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ABSTRACT The effect of corticomuscular coactivation based hybrid brain-computer interface (h-BCI)
on post-stroke neurorehabilitation has not been explored yet. A major challenge in this area is to find an
appropriate corticomuscular feature which can not only drive an h-BCI but also serve as a biomarker for
motor recovery monitoring. Our previous study established the feasibility of a new method of measuring
corticomuscular co-activation called correlation of band-limited power time-courses (CBPT) of EEG and
EMG signals, outperforming the traditional EEG-EMG coherence in terms of accurately controlling a robotic
hand exoskeleton device by the stroke patients. In this paper, we have evaluated the neurophysiological
significance of CBPT for motor recovery monitoring by conducting a 5-week long longitudinal pilot trial
on 4 chronic hemiparetic stroke patients. Results show that the CBPT variations correlated significantly
(p-value< 0.05) with the dynamic changes in motor outcome measures during the therapy for all the
patients. As the bandpower based biomarkers are popular in literature, a comparison with such biomarkers
has also been made to cross-verify whether the changes in CBPT are indeed neurophysiological. Thus the
study concludes that CBPT can serve as a biomarker for motor recovery monitoring while serving as a
corticomuscular co-activation feature for h-BCI based neurorehabilitation. Despite an observed significant
positive change between pre- and post-interventionmotor outcomes, the question of the clinical effectiveness
of CBPT is subject to further controlled trial on a larger cohort.

INDEX TERMS Biomarkers, brain-computer interfaces, electroencephalography, electromyography,
exoskeletons, neurofeedback, rehabilitation robotics, stroke.

I. INTRODUCTION
Introduced by Pfurtscheller and colleagues in 2010 the
concept of hybrid-brain computer interfaces (h-BCI) is an
active area of research in BCI. As per the definition, h-BCI
exploits two different modalities of brain-wave or com-
bines other physiological signals with brain signals in a
simultaneous or sequential manner to enhance the perfor-
mance of a conventional BCI [1]. The early development
of h-BCI combining different brain signal modalities such
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as event-related desynchronization (ERD) and steady-state
visually evoked potentials (SSVEP) in a simultaneous [2], [3]
or sequential [4] way showed reduced false positive rate
and enhanced accuracy. Notably, ERD is associated with a
change in the rhythmic activity characterised by a localized
and short-lasting decrease in the amplitude in alpha/beta
frequency bands whereas an increase in amplitude is referred
to as Event-related Synchronization (ERS) [5]. Other phys-
iological signals such as eye-tracking and heart-rate (HR)
are also combined sequentially with brain signals (ERD and
SSVEP) where one of the modalities acted as a brain-switch
for the next stage to reduce the error in decoding [1]. In an
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FIGURE 1. Comparison between existing approaches of combining EEG and EMG in an h-BCI framework with the new approach. The proposed new
approach combines the EEG and EMG signals at the input stage to generate a hybrid feature that is shown on the right-hand side. The proposed approach
is different from a similar approach where EEG and EMG features are combined after extracting them separately.

eye-tracking+ERD based h-BCI paradigm the dwell time
based switching of a certain button on a computer screen can
be replaced by an ERD-BCI based brain switch for better
personalization, while the selection of the buttons can be
made using the eye-tracking signals for increasing the number
of commands [6]. It is well established that heart rate can be
voluntarily modulated by the somatomotor process connected
to mental activity. The combination of heart-rate modulation
with SSVEP was used to control a prosthetic arm where the
h-BCI system is switched on by the heart-rate modulation
and then SSVEP was used to direct the prosthetic arm to
execute various motions to achieve a particular task [7].
Different fusion techniques using EEG, EMG, and
mechanomyogram (MMG) were also evaluated for multijoint
lower-limb control with improved accuracy [8]. A controlled
study on an h-BCI system composed of motor-imagery
(MI) and selective sensation proved that it performed sig-
nificantly better than the only MI-based BCI [9]. Control
of multi-degree of freedom robotic arm is also proved to
be possible using an h-BCI combining more than two sig-
nals [10]. Thus three major purposes of h-BCI is identified
in the literature so far are enhancing classification accuracy,
improving the number of control commands, and reducing
the signal detection time [11].

The approach of combining EEG and EMG signals in an
h-BCI framework presented in this paper is a bit different
from the existing approaches which is illustrated in Fig. 1,
where it can be seen that while the existing approaches to
combine EEG and EMG hybridize the two systems (a BCI
with another BCI or a different human-computer interface) at
the output level, the h-BCI in this paper correlates the changes
in a brain signal (EEG) with a physiological signal (EMG)
at the input level and forms a single system as an h-BCI.
In particular, we have correlated the EEG and EMG signals
to engineer a new feature which is then used for the clas-
sification purposes [12]. This is different from calculating
EEG and EMG features separately and then combining it in
a single feature vector. For example, one can calculate the
EEG bandpower features (BP) from different channels (say
the dimension is m) and the mean absolute value (MAV)

of EMG from different channels (say the dimension is n).
Then combine the m dimensional BP feature from EEG and
n dimensional MAV feature from EMG to create a single
feature vector of dimension m+ n. Rather than going by this
approach, we calculated a single feature, called the correla-
tion of band-limited power time-courses (CBPT) [12] for dif-
ferent EEG-EMG channel combinations. However, we do not
argue that this is a different category of h-BCI architecture,
rather it should only be considered as a different approach of
feature vector formation using a novel EEG+EMG feature.
It is worth mentioning that this approach of combining EEG
and EMG is also different from combining (simultaneous or
sequential) the outputs of EEG and EMG classifiers [13]. The
reason behind designing a new architecture of h-BCI rather
than going for the existing architectures lies in the quest for
finding a metric for cortical and peripheral nerve connectivity
which will be suitable not only for providing neurofeedback
related to a therapeutic exercise but also effective for motor
recovery monitoring. It has been found in the past that multi-
modal fusion between EEG and EMG activity leads to more
reliable performance than EMG or EEG alone [13].

Corticomuscular coactivation has neurophysiological sig-
nificance as it was found to be one of the underlying
mechanisms for effective corticospinal interaction which can
improve motor functionality [14]. Such coactivations are
also distinguishable for individual finger motions in the case
of stroke patients [15]. Strong corticomuscular coactivation
was also observed at the contralateral motor cortex for both
impaired and unimpaired hand, which can reflect motor func-
tional recovery after stroke [16]. The connection between
the cortex and muscle plays an important role in motor
recovery as it is found in a recent study that corticomuscu-
lar coherence (CMC) acts as a potential biomarker for the
quantification of motor deficit [17], [18]. Apart from hand,
CMC can be observed in other body parts too, such as in
tibialis anterior muscle in the lower leg during isometric
contraction [19]. Voluntary change in motor behaviour can
also modulate the strength of CMC within a neurofeedback
paradigm for upper-limb activity [20]. An offline analysis of
different finger motions of stroke patients using CMC also
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revealed its utility for active rehabilitation [21]. However,
CMC is not suitable for single-trial based prediction of motor
activity. One of the major reasons for this is that the CMC is
greatly reduced following stroke [17], [22] and also shows
a dynamic shift in frequency due to fatigue [23]. It also
suffers from estimation vs. resolution issues for shorter time
segments (as in the case of single-trial based detection), lower
signal-to-noise ratio, especially when lower muscle mass is
involved in slow finger movements [12], [24]. Therefore, our
previous work investigated the feasibility of a new cortico-
muscular coactivation index based on the correlation of the
band-limited power time-courses (CBPT) between EEG and
EMG [12]. EEG-EMG CBPT measures the corticomuscular
coactivation in terms of changes in the EEG and EMG band
power. It showed that an EEG-EMG CBPT based h-BCI
system was able to perform significantly better than a CMC
based h-BCI in providing hand-exoskeleton based neurofeed-
back to the stroke patients.

Although suitable for detecting attempted motor move-
ment in a single trial [12], estimating the relation of
EEG-EMG CBPT with motor recovery required a longitu-
dinal clinical trial on stroke patients. Despite the potential
of conventional BCI systems in controlling different neuro-
protheses [25], virtual-reality [26] and orthotic devices [27],
[28] has been extensively evaluated for the past few years,
the evaluation of h-BCI devices in clinical perspective is
much ignored. A recent study used the EEG and EMG signals
in a sequential h-BCI architecture where EEG is used for
movement initiation while EMG is used for finer control,
estimating the joint angles [29]. Here the EEG-EMG based
h-BCI was found feasible for real-time control by the stroke
patients, however, they didn’t study its relation with motor
recovery. Moreover, the EEG and EMGwere used as separate
sub-systems connected sequentially and hence corticomuscu-
lar coactivation was not used for control which is important
to be tested considering its importance from a rehabilitation
point of view [30]. A recent study on movement-related
cortical potential (MRCP) has also shown the utility of
simultaneous activation of EEG and EMG signals as a
comprehensive approach for neurofeedback training in action
observation, motor imagery, and motor execution of sitting
and standing tasks, which could lead towards the advance-
ment of exoskeleton-based rehabilitation [31].

In order to meet this need, we present a prelimi-
nary study on chronic stroke patients wherein they have
used the EEG-EMG CBPT based h-BCI system to get
hand-exoskeleton based neurofeedback of their finger
motions. The design of the experiment as a single-arm study
aims at discovering the relationship of EEG-EMGCBPTwith
the motor outcome measures so that it can serve as a pos-
sible biomarker for motor recovery monitoring. During the
5-week-long study, we have monitored the motor-recovery
outcome by standard measures such as Action-research-
Arm-Test (ARAT) and grip-strength (GS) for pre, post,
and every week during the therapy period. The relation-
ship between the motor outcome and EEG-EMG CBPT is

estimated to validate its use as a biomarker for recovery.
As the estimation of a patient’s motor recovery is a major
prognostic challenge for the clinicians [32], comparison with
popular bandpower based biomarker has also been made
to cross-verify whether the changes in CBPT are indeed
neurophysiological.

II. MATERIALS AND METHODS
A. ETHICS STATEMENT
The University Research Ethics Committee of the Ulster
University approved the study protocol, which followed
all the regulations and guidelines of the Declaration of
Helsinki. The trial was retrospectively registered at the
isrctn.com1 (ISRCTN13139098). All the participants gave
their consent by signing the informed consent form. All the
data recorded during the trial are de-identified and stored
anonymously.

B. PARTICIPANTS
The University Research Ethics Committee of the Ulster Uni-
versity approved the study protocol, which followed all the
regulations and guidelines of the Declaration of Helsinki. All
the participants gave their consent by signing the informed
consent form. All the data recorded during the trial are
de-identified and stored anonymously.

The post-stroke motor recovery generally plateaus after
3 months and the more time passes from the stroke incidence,
the chances of auto-recovery and recovery by traditional
means of therapy diminish. This is the point where alternative
means of recovery can be tested. Therefore, we have recruited
5 chronic stroke (ischemic) patients suffering from hemipare-
sis. The mean time since the first occurrence of stroke was
21.8±4.49 within the range 17 to 28 months. As revealed
by the testimonials of the patients, their motor functionality
stopped improving for the last one year. These patients were
selected out of 15 who were initially interviewed and then
gradually filtered out by the inclusion/exclusion criteria and
exoskeleton fitment test. Out of these 5 patients allocated for
the intervention, 1 patient (S05 in Table 1) had an accidental
hand-fracture (disconnected incident from the trial) and left
the trial after 2 weeks. Finally, the rest of the 4 completed
the trial and were analysed. The flow diagram from the
recruitment to the analysis is depicted as per the CONSORT
recommendation in Fig. 2. The patient demographics have
been shown in Table 1. All the patients were recruited locally
(2 males and 3 females) having an average age of 61.6±5.3
(range 56–69). Two of the participants had impairment in the
left hand while 3 of them had their impairment in the right
hand. All of them are reported to be right-handed. The base-
line measurements of motor-functionality as measured by
ARAT and GS were 24±10.88 and 10.7±4.4 kg respectively.
All the patients had some sort of residual muscle activity as
measured by EMG. The brain areas affected by lesion after

1https://doi.org/10.1186/ISRCTN13139098
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TABLE 1. Baseline demographics of the participants.

FIGURE 2. CONSORT Diagram. This shows in a systematic way how the
trial has proceeded right from the recruitment to the analysis stage.

stroke as revealed by theMagnetic Resonance Imaging (MRI)
reports are mentioned at the rightmost column of Table 1.

The inclusion criteria of the participants are as follows:
• Male and female post-stroke volunteers, in the age group
of 18-80 years and have normal or corrected to normal
vision (e.g. normal vision by using glasses);

• Six months to 3 years post-stroke since the first episode
of stroke: this is to capture stroke survivors within the
chronic stage and also to ensure that the stage of fast
spontaneous recovery has finished;

• Able to follow two-part spoken or written commands:
this is to ensure, stroke survivors can provide informed
consent and also to ensure, they will be able to comply
with therapy;

• Have movement disability in at least one of their hands
due to stroke;

• Able to get in and out of a low seat unassisted;
• Ready to remove all body piercings.
The exclusion criteria of the participants are as follows:
• Known to have a progressive neurological condition,
any serious medical or psychological diseases which are

likely to seriously affect their ability to continue with
experimentation;

• Have metal or active implants in their body (excluding
dental fillings or crowns);

• Known to suffer from claustrophobia;
• Pregnant or breastfeeding;
• Gross cognitive impairment or disorientation, evidenced
by a score of<21 in the Mini-Mental State Examination
(MMSE); the MMSE is an 11-item reliable and valid
measure of cognitive function [33], such that they are
unable to follow verbal or written instruction.

We would like to clarify that we have not involved healthy
subjects as a control group in this study. This study is a
single-arm trial which is intended to establish CBPT as a
biomarker for motor recovery monitoring by longitudinally
correlating the motor outcome variations with the CBPT
variations across the sessions. We do not need a control group
here as we are not validating the clinical effectiveness of the
proposed intervention. Establishing clinical effectiveness of
CBPT based h-BCI intervention on stroke patients would be
the objective of our future work.

C. SYSTEM OVERVIEW & DATA ACQUISITION
The h-BCI system is built on the MATLAB/Simulink plat-
form. It has an interactive graphical user interface (GUI)
based front-end for collecting patients’ information and stor-
ing it in theMS-Access based datastore. The system has a user
management module, a training module, a data analysis mod-
ule, and an online feedback generation module. The training
module communicates with a Simulink model running at the
backend for collecting the EEG and EMG data and running
the experimental training paradigm. The data analysismodule
is responsible for feature extraction and classifier generation
by running a MATLAB script at the backend. This classifier
is then used by the online feedback generation module which
calls a Simulink model in the background. The algorithm for
single-trial based analysis of the acquired data for provid-
ing contingent neurofeedback was implemented inside the
Simulink s-functions (user-defined function blocks). These
functions were also responsible for playing a stop-motion
video for virtual hand-grasp (visual neurofeedback) and serial
communication with the hand-exoskeleton circuit for sending
the control commands linked to the visual feedback. The hand
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exoskeleton used in this study is a home-made three-finger
exoskeleton capable of providing the flexion and extension
motion of the thumb, index, and middle fingers. The index
and middle fingers are driven in a coupled fashion by the
one link of the exoskeleton while the thumb is driven by
another. The links are based on a four-bar mechanism so
that the natural human finger trajectory (as they are ellip-
tical rather circular due to an instantaneous change in the
centre of rotation) can be maintained. The mechanisms are
operated by 2 Hitec HS5685MH servo motors capable of
producing 12.9 kg-cm torque at 7.4 V. The hand-exoskeleton
is fully wearable, portable, and light-weight (410 g with
the battery pack) maintaining usable design specifications
prescribed by Pacchierotti et al. [34]. It is to be noted that
the arm-rests (which helps the exoskeleton resting on a table
for rehabilitation use) are easily detachable when portabil-
ity is needed (such as to be used for activities of daily
living).

The EEG and EMG data were acquired using the standard
g.USBamp (g.tec, Graz, Austria) biosignal amplifier, along
with active ring electrodes (g.LADYbird having sintered
Ag/AgCl crown) attached to the EEG cap (g.GAMMAcap).
The signal was sampled at 512 Hz and initially band pass
filtered over 0.1 Hz to 100 Hz with a notch filter at 50 Hz
to avoid the power-line noise. We intended to cover the
frontal, medial and parietal regions of the brain apart from
the motor cortex as the current sources related to the finger
motions are also located in those areas as revealed by joint
f-MRI and EEG studies previously [35], [36]. For example,
Mizuguchi et al. [37] showed the involvement of dorsolat-
eral prefrontal cortex (DLPFC) for motor action planning.
Moreover, in stroke patients, the degree of activity decreases
in sensorimotor cortex as compared to the pre-stroke motor
imagery. It was also found that sensorimotor areas are well
connected to the surrounding brain areas such as connectivity
of supplementary motor area with DLPFC [38] or the cou-
pling of Premotor area with DLPFC [39]. Therefore, it was
essential to explore not only the sensorimotor area but also
its surrounding areas. However, we had only a 16 channel
device for the data acquisition from which 4 channels had
to be allocated for EMG acquisition. Therefore, we are left
with 12 EEG channels to cover the motor cortex and the other
relevant areas around it as mentioned. Thus we had to com-
promise on putting the electrodes more centrally of the motor
cortex. The 12 EEG electrodes placed around these locations
and the placement of the EMG sensors for the data acquisition
are shown in Fig. 3. The reference electrode was attached
to the left ear-lobe. The placement of the EMG electrodes
was on right and left finger flexion muscle group (FFM)
(i.e. FFMR and FFML , respectively) in a bipolar fashion,
while the reference was taken from the bony part of the elbow.
The participants sat on a chair in an upright position at about
0.5m distance from the monitor wearing the exoskeleton in
their impaired hand. The intervention exercises were per-
formed for up to 12 sessions spanning over a 5 week period
with 2-3 sessions per week.

FIGURE 3. The schematic of data acquisition and processing. The EEG
channels are shown by magnifying the scalp area of the participant. The
EMG channels are shown on the left and right forearms. The arrows are
indicating how the EEG and EMG signals are used for CBPT feature
extraction and then classification using an SVM classifier. Finally,
the classifier predicts the left or right motor attempt to issue multimodal
(Visual+Exoskeleton) neurofeedback.

D. INTERVENTION
The intervention consists up to 12 sessions of h-BCI con-
trolled hand-exoskeleton therapy for each participant. The
setup for the intervention has been depicted in Fig. 4. Each
therapeutic session consists of 2 runs for calibrating the
h-BCI system and 3 runs for providing online neurofeedback
contingent to the participants’ corticomuscular coactivation
related to the presented cue during a trial. There were 40 trials
in each run of the h-BCI. The timing diagram of a single
trial during the calibration and online feedback generation

FIGURE 4. The experimental environment is shown here. The participant
is wearing the hand exoskeleton on her right (impaired) hand, while the
armrest attached with the exoskeleton supporting the forearm to be in a
stable position. The participant is getting visual neurofeedback on the
computer screen along with exoskeleton based proprioceptive feedback.
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stage is shown in Fig. 5. Each trial lasts for 8 s with a
random 2 s to 3 s interval as the inter-trial interval (ITI)
between the two consecutive trials which makes one run
to be roughly 7.5 min. We have chosen an ITI according
to our previous studies [12], [28] where it was found to
be working well in avoiding the effects of the participants
anticipating the timing of the cue. Combining all the runs
in a session including the preparation time of the participant
(putting the electrodes and other connections) and relax-
ation between two consecutive runs, it was roughly 1 hr of
h-BCI controlled hand-exoskeleton based therapy. Prior to
the 1 hr long h-BCI based therapy, participants went through
a 30 min of finger opening and closing practice assisted by
the exoskeleton to prepare them for the next stage. During
the h-BCI based therapy, the participants were asked to make
a grasping attempt (either left or right hand depending on
the cue) when the cue is presented within a trial. The EEG
and the EMG signals related to the grasp-attempt are picked
up by electrodes placed on the patient’s scalp and forearm
muscle and the corticomuscular coactivation is computed
using the CBPT method. A classifier is trained during the
calibration stage of the session based on the CBPT feature
to classify between the left and the right grasp-attempts and
the trained classifier is used during the 3 online feedback
runs following the calibration. The patients were provided
with the visual feedback. If it is the impaired hand, additional
feedback is also provided in terms of proprioceptive feedback
aligned with the visual feedback using the hand exoskeleton.
Proprioception is defined as the sense which enables us to
perceive the movement, location, and action of different body
parts (here the thumb, index, andmiddle fingers) according to
the Encyclopedia of Neuroscience [40]. We have taken quali-
tative feedback from the participants to ensure that they were
actually able to sense the movement, location, and action of
their finger flexion while the exoskeleton was assisting them
to perform these motions. Such proprioceptive feedbacks are

FIGURE 5. Timing Diagram of the experimental protocol. The timing
diagram for the calibration stage is shown at the top while the same for
the online feedback stage is shown at the bottom. In the online feedback
stage, the 3 to 8 s duration is divided into cue display for the first 2 s the
rest of the time is used to give neurofeedback by simultaneously
processing EEG and EMG data in the background.

typically provided by orthoses or exoskeletons for BCI based
poststroke therapies [27], [41], without any use of electrical
stimulation. As we are dealing with EEG-EMG correlation
here we could not use electrical stimulation as that would
generate non-volitional EMG activity. As the hand exoskele-
ton mainly facilitates passive motion [41] of the fingers and
does not stimulate the muscle therefore it did not affect the
volitional EMG signals.

E. MOTOR OUTCOME MEASURES
The rehabilitation outcomes weremeasured every week using
the standard motor recovery measures such as ARAT and GS
(in kg). There were a total of 5 measurements taken for each
participant during the course of the therapy. The ARAT mea-
sures 4 basic hand functionality such as grasp (score: 0–18),
grip (score: 0–12), pinch (score: 0–18), and gross movements
(score: 0–9). Thus the total range of ARAT is 0–57. The total
score of each functionality is divided into several tasks which
are assigned a score between 0–3. As described by Lyle [42]
the measurement of ARAT involves the apparatus such as
wooden blocks of different sizes, sharpening stone, cricket
ball, glass and jar of water, hollow tubes of different height
and thickness, washers, ball bearings, andmarbles of different
dimensions. A dynamometer is used to take three consecutive
measurements and then averaged to get the estimate of the
patient’s grip-force.

F. DATA ANALYSIS
The acquired EEG and EMG data from the calibration stage
of each session are used first to extract the CBPT features
which act as a measure of corticomuscular coactivation.
These features are then fed into a support-vector-machine
(SVM) based classifier to discriminate between the left and
right-hand grasp attempts. We have used the in-built function
in MATLAB for optimizing the hyper parameters of SVM
which uses the Bayesian optimization technique to tune the
hyper parameters. A 10-fold cross validation was used during
the training process to generate the SVMmodel. For training,
we have used two-third of the dataset and the testing was done
on the remaining of one-third of the dataset. The choice of
SVM was inspired by the fact that it has been used more
frequently in EEG-based BCI studies [43], [44] and also
have been found to outperform linear discriminant analysis
(LDA), naïve Bayes (NB), and random forest (RF) classi-
fiers [43]–[45]. Our previous work on a similar dataset also
showed that SVM has quite stable and satisfactory perfor-
mance [12], [28]. The feature extraction function is developed
in-house while we have used the MATLAB’s svmtrain and
svmclassify functions for classifier generation and prediction
purposes. A linear kernel was used to generate the SVM
model to avoid overfitting. As we mentioned that CBPT acts
as a corticomuscular coactivation index, we further investi-
gated whether this index changes in relation to the motor
recovery outcome measures, serving as a potential biomarker
for recovery. The variation of Mu and Beta event-related
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desynchronization/synchronization (ERD/ERS) over the ses-
sions is also calculated and its relation to the motor recovery
outcome measures is analyzed for comparing its performance
as a biomarker with that of CBPT. It is to be noted that the
paired t-test was used for all statistical comparisons keeping
the threshold for p-value as 0.05.

1) CBPT FEATURE EXTRACTION AND CLASSIFICATION
A detailed description, rationale and performance of CBPT
method as a corticomuscular coactivation index capable of
single-trial based prediction of motor-attempt has already
been introduced in our previously published work [12].
Here we briefly describe the CBPT method to highlight
how the EEG and EMG signals are correlated to build an
h-BCI feature. At the first stage the raw EEG (rEEGi) and
EMG (rEMGi) data from trial i are bandpass filtered to
their respective frequency bands (8-12 Hz for EEG and
30-50Hz for EMG). Then the bandpass filtered EEG (bEEGi)
and EMG (bEMGi) are squared to get the EEG and EMG
band-powers (pEEGi and EMG pEMGi). The bandpower
EEG and EMG are then moving-window-averaged with a
smoothing kernel of 1 s for EEG (smEEGi) and 32 ms
(smEMGi) for EMG. The length of the smoothing window
is obtained empirically for optimal performance of the classi-
fier. Then at the last step suitable time-window over the period
3.5 s to 5 s (i.e. +0.5 s to 2 s after the cue) is chosen from
smEEGi and smEMGi to calculate the Pearson’s correlation
between these two time-courses. The data from the neuro-
feedback window was not used for the CBPT calculation as
we have found in our previous study [12] that the EEG and
EMG signals generally plateau after this point and hence not
reliable for drawing a correlation. However, The participants
are supposed to maintain a constant grasp throughout the trial
period to encourage more engagement with the task. The
absolute value of this correlation above the chance level is
considered as the CBPT index for that trial (CBPTi). We have
used the corrcoef function of MATLAB for calculating the
correlation coefficient and its p−value. If the p−value is
greater than 0.05,CBPTi value is not considered and replaced
by zero. A feature vector comprising of CBPTi from all the
different EEG and EMG channel combinations is formed for
every trial within the calibration stage and then fed into the
SVM model for classifier training. At the online feedback
stage, the same CBPT feature extraction process is repeated
and classified by the trained SVM classifier. The CBPT
feature vector was 10 dimensional which comprised of the
following EEG-EMG channel combinations: F3 − FFMR,
FC3 − FFMR, C3 − FFMR, CP3 − FFMR, P3 − FFMR,
F4− FFML , FC4-FFML , C4− FFML , CP4− FFML , P4−
FFML . It is to be noted that the beta CBPT was not used
during the online BCI task. It was the mu CBPT which was
used during the actual experimentation in online BCI mode.
The beta CBPT was calculated during the offline analysis of
the raw signal in the similar manner as mu in online, as both
these bands (mu and beta) are related to motor actions and

we wanted to present a broader picture of CBPT’s association
with motor recovery.

2) BIOMARKERS RELATED TO THE RECOVERY
The neurophysiological markers of recovery are calculated
in two ways. First, whether the CBPT indexes can reflect the
dynamical changes in recovery and then we compared it with
the existingmeasure of changes in recovery as the variation of
Mu and Beta band-power. The average CBPT index between
the EEG channels and impaired hand EMG is calculated for
each session and then it is correlated with the motor recovery
measures GS and ARAT. The same is also repeated with the
Mu and Beta band-power measures where the average Mu
and Beta ERD/ERS are calculated for every session related
to the motor attempt of the impaired hand. The ERD/ERS is
calculated according to the following formula.

ERD/ERSchb =
Ebtask
Ebref

(1)

The ratio between the average band-power during the
motor-attempt and the reference period is defined by (1),
where ch denotes the EEG channel and b denotes the band
(Mu or Beta). The numerator in the right-hand side of (1)
is the average bandpower during the motor attempt period
(averaged over 0.5 s to 1.5 s after the cue) and the denomina-
tor is the average bandpower during the reference or resting
period (averaged over 1.5 s to 0.5 s before the cue). The
choice of the time spans of Ebref and Ebtask were inspired
by the previous literature including our own work [28], [46].
Basically we needed to find two time spans one before the
cue and another after the cue where the bandpower variations
were stable and plateaued. In our previous clinical trial with
similar experimental paradigm we have used a Ebref time
frame 0.5 s before cue [28] which gave stable measurement
of ERD/ERS for patients with similar type of disability. It was
also observed in the previous literature that the maximal
magnitude of ERD occurs 0.4 s after the cue [46] which
could be a good choice for calculating Ebtask . Thus a time
span 0.5 s before the cue and 0.5 s after the cue was decided
for Ebref and Ebtask respectively. We also wanted to keep
parity on the number of samples used for the averaging
of the bandpower. Hence, we experimentally decided upon
a 1 s time period for the bandpower averaging. Thus the
bandpower was averaged between 1.5 s and 0.5 s before
the cue for Ebref and for Ebtask it was averaged between
0.5 s and 1.5 s after the cue. It is noteworthy that the motor
recovery assessments (GS and ARAT) are taken weekly (5 in
total) and the biomarkers based on CBPT and ERD/ERS
were calculated per session. Therefore, to match the number
of time points in both the time-series (motor-recovery and
biomarker) for the sake of correlation calculation, the average
over all the sessions (for the biomarkers) which fall within
a week are considered as one time-point. The correlations
were calculated for each of the EEG channels and correlation
coefficient for which p−value is greater than 0.05 is not
considered and replaced by zero.
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FIGURE 6. CBPT variations of all the participants: (a) S01, (b) S02, (c) S03, (d) S04. Each point in the graphs represents the mean CBPT across the EEG
channels and the errorbar represents its standard deviation. The legends having HH and IH in parenthesis show the variations for healthy hand and
impaired hand respectively for individual participants. For participant S01 and S04, we can see clearly that the CBPT differences between the healthy
and impaired hand decrease gradually with the increase in treatment time.

III. RESULTS
The accuracy of the h-BCI for generating the neurofeedback
associated with the motor task has already been reported in a
previous conference paper [47]. So, here we briefly mention
those results to set the background of the further results
presented in this paper. All the participants were able to con-
trol the exoskeleton with higher accuracy as the therapeutic
session progresses. The group-mean increase in accuracy was
+19.01% from the first session (58.16±7.81%) to the last
session (77.17±3.65%). Themotor outcomemeasures ARAT
and GS showed a group-mean change of +23.75 in ARAT
and+9.83 kg in GS. Both of these positive changes are found
to be statistically significant (p−value<0.05). Interestingly,
the improvement in ARAT and GS exceeded the minimal
clinically important difference (MCID) limit [48] of 5 and
6.2 kg respectively.

A. RELATIONSHIP OF CBPT WITH RECOVERY OUTCOME
The CBPT variations throughout the therapy have been
shown in Fig. 6(a)-(d), for participants S01, S02, S03,
S04 accordingly. These plots were generated by taking the
average and standard deviation of the contralateral CBPT
for the impaired hand. The standard deviations are repre-
sented by the errorbars for each such points. It is to be
noted from the plots that for all the participants the average
CBPT has increased from the first week to the last week.
The group-mean changes in CBPT(Mu band) and CBPT(Beta
band) are +0.11 and +0.09 respectively; both of them sta-
tistically significant (p−value<0.05). Moreover, we can see
that for participant S01 and S04 the CBPT difference between
healthy and impaired hand is gradually decreasing as the
treatment progresses. However, for S02 and S03 this pattern
is not very clear. This could be due to the fact that we are
comparing two different hands, left and right, and there may
be an initial difference between the dexterity which may vary
across the participants. Also, the amount of overall gain in
CBPT due to motor skill learning could play a factor here
as we can see that the changes in CBPT are a bit higher for
S01 and S04 than in S02 and S03. Therefore, a control group
with the same hand as the dominant hand would be necessary

for a true comparison. But overall, we can see that the CBPT
is gradually improving to become closer to the healthy hand
CBPT as the therapy progresses.

The relationship of CBPT changes at different EEG-EMG
channel pairs is also correlated with the motor recov-
ery outcomes and the topoplots are generated to see their
distributions over the scalp. These topoplots are shown
in Fig. 7 (a)-(d) for participants S01, S02, S03 and S04 respec-
tively. The scatter plots of correlations corresponding to
each topoplots can be seen in Fig. 8(a)-(d) for partici-
pants S01, S02, S03, and S04 respectively. The variation
of the CBPT with the GS and ARAT measures are also
shown as scatter plots with a trendline (linear least-square)
in Fig. 8 where the values of the significant (p−value<0.05)
correlation-coefficients are mentioned in the labels for each
channel. For participant S01 (Fig. 7(a) and Fig. 8(a)) sta-
tistically significant (p−value<0.05) correlations are found
between the CBPT(Mu band) variations and GS variations
over the weeks for the EEG channels F3, FC3, and C3 and
EMG channel (FFMR). For CBPT(Beta band) statistically
significant (p−value<0.05) correlation is found in F3. The
CBPT(Mu band) and CBPT(Beta band) are also significantly
(p−value<0.05) correlated with ARAT scores for all the
contralateral EEG channels F3, FC3, C3, CP3, and P3, while
for CBPT(Beta band) it is significant (p−value<0.05) in
F3, CP3, and P3. Here the significant correlations are all
beyond 0.90.

The correlations of CBPT(Mu band) with GS for S02
(Fig. 7 (b) and Fig. 8(b)) are found to be significant
(p−value<0.05) at F4 and P4 while for CBPT(Beta band)
it was significant (p−value<0.05) at FC4 and CP4. Again,
the correlations between CBPT(Mu band) and ARAT are
significant (p−value<0.05) at F4, C4, and P4, while it
is significant (p−value<0.05) at F4, CP4, and P4 for
CBPT(Beta band) vs. ARAT.

The results from S03 (Fig. 7 (c) and Fig. 8(c)) shows that
there are significant (p−value<0.05) correlation between
CBPT(Mu and Beta band) and GS for F3. The correlations
of CBPT(Mu band) with ARAT scores are found to be sig-
nificant (p−value<0.05) at F3, C3, CP3, P3, while in the
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FIGURE 7. Topoplots of correlations between CBPT and motor outcome measures for
(a) S01, (b) S02, (c) S03, and (d) S04. It is to be noted that S01 and S03 were impaired by
their right side, while S02 and S04 were impaired by their left side.

case of CBPT(Beta band) and ARAT statistically significant
(p−value<0.05) correlations are found at F3, FC3 and CP3.

The CBPT(Mu band) correlations with GS and ARAT
show significant (p−value<0.05) relation only at F4 and
C4 for S04 (Fig. 7 (d) and Fig. 8(d)), where the coef-
ficients are all above 0.89, although correlations between
CBPT(Beta band) with GS and ARAT are found significant
(p−value<0.05) at F4, C4, CP4, and P4 where the coeffi-
cients are also above 0.89.

B. RELATIONSHIP OF BANDPOWER VARIATION WITH
RECOVERY OUTCOME
The week-wise bandpower analysis in terms of ERD/ERS
has shown (Fig. 9(a)-(d)) an overall trend of decrement for
both the bands (Mu and Beta). Each point on these graphs
represents the average ERD/ERS across all the channels
and the vertical errorbars represent the standard deviation of
ERD/ERS across all the channels. The group-mean change of
-0.18 in Beta ERD/ERS is also found to be statistically sig-
nificant (p−value<0.05) as it reduced 17.20% from the base-
line. In Mu band, ERD/ERS, a significant (p−value<0.05)
change of -28.36% was also observed as the group-mean
changed (-0.29) from 1.03 to 0.74.

An investigation on how the Mu and Beta band-
power (i.e. ERD/ERS) variations are related to the motor
outcome measures (GS and ARAT) shows that there are
significant (p−value<0.05) correlations at various EEG
channel locations on the scalp. The scalp topoplots of cor-
relations are shown in Fig. 10(a)-(d) and their correspond-
ing scatter plots can be seen in Fig. 11(a)-(d) respectively
for participant S01 to S04. The variation of the ERD/ERS
with the GS and ARAT measures are also shown as scat-
ter plots with a trendline (linear least-square) beside every
topoplot where the values of the significant (p−value<0.05)
correlation-coefficients are mentioned in the labels for each
channel. We have taken the absolute values of the cor-
relation to keep uniformity in representation for both the
CBPT and bandpower measures. The Beta band ERD/ERS
are found to be significantly correlated (p−value<0.05) with
the GS and ARAT scores at the EEG channels ipsilateral
to the impaired hand (right hand) for the participant S01
(Fig. 10(a) and Fig. 11(a)). For example in relation to the
GS it is significant at ipsilateral: FC4, C4, CP4, central:
FCz and CPz. The correlations of Beta band ERD/ERS
with ARAT scores for S01 shows that the coefficients are
significant (p−value<0.05) at ipsilateral: FC4, C4, CP4,
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FIGURE 8. Scatter plots of correlations between CBPT and motor outcome measures for (a) S01, (b) S02, (c) S03,
and (d) S04. It is to be noted that S01 and S03 were impaired by their right side, while S02 and S04 were impaired
by their left side.

FIGURE 9. ERD/ERS variations of all the participants: (a) S01, (b) S02, (c) S03, (d) S04. Each point on these graphs represent the average ERD/ERS across
all the EEG channels and the vertical errorbars represent the standard deviation of ERD/ERS across all the EEG channels.

contralateral: CP3, Central: FCz and CPz. In contrast, the Mu
band power variations show contralateral pattern as signifi-
cant (p−value<0.05) correlation is found at CP3 and P3 for
GS and CP3 for ARAT.

For the participant, S02 (Fig. 10(b) and Fig. 11(b)), Beta
band ERD/ERS is found to be significantly (p−value<0.05)
correlated with GS scores at the EEG channels; contralateral
(S02 is impaired at the left hand): FC4 and CP4, Central: FCz,
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FIGURE 10. Topoplots of correlations between ERD/ERS and motor outcome measures for
(a) S01, (b) S02, (c) S03, and (d) S04. It is to be noted that S01 and S03 were impaired by
their right side, while S02 and S04 were impaired by their left side. Although the original
correlation-coefficients are negative (see scatter plots in Fig. 11), the topoplots are shown as
positive with the same values just to compare it with CBPT correlations.

CPz and ipsilateral: F3, C3, CP3, P3. Beta band ERD/ERS
correlated with ARAT only at ipsilateral: P3 and central:
FCz and CPz EEG channels, while none of the contralateral
channels are significant. The Mu band ERD/ERS relation
with GS also followed the ipsilateral pattern, as significant
(p−value<0.05) correlation is found in all the ipsilateral
(F3, FC3, C3, CP3, and P3) EEG channels (r>0.89), along
with central: FCz and contralateral: FC4 and C4. For Mu
band ERD/ERS relation with ARAT, a bilateral pattern is
observed with r being insignificant (p−value>0.05) only
at P4.

The correlations of Beta band power variation with the
GS and ARAT measures are found to be significant mostly
in ipsilateral (as S03 was impaired by the right hand) EEG
channels for S03 (Fig. 10(c) and Fig. 11(c)). For GS sig-
nificant (p−value<0.05) correlations are at FC4, C4, CP4,
and FCz, while for ARAT significant (p−value<0.05) cor-
relations are at FC4, C4, CP4. In contrast to this, the Mu
band correlations are mostly at the contralateral side as

significant (p−value<0.05) correlations are at FC3, C3, FCz,
and CP4 for GS and C3, CP3, and P3 for ARAT.

A bilateral pattern is observed for the relationship of
Beta band power with GS and ARAT for S04 (Fig. 10(d)
and Fig. 11(d)). Significant (p−value<0.05) correlations
(r>0.89) are found for all the EEG channels except F3 for GS
and F3 and P4 for ARAT. The Mu band correlations with GS
are also found to be bilateral as significant (p−value<0.05)
correlations are observed in F3, FC3, CP3, FCz, FC4, C4,
CP4, and P4. However, the correlations between Mu band-
power and ARAT are significant only at contralateral EEG
channels FC4 and C4.

In Fig. 12 we have averaged the Figs 7(a)-(d) and
Figs 10(a)-(d) (after lateralizing it to the left hemisphere as
the lesion side for the sake of comparability) to clarify the
interpretation of the results across the subjects. Although
inter-subject variability which is a common phenomenon in
EEG sometimes makes such plots blurry, Fig. 12 shows con-
sistency in terms of neurophysiology as we can see significant
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FIGURE 11. Scatter plots of correlations between ERD/ERS and motor outcome measures for (a) S01, (b) S02,
(c) S03, and (d) S04. It is to be noted that S01 and S03 were impaired by their right side, while S02 and S04 were
impaired by their left side.

correlations are clustered contralaterally (contralateral to the
impaired hand) in Mu-ERD/ERS, and also in Mu-CBPT and
Beta-CBPT, when corrected for lateralization.

IV. DISCUSSION
We would like to clarify that this paper does not intend to
establish the clinical effectiveness of the CBPT based h-BCI
system on the basis of these positive motor outcomes as sev-
eral factors other than the intervention may have contributed
to this and a controlled study with a larger cohort is needed
even to make a speculative comment. Therefore only the rele-
vance of CBPT in the context of motor recoverymonitoring is
discussed in this paper, which is important to warrant further
investigation into the clinical effectivity aspect.

A major indication that the variation of CBPT indexes
can be used as a biomarker for recovery comes from the

observation of the scatter plots (Fig. 8(a)-(d)) that in the
case of all the participants, the CBPT indexes increased as
the motor outcomes (GS and ARAT) improved. Thus CBPT
indexes as a measure of corticomuscular coactivation reveal
a stronger correlation between the brain (EEG) and mus-
cle (EMG) signals as the stroke patients regain their motor
ability. A similar change in corticomuscular coupling with
the motor recovery was also observed in the case of cortico-
muscular coherence (CMC) measurements in the past [30],
[49], [50]. However, CMC based h-BCI was not able to
provide sufficient BCI control accuracy as revealed by our
previous work [12], whereas CBPT significantly (p<0.05)
outperformed CMC in controlling a hand-exoskeleton device
by the stroke patients. In the current study also, CBPT shows
a satisfactory performance as the average accuracy improved
significantly (p−value<0.05) from the first to the last week
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FIGURE 12. Scalp topoplots of correlations averaged across all the participants (a) ERD/ERS and motor recovery, (b) CBPT and motor recovery.

of the therapy. It is important to note that this performance
was achieved without any BCI screening. Thus it further
reinforces the fact that CBPT based h-BCI architecture is able
to improve classification beyond the recommended thresh-
old accuracy level of 70% [51]. This is very important in
a rehabilitation setting as the patients may have alterations
in their brain activity at the initial stages which limits their
BCI performance.

The beta band corticomuscular coupling is only reported
in the literature so far, whereas in this paper we have reported
the corticomuscular interactions both in Mu and Beta bands.
The reason lies in the fact that CMC only looks for coupling
between the same frequency of EEG and EMG while it can
be present in two different frequency bands. For example, it is
well known that motor-actions (motor imagery or execution)
related modulations occur in terms of ERD in Mu band
(8-12 Hz) [52], which may also influence the EMG acti-
vations. However, CMC at this frequency range (8-12 Hz)
is not visible because EMG activations are prominent at a
higher frequency range as its power spectrum peaks around
50–60 Hz [53]. Therefore motor action related EEG modu-
lations occur at a bit higher frequency range (beta rhythms:
15-30 Hz) which overlaps with the spectrum of EMG activa-
tions and this contributes towards a significant level of CMC.
This limitation is overcome by the CBPT, which can look at
the cross-frequency interactions between EEG and EMG, and
hence an investigation of corticomuscular correlation at both
the Mu and Beta bands is possible.

The comparison with the variations in sensory motor
rhythm (SMR) has also been made in terms of Mu and Beta
band ERD/ERS changes over the therapeutic period. As there
is a general consensus that the changes in beta bandpower
is a significant biomarker for motor recovery [41], [54], this
comparison further validates that the variations in CBPT
are meaningful. Here we also found that not only the beta
band ERD/ERS but also the Mu band ERD/ERS is correlated
with the motor outcome measures. The contralateral pattern
of the SMR (especially in Mu band when averaged across
the participants, Fig. 12 (a)) correlations are also evident in
the CBPT correlations (in both Mu and Beta band, Fig. 12
(b)). This outcome is also in accordance with the study con-
ducted by Chen and Schlaug where they found increased
resting-state fMRI connectivity in ipsilesional motor cortex
after the intervention [55]. Although the contralateral pattern
is found for all the participants except S02 in the case of
Mu ERD/ERS, for Beta ERD/ERS it is ipsilateral for all
the participants except S04. Bilateral correlations are also
observed particularly in the case of Mu band in S02 and
Beta band in S04. Previous findings also showed that cortico-
muscular coupling is particularly explored to detect neuronal
plasticity [30], although the CMC changes didn’t correlate
with the motor recovery. Such finding is also supported by
another study on early phase recovery of poststroke hand
functionality where CMC did not perform as an efficient
biomarker for recovery [56]. Moreover, a large inter-subject
variability was also present there. In our case, CBPT based
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corticomuscular coactivation measure shows a much-reduced
variability as the contralateral pattern was intact in all partic-
ipants. More importantly, a strong correlation is also present
between the CBPT variations and motor outcomes across the
therapeutic period. Indeed, this analysis also sheds light on
the continuous changes of corticomuscular correlation during
the progress of rehabilitation, whereas other clinical studies
mostly reported only the pre- and post-therapeutic changes.

The fact that both the bandpower related changes (Mu and
Beta ERD/ERS) and CBPT are found to be strongly corre-
lated with motor outcome measures, indicates a neurophysi-
ological link between them as a biomarker of motor recovery.
The bi-lesional pattern of the bandpower related correlations,
occurring in a few instances, maybe due to the involvement of
a wide range of cortical regions influencing muscle activity,
which was found in a previous study [57]. The increment in
CBPT cannot be credited to the gross enhancement in the
EMG amplitude or gross decrement in the Mu bandpower
(ERD/ERS). This is evident from the very definition of CBPT
method (presented in section II-F1) that the CBPT index
depends on the correlation between the band-limited power
time-courses of EEG and EMG and not the overall amplitude
changes. Hence, enhanced CBPT is attributed to the gradual
improvement in the stability of simultaneous EEG and EMG
activations relating to the motor attempts, over the course
of therapy. We also argue here that the mode of designing
a restorative BCI should consider the factors affecting the
rehabilitation process, as we have designed our h-BCI using
CBPTwhich showed a strong correlationwithmotor outcome
measures.

It can be argued that a simple EMG feature extraction
would have worked for classifying left vs. right-hand task in
this case as the patients had residual EMG activity. However,
it is to be noted that the purpose of this study is not just to
provide ameans for issuing high fidelity neurofeedback to the
patients. The study is inspired by the fact that the connectivity
between the central and peripheral nervous system (or corti-
comuscular coupling) plays an important role in the motor
recovery process as revealed by the studies on corticomuscu-
lar coherence (CMC) analysis [18]. But unfortunately, CMC
is not suitable for single-trial based prediction due to high
inter-trial variability. Hence, our previous study [12] tested
whether a new measurement namely CBPT can solve this
issue of single-trial detectability. Nevertheless, the ultimate
aim of developing such a method would be unfulfilled if
it hasn’t been tested for its impact on the motor recovery
process, more like CMC. Therefore, it was necessary to drive
the neurofeedback using CBPT rather than by EMG activity
only, so that the corticomuscular connectivity can be captured
and its change throughout the therapeutic process can be cor-
related with the motor-outcome measures in order to inves-
tigate its impact on recovery. Although the work presented
in the paper deals with signals related to motor-attempt,
another major aspect worth exploring in future investiga-
tions is the effect of pre-movement on corticomuscular coac-
tivation. Pre-movement features such as movement-related

cortical potentials (MRCP) is quite useful for high perform-
ing BCI design [58], which can be used to predict cortico-
muscular coactivation for h-BCI based rehabilitation.

Given the fact that the study was conducted on chronic
stroke patients whose recovery had stopped for a long time
it is interesting to see the recovery process restarted as the
intervention was applied. Again, such observations do not
lead to any conclusion regarding the clinical effectiveness of
the intervention rather it only warrants a further investiga-
tion using controlled trials on a larger cohort. Nevertheless,
the study does advocate for the fact that CBPT can serve as
a biomarker for motor recovery monitoring as it showed a
strong correlation with the motor outcome measures and the
topographic patterns of the correlation also conform to the
neurophysiological signatures found in previous studies.

V. CONCLUSION
The pilot trial presented in this paper showed that the CBPT,
as a measurement of corticomuscular co-activation behaves
similarly to a neurophysiological marker for motor recovery
monitoring as revealed by its strong correlation with the
dynamic changes in motor outcome measures during the
therapeutic process. This is also a pioneering study where a
corticomuscular co-activation feature (CBPT) is used for an
h-BCI driven rehabilitation therapy for the first time while
the same feature is used as a potential biomarker for motor
recovery. The significant positive changes in the motor out-
come measures are also noteworthy since the patients were
in the chronic stage with the recovery process stopped for
long before the intervention. However the clinical effec-
tiveness of the given intervention is inconclusive unless a
controlled trial with a larger patient cohort is performed in
future.
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