Dn+1 = Dn, λn+1 = λn;
11 else
12 Using (25) to find the index i;
13 Dn+1 = D(−i)

n ∪ k(·, xn+1);
14 Using (20), (21) to update φn+1 and λn+1;
15 Using (28), (30) to compute An+1 and (31), (32) to

compute θn+1;
16 End if
17 End if
18 Output ŷn+1, return to step 1.

All kernel methods use Gaussian kernel as kernel func-
tion, i.e., k(xi, xj) = exp(−

∥∥xi − xj∥∥2 /σ ). Initialize λ+ =
1, λ− = 1. All experiments are conducted in Mat-
lab2018a environment running on aWindows 8 PC with Intel
Core i5-4210U 2.40GHz CPU and 8GB RAM.

A. LORENZ CHAOTIC TIME SERIES
The section first verifies the effectiveness of the proposed
method on Lorenz chaotic time series. Lorenz chaotic equa-
tion is a set of three variable differential equations and is
expressed as follows:

dx/dt = a(y− x)
dy/dt = bx − y− xz
dz/dt = xy− cz

We apply the fourth-order Runge–Kutta method and let
a = 10, b = 28, c = 8/3, (x(1), y(1), z(1)) = (10, 1, 0).
Delay times are set as τ1 = τ2 = τ3 = 2 and embedding

FIGURE 4. Lorenz chaotic time series.

dimension m1 = m2 = m3 = 6. As shown in Fig. 4, the sam-
ples are used for prediction after processing data of three
variables between (4001, 6400). The space reconstruction
generates 1200 groups of data, with the previous 1000 groups
used to train and the last 200 groups to test.

Here variable ‘‘x’’ is set as target prediction variable. As a
result, we use variable ‘‘x’’ and reconstructed vector includ-
ing ‘‘x’’ (‘‘xy’’, ‘‘xz’’ and ‘‘xyz’’) as input variables. After
simulation and comparison, when the parameters of Lorenz
chaotic time series are set as shown in Table 1, the best
prediction results obtained from each method are shown
in Table 2. The second column refers to the input of spatial
reconstructed variables. Depending on the specific simulation
process, the simulation time has some degree of randomness.
The optimal results of each method are marked in bold type.
We can get from Table 2 that:

(1) From the perspective of test time, except KB-IELM,
the time consumption of all methods is 10−4, which is
short enough to satisfy the online prediction require-
ments [22]. This is because KB-IELM learns all sam-
ples in the simulation process, while the other methods
conduct online sparing and therefore have lower algo-
rithm complexity.

(2) From the method perspective, the combination of
FLOO-CV and KELM has a better prediction per-
formance in all methods, including FF-OSKELM and
AFF-OSKELM.

(3) From the perspective of forgetting factor, the prediction
accuracy and stability of AFF-OSKELM are 12.9%
and 5.8% higher than FF-OSKELM. When the input
variable is ‘‘xy’’, AFF-OSKELM is 39.5% and 38.6%
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higher than FF-OSKELM in terms of accuracy and
stability. AFF-OSKELMwith input ‘‘xy’’ increases the
test accuracy by a level compared with all methods.
This shows the dynamic tracking ability and adaptabil-
ity of AFF in a time-varying environment.

(4) From the perspective of input variables, the pre-
diction performance of single variable input ‘‘x’’ is
nearly the worst compared with other input combina-
tions. The best prediction result of ALD-KOS-ELM is
obtained when the reconstruction variables of ‘‘xyz’’
are inputted, while NOS-KELM, FF-OSKELM and
AFF-OSKELM get the best results when ‘‘xy’’ is
inputted. The consideration of multiple variables is
indicated to be of great importance for the prediction
of a single variable. Moreover, it can be seen that
there is no obvious monotonic correlation between the
prediction accuracy and the number of input variables.

The results of the best prediction accuracy of each method
(bold in Table 2) are shown in Fig. 5. Among them: (1)
Fig. (a) shows that the Lorenz chaotic time series can be
effectively monitored by any method; (2) Fig. (b) shows that
the local enlarged curve is still close to the actual curve after
magnification. The prediction accuracy of AFF-OSKELM is
the best compared with other methods, while the prediction
effect of NOS-KELM is the worst. This further verified the
results in Table 2.

FIGURE 5. The best prediction curve of different methods in example 1.

Fig. 6 shows the APE of the optimal prediction results
under each method. Notably, the amplitude of NOS-KELM

FIGURE 6. APE of different methods in example 1.

in the figure is the highest, and its prediction stability is the
worst. At the same time, the dictionary sparseness method
based on FLOO-CV error has good stability, and the inte-
gration of adaptive forgetting factor further improves the
prediction stability.

In the prediction process, the learning curve of each system
is represented by RMSE, as shown in Fig. 7. The degree of
convergence of theNOS-KELM learning curve ismuch lower
than that of other approaches, therefore it is not evaluated
in this section. With the increase of prediction steps, all
methods begin to converge at about 50 samples. Among them,
AFF-OSKELMcan converge to amore accurate stage and has
a smoother and more stable learning process.

FIGURE 7. The learning curve of different methods in example 1.

Fig. 8 shows the relationship between the number of
training samples and time, and Fig. 9 shows the change of
AFF during the dictionary construction process. Notably:
(1) KB-IELM has the highest computational complexity
because it has learned all the samples, and the number
of training samples increases monotonously with the input
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TABLE 2. The prediction results of example 1.

TABLE 3. Parameter setting of example 2.

FIGURE 8. Training sample number of different methods in example 1.

sample sequence. (2) AlthoughALD-KOS-ELMhas the least
number of training samples, it is heavily dependent on the
additional threshold parameter. (3) Compared with NOS-
KLEM, the FLOO-CV method adopted by AFF-OSKELM
and FF-OSKELM converges faster in the training process.
(4) AFF-OSKELM and FF-OSKELM use the same dictio-
nary construction method and have similar training curves.
However, the integration of AFF further promotes the stabil-
ity of training samples. (5) In Fig. 9, the fluctuation times
of the AFF are consistent with the dictionary size, and even-
tually, converge to 1. This indicates that the prediction of the
Lorenz chaotic time series has no relationshipwith the sample
distance latterly.

FIGURE 9. AFF changes of example 1.

B. ANNUAL SUNSPOT NUMBER TIME SERIES
In Example 2, a univariate prediction example is used to
verify the performance of AFF. The annual sunspot number
time series is a chaotic time series that is nonlinear and non-
stationary. The 311 annual sunspot number series samples
are reconstructed in space between 1700 and 2010. With the
embedding dimension set m = 10, 306 samples are obtained.
50 samples are used as prediction and simulation data, while
256 samples are taken as training data.

Through simulation and comparison, when the parameters
of sunspot numbers are set as shown in Table 3, the pre-
diction results of each method can be obtained as shown
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TABLE 4. The prediction results of example 2.

FIGURE 10. Prediction curve of different methods in example 2.

in Table 4. By coarsening the optimal results of each method,
it is notable that: (1) The time consumption of all methods
for single variable prediction with a small sample number
is at the level of 10-4, which meets the online prediction
requirements. With the additional calculation process of AFF,
AFF-OSKELM consumes more time than FF-OSKELM.
(2) Although KB-IELM has the highest training accuracy,
AFF-OSKELM has the highest predicting accuracy, which is
24.0% average higher than other methods. (3) Besides time
consumption, the prediction performance of AFF-OSKELM
is better than those of others, which confirms the advantage
of AFF.

Although the approximate tracking and prediction of
the target can be done by all the methods in Fig. 10(a),
AFF-OSKELM is still the nearest to the real curve
in Fig. 10(b). As shown in Fig. 11, APE of AFF-OSKELM
is similar to that of FF-OSKELM. Close observation shows
that the incorporation of AFF makes the amplitude of APE
smaller and thus has greater stability.

Fig. 12 shows the learning curve of each method in
the testing process. AFF-OSKELM is the smoothest and
the outcomes of the subsequent prediction are the most

FIGURE 11. APE of different methods in example 2.

FIGURE 12. The learning curve of different methods in example 2.

stable. Despite the similar learning curve, AFF-OSKELM
is smoother than FF-OSKELM due to the changes of AFF
during dictionary construction in Fig. 13.

Fig. 14 shows the impact of the size of dictionary on the
testing RMSE of AFF-OSKELM when the other parameters
are set as Table 3. In order to keep the dictionary sparsity, only
the dictionary size below 100 is compared in Fig.14. At first,
the testing RMSE is smaller with the size of dictionary larger
and reaches a minimum at 30. Then the accuracy tends to
be stable. When the size of dictionary is larger than 50,
the testing RMSE becomes unstable. Therefore, we set the
size of dictionary as 30.
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FIGURE 13. AFF changes of example 2.

FIGURE 14. The impact of dictionary size on AFF-OSKELM prediction.

The initial AFF value can be obtained by Eq. (21) with
parameters in parameter setting table, which is usually the
same as FF of FF-OSKELM. For example, we can get λ1 =
0.995 of AFF-OSKELM in example 2, equal to FF of FF-
OSKELM. As shown in Table 5 is the impact of initial AFF
value change on the testing RMSE of AFF-OSKELM. Since
0 � λn < 1, the initial AFF is set ranging from 0.990 to
0.999 as Table 5. Except for λ1 = 0.990, the testing RMSE
changes little with λ1 larger. This is because there are other
parameters, e.g. µ1 and µ2, that influence the prediction
result. As FF is 0.995 in the experiment of FF-OSKELM
method, the initial AFF is set 0.955 as well.

TABLE 5. The impact of initial AFF value on prediction.

C. PM2.5 TIME SERIES OF BEIJING
PM2.5 refers to the particles in the atmosphere with an aero-
dynamic equivalent diameter of less than 2.5 mm. The higher
the concentration of PM2.5 in the air, the more serious the
air pollution is, which has a significant impact on human
health, air quality and meteorological visibility. After long-
term observation, the concentration of PM2.5 was found to

FIGURE 15. PM2.5 time series of Beijing.

be closely related to the change of wind speed. The higher
wind speed is, the smaller concentration of PM2.5 is, and
vice versa. Hence this segment forecasts PM2.5 according to
Beijing’s historic PM2.5 time series and wind speed.1

As shown in Fig. 15, 960 samples of PM2.5 (µg/m3) and
wind speed (m/s) of 40 days in Beijing from November 22 to
December 31, 2014, are used in the experiment. Set time
delay as τ1 = τ2 = 1h and embedding dimension as m1 =

m2 = 5. The first 720 groups were used as training samples
and the last 240 groups as test samples.

Through simulation and comparison, the experimental
results can be obtained in Table 7 when the experimental
parameters are set as shown in Table 6. The second col-
umn input ‘‘1’’ refers to the reconstruction vector with input
variables of PM2.5. ‘‘12’’ refers to the reconstruction vector
with input variables of PM2.5 and wind speed. The bold part
represents the optimal index for all methods. Table 7 indicates
that:

(1) From the perspective of time consumption, the test
time of AFF-OSKELM and FF-OSKELM is the best,
which verifies the low computational complexity of this
method.

(2) From the perspective of test accuracy, compared
with other methods, the input ‘‘1’’ and ‘‘12’’ of
AFF-OSKELM can improve the test accuracy by
2.88% and 3.94% respectively. Besides, the addition
of AFF is confirmed to have a positive effect on the
predictive effect.

(3) From the perspective of stability, since KB-IELM
learns all the samples, its MRPE performance is the
best but also has the highest time cost. The worst
MRPE performance notwithstanding, the MAPE index
of AFF-OSKELM and FF-OSKELM is the best, which
indicates certain advantages in stability.

(4) From input variables, multi-variable input predictions
are 2.87%higher than single-variable input predictions.
This proves that the consideration of multivariable is of
great significance.

The predicted overall curve, local enlarged curve and root
mean square error of AFF-OSKELM with the input ‘‘12’’
in Table 7 are shown in Fig. 16. The prediction curve can
accurately track the change trend of the real curve, and its
prediction error remains at a low level.

1https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
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TABLE 6. Parameter setting of example 3.

TABLE 7. The prediction results of example 3.

FIGURE 16. Prediction results of AFF-OSKELM under input ‘‘12’’ in
example 3.

FIGURE 17. The learning curve of different methods in example 3.

Fig. 17 shows the prediction learning curve of the optimal
prediction results, i.e. when the input variable is ‘‘12’’. The
learning curves of all methods tend to be stable except for

FIGURE 18. Training number of different methods in example 3.

FF-OSKELM and the AFF-OSKELM curve is the smoothest.
The prediction result of AFF-OSKELM is more accurate.
Accordingly, Fig. 18 shows the number of training sam-
ples for each method in Fig. 17. The AFF-OSKELM and
FF-OSKELM training curves are very similar, and their train-
ing samples are less than other methods, as a result of which
their time consumption is the lowest in Table 7.

VI. CONCLUSION
We propose a new multivariable time series prediction model
with AFF, namely AFF-OSKELM, to enhance the dynamic
tracking capability and improve prediction performance and
timeliness of non-stationary time series. The experimental
results show that: (1) The proposed method has low com-
putational complexity; (2) The AFF-OSKELM method has
higher prediction accuracy and stability than other KELM
based methods; (3) In the case of multivariable time series,
the prediction effect of input multi-variable is better than that
based on a single variable.
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The proposed method has the following advantages:
(1) TheAFF concept is introducedwhich canmore effectively
track the rate of change in the data flow in time-varying situa-
tions; (2) The outcome of the target prediction ismore reliable
given the changes in the related variables; (3) A general
learning framework is established to realize the process of
dictionary sparseness without increasing the computational
complexity. Finally, there is a synchronous updating of the
kernel weight coefficient and AFF.

In the future, we will also explore the effects of kernel
type and kernel parameters on the prediction performance of
AFF-OSKELM.
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