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ABSTRACT Lung nodules are vital indicators for the presence of lung cancer. An early detection enhances
the survival rate of the patient by starting treatment at the right time. The detection and classification
of malignancy in Computed Tomography (CT) images is a very time-consuming and difficult task for
radiologists which lead the researchers to develop algorithms for Computer-Aided Diagnosis (CAD) systems
to mitigate this burden. The performance of CAD systems is continuously improving by using various
deep learning techniques for screening of lung cancer. In this paper, we proposed transferable texture
Convolutional Neural Networks (CNN) to improve the classification performance of pulmonary nodules
in CT scans. An Energy Layer (EL) is incorporated in our scheme, which extracts texture features from
the convolutional layer. The inclusion of EL reduces the number of learnable parameters of the network,
which further reduces the memory requirements and computational complexity. The proposed model has
only three convolutional layers and one EL, instead of pooling layer. Overall proposed CNN architecture
comprises of nine layers for automatic feature extraction and classification of pulmonary nodule candidates
as malignant or benign. Furthermore, the pre-trained model of proposed CNN is also used to handle the
smaller dataset classification problem by using transfer learning. This work has been evaluated on publicly
available LIDC-IDRI and the LUNGx Challenge database through different evaluation matrices, such as;
the accuracy, specificity, error rate and AUC. The proposed model is trained by six-fold cross-validation and
achieved an accuracy score of 96.69%±0.72% with only 3.30%±0.72% error rate. Whereas, the measured
AUC and recall is 99.11%±0.45% and 97.19%±0.57%, respectively.Moreover, we also tested our proposed
technique on the MNIST dataset and achieved state-of-the-art results in terms of accuracy and error rate.

INDEX TERMS Computed tomography, cancer detection, computer aided diagnosis, image classification,
machine learning, transfer learning, lung nodule, CNN, LIDC-IDRI, LUNGx challenge.

I. INTRODUCTION
Lung cancer is becoming one of the predominant risks to
human health all over the world [1]. During 2018 about
9.6 million people expired in the world due to cancer,
whereas, more than 1.7 million people expired due to lung
cancer which is approximately 18% of total cancerous deaths.
Meanwhile, more than 2 million lung cancer cases were
reported in year the 2018 [2]. A report published by the
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American Cancer Society reveals that the highest death rate
of lung cancer is 26% and five years’ survival rate is only
18% [2]. The low survival rate is due to the detection of
lung cancer in advanced stages as the symptoms are not
prominent in early diagnostics. Therefore, early detection of
lung cancer is essential to improve the survival rate up to
90%. Primarily, lung cancer is investigated by examination of
radiography scans such as X-ray, MRI or Computed Tomog-
raphy (CT) scan [3]. The key effectiveness of radiography
screening depends upon the radiologists who identify the sus-
picious lesions in the form of lung nodules. This challenging
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task becomes considerably crucial, specifically for the small
lung nodules. From the literature, it is revealed that approx-
imately 68% of lung nodules are correctly detected by sin-
gle radiologist which can be further improved up to 82%
by taking the opinion of second radiologist [4]. Therefore,
Computer-Aided Diagnostic (CAD) systems are designed
to minimize this load on the radiologists. The most recent
CAD systems provide assistance in the screening process
by classifying the lung nodule as malignant or benign [2].
The most critical part of nodule classification is the salient
feature extraction of malignant and benign nodules because
of less distinct properties [5]. Extracted features include size
(diameter or volume), shape, texture, andmorphology, as well
as the volume growth rate of the nodule, with the passage of
time.

In recent years, texture features have attained great atten-
tion in image classification [6] and also for lesion classifi-
cation of medical diagnostics [7], [8]. Meanwhile, the deep
learning techniques, especially Convolutional Neural Net-
works (CNNs) have been used recently with some promising
results for lung nodule classification [9]–[11]. The CNNs
utilize convolutional layers to extract features. The complex
features are extracted by the last convolutional layer which
are utilized in fully connected layers to extract the complete
shape information. The features such as edges are extracted
by the first convolutional layers.Whereas, the middle pooling
and convolutional layers extract features with considerable
complexity. For the texture analysis, the entire object and its
complex features are not much useful as compared to the
recurring patterns of lower complexity, whereas, the dense
features of intermediate convolutional layers accurately rep-
resent the texture of the object. Therefore, it is feasible for
a classic CNN to explore the texture image properties most
efficiently, without changing the architecture [12].

We intended to build a CNN which is capable of learning
the texture features and then classifying the lung nodules
in CT images, as used in [12], for texture image classifica-
tion. Therefore, we introduced a texture descriptor named as
Energy Layer (EL) after the convolutional layer. We enabled
the forward and backward propagation to learn the texture
features during the training process. Moreover, the Trans-
fer Learning (TL) technique is also used to investigate the
issues of small labeled medical image dataset by using
our pre-trained model, therefore, the proposed techniques is
named as transferable texture CNN. We also showed that our
texture CNN achieved better classification performance on
lung CT images with less number of learnable parameters
and neurons. The proposed architecture is trained and tested
by using six-fold cross-validation for binary classification
problem of lung nodule malignancy. Furthermore, the pro-
posed model is also tested on MNIST dataset [13], [14] for
classification of hand written digits to ensure its effective-
ness. The main contributions of this work are summarized as
fallows:
• We proposed the texture CNN for lung nodule classifica-
tion problem on two medical image dataset; LIDC-IDRI

and LUNGx Challenge. The classification accuracy was
achieved up to 96.69% for LIDC-IDRI dataset.

• We utilized EL in the proposed texture CNN model,
which preserves the texture information, reduces the
output vector size and also learns the parameters during
forward and backward propagation and hence, increases
the overall learning capability of the model.

• We also proposed the TL based model which uti-
lized LIDC-IDRI as source task and LUNGx Chal-
lenge dataset as target task. The classification accuracy
of LUNGx Challenge dataset was 86.14% without TL
which was further improved to 90.91% by using the
proposed TL base model.

• The classification accuracy of our proposed texture
CNN is 96.69% on LIDC-IDRI dataset.

The rest of this paper is organized as follows: in section II
the latest research work is discussed and section III describes
the data and methods which include a brief database
description and framework of our proposed lung nodule
classification scheme, including the importance of the CNN
model for nodule classification. Experiments and results are
presented in section IV, whereas, section V presents the
conclusion of this work.

II. RELATED WORK
A. TRADITIONAL METHODS FOR NODULE
CLASSIFICATION
A quick brief review of the literature presented in this
subsection shows that various techniques have been pro-
posed for malignancy detection and classification of
lung nodules by using traditional methods. For example;
Narayanan et al. [15] proposed a traditional approch for lung
nadule detection and classification by using LUNA16 dataset
at various slice thicknesses. They also analyzed the per-
formance of feature selection methods for SVM using
same dataset [16]. Sheway et al. [17] combined geometric
and histogram features for nodule classification with lin-
ear SVM, logistic regression, k-Nearest Neighbor (kNN),
random forest, and AdaBoost classifiers. Firmino et al. [18]
extracted the features by using a Histogram of Oriented
Gradients (HOG) and watershed techniques and then used
a rule-based classifier and SVM for nodule classification.
They used the LIDC-IDRI database [19] and achieved
accuracy and recall score of 97% and 94.4%, respectively.
Farag et al. [20] utilized the feature fusion concept for lung
nodule classification. They extracted three features by using
signed distance transform shape-based feature descriptor,
multi-resolution Local Binary Pattern (LBP) and Gabor fil-
ter. After that, kNN and SVMs are used for nodule malig-
nancy classification. Shaffie, et al. [21] utilized higher-order
Markov Gibbs Random Field (MGRF) technique and 3D
HOG filter to extract features. Afterwards, they classified
the nodules with a stacked auto-encoder after fusion of the
extracted features. They used the LIDC-IDRI database and
achieved accuracy and recall score of 93.12% and 92.47%,
respectively.
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B. DEEP CNN METHODS FOR NODULE CLASSIFICATION
Many researchers employed deep CNN for lung nodule clas-
sification inspired by the recent achievements of deep CNN
on various image classification benchmarks, like ImageNet
and MS COCO database [22]. Shen et al. [10] proposed
a Multi-Crop CNN (MC-CNN) to acquire nodule salient
information by cropping specific regions of convolutional
feature maps. MC-CNN architecture achieved 87.14% nod-
ule classification accuracy for the LIDC-IDRI database.
Nasrullah et al. [4] proposed a Customized Mixed link Net-
work (CMixNet), deep CNN based model for lung nod-
ule detection and classification. The network was trained
and tested on the LIDC-IDRI database and achieved 94%
recall and 91% specificity. Al-Shabi et al. [23] proposed
Gated-Dilated (GD) Networks for lung nodule malignancy
classification. The GD networkmodel utilized various dilated
convolutions for scale variation instead of max-poolings. The
classification performance is evaluated on the LIDC-IDRI
database achieved the accuracy and AUC score of 92.57%
and 95.14%, respectively. A 2D DCNN architecture with
15 layers is proposed by Tran et al. [24] for automatic fea-
ture extraction and nodule classification on the LIDC-IDRI
dataset. They utilized focal loss function in the training pro-
cess and improved the classification accuracy up to 97.2%.
Xie et al., proposed a state-of-the-art feature fusion and fused
texture, shape and deep model-learned information (Fuse-
TSD) techniques for nodule classification [25]. They per-
formed classification task with the AUC score of 96.65% on
the LIDC-IDRI dataset.

C. SMALL DATABASE ISSUES IN LUNG NODULE
CLASSIFICATION
CNNs gradually construct higher-level features from the
group of pixels normally found in medical images. However,
they are able to extract these features more effectively when
more and more training examples are available. In addi-
tion to the privacy issues with medical images, the lack
of labeled medical database affects the adaption of CNN.
Therefore, several efforts have been made to overcome the
problem of small medical images data by using transfer
learning techniques [26], [27]. Zhao et. al. used transfer
learning and fine-tuning scheme for lung nodule classifi-
cation task. They fine-tunned all the layers of their four
CNN architectures, which were pre-trained over the natu-
ral images [28]. The multi-view knowledge-based collabo-
rative (MV-KBC) deep model is proposed by Xie et al. [29]
for malignancy classification. They achieved an accuracy
score of 91.60% on the LIDC-IDRI database. Xie et al. fur-
ther extended the same idea with the name of multi-view
knowledge-based semi-supervised adversarial classification
(MK-SSAC) [30] and improved the accuracy score up to
92.53%. Dey et al. [31] proposed four two-pathway Con-
volutional Neural Networks (CNN) and achieved state-of-
the-art accuracy on the LIDC-IDRI database. Furthermore,
they use their pre-trained model to handle small dataset

problems by using transfer learning and achieved a good
accuracy score on their own lung database.

III. DATA AND METHOD
We proposed the texture CNN and also implemented a deep
feature TL technique for lunge nodule malignancy classifica-
tion in CT images. The performance evaluation of both the
techniques is done by using publicly available LIDC-IDRI
and LUNGxChallenge database. In this section, we discussed
the image augmentation technique first, which is used to
increase the size of small biomedical images dataset to meet
the training requirements of the proposed CNN model and
then database and patch generation technique is described.
Afterwards, the architecture of our proposed CNN and TL
methodology are discussed.

A. LIDC-IDRI DATABASE
The LIDC-IDRI is a publicly available database that contains
244,527 thoracic CT scan images of the 1,010 cases. The
x and y-axis coordinates and the boundary information of
each nodule are available in associated extensible markup
language (XML) annotation files. The XMLfiles also contain
semantic diagnostic features which were marked by four
experienced thoracic radiologists. They graded each feature
from 1 to 5 annotations. [32]. We utilized available XML
files and an annotation list provided in [33] to decide which
annotation is assigned to the related nodule. Radiologists
classified the degree of malignancy for each pulmonary nod-
ule from 1 to 5 categories, which are given in Table 1.
In this work, the first three categories (1-3) are recognized
as benign (Class 0), whereas, the latter two categories (4,5)
are identified as malignant (Class 1).

TABLE 1. Degree of malignancy for each pulmonary nodules.

B. LUNGx CHALLENGE DATABASE
This databasewas introduced for nodule classification instead
of nodule detection. Therefore, it was mainly focused on
the automatic classification of lung modules as malignant
or benign in CT images. The LUNGx challenge has a set
of calibration and testing scans with online available CSV
files containing nodule locations. The set of calibration has
ten scans (five females, five males). Out of ten calibration
scans, five contain one confirmed benign nodule, and the
other five contain one pathology-confirmed malignant nod-
ules. Whereas, the test set has 60 scans which have total
73 nodules. Out of these 60, 13 scans have two nodules. The
total of 60 test scans, 23 males and 37 females contained
37 benign and 36 malignant nodules [34], [35].
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The LUNGx challenge database consists of a single
trans-axial series with full thoracic coverage for each individ-
ual case. All scans have been obtained on Philips Brilliance
scanners with a ‘‘D’’ (over enhancing) and each scan has
1mm slice thickness. The LUNGx challenge has 22,489 CT
images which are in Digital Imaging and Communication in
Medicine (DICOM) format. Each image file has a Unique
Identifier (UID) that is assigned according to the DICOM
standard. To achieve a proper anatomy-based sequencing of
the images, the slice number is acquired from the DICOM tag
(0020,0013).

C. IMAGE AUGMENTATION
The huge amount of sample data can effectively improve
the deep CNN training and testing accuracy by reducing the
loss function, and ultimately improving the robustness of
networks. Image augmentation is a very good technique to
boost the performance of a deep network with very small
training data. Image augmentation artificially creates training
images by using different image processing operations, such
as; translation, resize, random rotation, flips and shear, etc.
In this paper, the size of the dataset D = {Xi : 1 ≤ i ≤ N }
is increased by using translation, random rotation, and
flip image processing operations to create artificial training
images for our proposed Deep CNN. Where N is the total
number of images.

D. PATCH GENERATION AND DATA ENHANCEMENT
The LIDC-IDRI and LUNGx challenge database comprises
of a heterogeneous set of scans that are acquired by using
various reconstruction and acquisition parameters. All the
slices are in the DICOM format, having a size of 512 × 512
at a pixel depth of 16 bits. To normalize the pixels, all CT
images are first converted to Hounsfield (HU) scales by using
the available information of the series header (0028, 1052)
and (0028, 1053) in the DICOM and then transformed to a
range of (0, 1) from (-1000, 500 HU). After this, the image
patches are created in two phases. In the first phase, Region
of Interest (ROI) around the nodule is extracted by acquiring
the central coordinates (x, y, z) and slice number of malignant
and benign nodules from the associated XML file. Then we
acquired the voxel coordinates by taking some pixels around
the central coordinates with respect to slice thickness. The
nodule size is between 3mm to 30mm and slice thickness
varies from 0.6mm to 5mm for the LIDC-IDRI database.
In the second phase, we extracted all the patches by using
voxel coordinates which were extracted in the first phase.
We used the same central coordinates (x, y) for each slice
during the extraction of every patch. The patch extraction
process is illustrated in Figure 1.
In this way, a total of 19,388 patches of size 64× 64 were

extracted from 1,010 cases of LIDC-IDRI database for benign
and malignant nodules and named as class 0 and class 1,
respectively. Similarly, for the LUNGx Challenge database,
we acquired 480 patches for class 1 and 663 patches for
class 0.

FIGURE 1. Patch extraction process.

E. PROPOSED TRANSFERABLE TEXTURE CNN
ARCHITECTURE
Keeping in view the following three essential features of the
image, deep CNN has been developed. First, some discrim-
inational patterns having a very small size than the actual
image, but if their size equals to the size of the convo-
lution filter mask, then the said patterns can be found by
the convolution filter. Second, some shape or patterns are
available in different areas of the image, such patterns can
also be identified by the convolution of the complete input
image. Third, the sub-sampling pixels are very critical for
the max-pooling layer and they do not alter the shape of the
input image. These pixels are utilized in biomedical image
classification. Figure 2 shows the overall architecture of the
proposed texture CNN for lung nodule classification.

FIGURE 2. Proposed transferable texture cnn architecture.

The proposed CNN has two convolutional layers, each fol-
lowed by the normalization and the pooling layers. Whereas,
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TABLE 2. Layer-wise architecture details of proposed texture CNN.

the third convolutional layer drives the EL. Finally, the soft-
max is utilized with the fully connected layer for the classifi-
cation of lung nodules. Moreover, the layer-wise dimensional
details are given in Table 2 which include network layer
details like kernel, stride, and padding for each layer.

The input and output dimensions of each layer are also
mentioned in Table 2. We used the following mathematical
relation to compute the output size of any convolutional layer:

OutputSize =
Si − So + 2P

ζ + 1
(1)

where P is padding, Si is input size, So is the filter size and ζ
is the value of stride.

F. CONVOLUTIONAL LAYERS AND ENERGY LAYER
Only the three convolutional layers are used in the proposed
model. The kernel size for the first two layers is 5 × 5,
whereas, the output channels are 16 and 32, respectively. The
third convolutional layer is considered as intermediate layer
to extract the texture features. It has 64 output channels and
3 × 3 kernel size. The number of learnable parameters for
convolutional layers are only 31,744 which are computed by
using the following mathematical expression.

θC = (Sk × ζ + 1)× Nc (2a)

θC = Nk × ζ × Nc + Nc (2b)

where θC is learnable parameters of CNN layer, Sk is kernel
size, Nc is number of channels and ζ is stride.

Each convolutional layer computes the output of neurons
that are connected to the input and computation is a dot
product among their weights and a small area of input where
it is connected. The first convolutional layer produces output
in volume of 32 × 32 × 16 with 16 kernels. Let χ be an
input feature map and ω be the weights, then the output of the
neurons at first convolutional layer is given by equation 3.

Y k = f (
∑
k

χk ∗ ωk + bk ) (3)

where Y k is the output feature map of the convolutional layer
for kth input and b is the bias term, whereas, ∗ represents the
2D convolution operation. The CNN usually combines the
dense orderless features by sharing the weight of the convolu-
tional layer. These features are combined within the CNN for

the classification of lung nodule images. Therefore, an energy
descriptor is desired at the output of the last convolutional
layer, which can learn the texture features during forward and
backward propagation. Keeping in view the requirement of
energy descriptor, an energy layer is incorporated after the
third convolutional layer, which works as the dense orderless
texture descriptors. The connection between the EL and the
last convolutional layer is given by the equation 4.

E(χ, θ) = σ (
n∑
i=1

ωTi χi + b) (4)

where E(χ, θ) is the output of EL, n is the number input con-
nections and ω is the weight vector of EL which is randomly
initialized during the start of training. The interconnections
between the EL and the FC layers are much smaller as com-
pared to the interconnections of the last classic convolutional
layer, which leads to the reduction of the learnable parame-
ters. Furthermore, EL preserves the energy/texture informa-
tion of previous layer and also learns during forward and
backward propagation. Therefore, the EL enhances overall
learning capability of network in addition to reduction of
vector size for next fully connected layer. This also reduces
the complexity of the proposed network without compro-
mising the accuracy. We compared the learnable parameters
of the proposed CNN with EL and without EL structure.
The learnable parameters of the EL are computed by using
equation 5.

θEL = δ
n
× δn−1 (5)

where θEL is learnable parameters of EL, δn is the neurons of
current fully connected layer and δn−1 is neurons of the pre-
vious fully connected layer. Then we computed the learnable
parameters of proposed CNN with and without EL, that are,
2, 263, 170 and 16, 812, 034, respectively. By incorporating
the EL, the learnable parameters were reduced by 86% as
compared to the classic CNN configuration.

G. BATCH NORMALIZATION AND ACTIVATION FUNCTION
The BNL is used between the convolutional and ReLU layers
to speed up the training process and minimize the sensitivity
of network initialization [36], [37]. The purpose of BNL is
to eliminate the internal covariate shift. It is done by tak-
ing batch-wise mean and standard deviation normalization.
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For batch normalization computation, mean and variance are
calculated by using the following equations.

µB =
1
m

m∑
i

χi (6)

σB =
1
m
×

m∑
i

(χi − µB)2 (7)

where µB and σB are the mean and variance of mini-batch,
whereas, m is the mini-batch size of χi input feature ele-
ment. The value of m is selected as 64. After computing
µB and σB, the batch normalization is computed by using
equation 8.

Yi =
(χi − µ)
√
σ 2 + ε

γ + b (8)

where γ and b are initial values of learnable parameters for
each output.

The rectified linear unit (ReLU) is used as an activation
function at the output of the convolutional layer to avoid
the vanishing gradient problem and boost-up the learning
speed [38]. The ReLU layer is used as piecewise function,
such as max(0, x) thresholding at zero. Equation 9 is used as
an activation function, whereas, expression 10 represents the
output of the ReLU layer.

Yi,j,k = max{0, χi,j,k} (9)

YReLU = ReLU (Bnorm(Conv(x,w))) (10)

In equation 9, Yi,j,k is the output feature element and χi,j,k
is the input feature element. The i and j are index values of
pixels for k th channel image.

H. POOLING LAYER
A pooling layer reduces the feature map size and ultimately
reduces the computations and weights which leads to control
over-fitting the network. In this work, every feature map
from consecutive convolutional layers is directly pooled by
computing the maximum of its ReLU output as given in
expression 11.

YPOOL = MaxP(ReLU (Bnorm(Conv(x,w)))) (11)

The max-pooling is done by using following mathematical
expression:

Y k = max(0,
p∑
χk−1ωk ) (12)

where Y k is the output feature map for kth channel and χ
is the input feature map. Whereas, ω is the kernel for the
max-pooling layer and p represents the pooling size. Two
max-pooling layers are available in our architecture and the
kernel size of each layer is 2 × 2. The max-pooling layer
operates individually on each depth slice of the input feature
map and resizes it in the spatial domain by utilizing the
equation 12.

I. DROPOUT REGULARIZATION
We used dropout regularization to prevent the over-fitting of
training data, as it eliminates the random subset of parameters
in iterative manner during the weight update process. As the
fully connected layer has themaximumnumber of parameters
over the entire network, therefore, it goes under the influence
of over-fitting on training data. Therefore, the dropout regu-
larization layer is added after the fully connected layer. In this
work, we also explored our technique with different dropout
regularization rate.

J. SOFTMAX CLASSIFIER AND LOSS FUNCTION
The softmax is used as a classifier which utilizes the log loss
as a loss function. The probability value of softmax varies
between 0 and 1, which is the confidence score for binary
classes. The loss function which is given in equation14, also
computes the compatibility of the available set of parameters,
analogous to the ground truth labels of the training dataset.

0L = ψyi + log
∑
j

exp(ψj) (13)

where 0L is the total loss, and ψj is the jth element of
the vector from class scores ψ . Moreover, the regularization
term also confirms that the weights are well distributed. The
objective of the classifier is to narrow down the difference
between the probabilities of the actual label and predicted
label, which are computed by using the following softmax
function:

Yi =
expψyi∑
j exp(ψj)

(14)

K. BACK-PROPAGATION ALGORITHM
The proposed texture CNN was trained by using back-
propagation algorithm. Let, θ =

(
ωi, bi

)
be the network

parameters which are updated by using following decreas-
ing cost function between the ground truth and the training
results:

L = −
1
|χ |

|χ |∑
i=1

ln
(
P
(
yi|χ i|

))
(15)

where L is the cost function which is calculated in an iter-
ative manner. The network parameters (θ) are updated with
stochastic gradient descent with momentum technique which
is given in equation 16.

θ (t + 1) = θ (t)− (λ
∂L
∂θ
− α1θ (t) + βλθ(t)) (16)

where α represents the momentum rate, whereas, λ denotes
the learning rate, which accelerates the learning proce-
dure and leads to cope with the global minimum of the
given loss function. The β represents the weight decay rate,
which minimizes the decaying weight parameters nearly
zero during each iteration, which causes to improve the
learning efficiency of the entire network parameters. The
back-propagation becomes even more effective when using
the gradient descent to tune the network parameters and train
a CNN.
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L. DEEP FEATURE TRANSFER TECHNIQUE FOR
MALIGNANCY CLASSIFICATION
The performance of different machine learning techniques
essentially relies on extensive labelled data for super-
vised training. Whereas, deficiency of the labelled medical
database for training and testing reduces the adaption of
CNN. Simultaneously, the manually annotating and labelling
of every data item to construct an immense training database
frommiscellaneous domains is really painful and prohibitive,
particularly for the medical image databases which also have
their own distinct privacy issues. Hence, there is a powerful
inspiration to construct a classifier via deep feature transfer
for the biomedical image classification problem, by taking
advantage of rich labelled data of various domains. Therefore,
the idea of transferring features is utilized to study a discrim-
inative and robust model in the presence of variable test and
training distributions known as TL [39]. The objective of TL
is to transfer deep features from the source to target domains
for the classification task. M. Oquab et al. performed training
on the source task (ImageNet database), then transferred the
pre-trained parameters of CNN to the target task for object
classification [40]. The same strategy is employed in this
work for lung nodule malignancy classification by using our
pre-trained CNN model. The platform is introduced between
deep learning and TL for lung nodule classification. Figure 3
shows the proposed TL methodology.

FIGURE 3. Transfer learning methodology using pre-trained texture CNN.

It is more accurate and stable TL based classifier model,
which learns the significant features of the biomedical image,
without considering the rich labelled biomedical image
dataset. Initially, the network is trained by using GPU on the
source task (top row of Figure 3) with the large number of data
samples such as augmented dataset. Then, the pre-trained

parameters of the internal convolutional layers and the first
fully connected layer are transferred to the target task (bot-
tom row of Figure 3). Here, the source task is LIDC-IDRI
database, whereas, the target task is the LUNGx challenge
database. The features are extracted from EL and then
weights and biases are fine tuned by retraining last two fully
connected layers for LUNGx challenge images.

M. TRAINING PROCESS AND EVALUATION METRICS
The proposed CNN model is trained and tested on a pub-
licly available LIDC-IDRI [19] database using six-fold
cross-validation strategy. The total of 925,632 image patches
of LIDC-IDRI database are divided into six subsets. Then the
six-fold cross validation is carried out by taking five subsets
of data as training and remaining one as testing to compute
the performance of our proposed texture CNN. Furthermore,
to avoid the over fitting of model and monitoring the training
process, 20% of each k-fold training data is utilized for
validation of the proposed model. The validation is done at
the end of the training epoch. The data distribution details of
each training fold are illustrated in Figure 4.

FIGURE 4. Data distribution detail for training and testing.

The training process is repeated six-time and each time
the weights from the network are reinitialized randomly and
then the model is trained end-to-end for 300 epochs using
back-propagation algorithm. The learning rate (λ) of the
model is set to 0.001 which decreases after every 2500 iter-
ations. The decreasing factor of λ is 1 × 10−1. The value of
momentum rate (α) and weight decay rate (β) is 9×10−1 and
2× 10−4, respectively. Furthermore, the value of mini-batch
size is kept 64 during back-propagation. It is to be noted that
the training process becomes smooth after passing the sixty
epochs. The improvement in accuracy becomes negligible
which leads to the end of the successful training process.
The same training procedure is also adopted to evaluate the
performance of the proposed model on the LUNGx challenge
database as well as on the MNIST database. The quantitative
performance of the proposed method is determined by com-
puting accuracy, recall, precision, specificity, and error rate.
The details of these evaluation metrics are given in Table 3.

IV. RESULTS AND DISCUSSIONS
The implementation of the proposed texture CNN is done
with a server having Intel(R) Core(TM) i7-8700 proces-
sor, 16GB RAM, and one NVIDIA TITAN Xp GPU
with 12 GB RAM and compute capability of 6.1. In this
work, we explored the texture CNN architecture, then the
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TABLE 3. Details of evaluation metrics.

performance evaluation on the LIDC-IDRI and LUNGx chal-
lenge database is performed. After that, we also validated the
effectiveness of our model on the MNIST dataset.

A. THE EXPLORATION OF TEXTURE CNN STRUCTURE
For the proposed texture CNN model, first, we evaluated the
performance with the different dropout layer configurations
to find the appropriate value of the dropout rate for each layer.
To evaluate the performance of the network, we compared it
with different dropout rates. Table 4 shows the comparison of
the results.

TABLE 4. Comparison of different dropout layers and dropout rates of
texture CNN, the best result is mentioned in bold.

Whenever we used no dropout layer, we sustained all the
neurons for the next coming layer. In such case, the classi-
fication accuracy is lower due to over-fitting. Furthermore,
classification accuracy remained low at dropout rate of 0.5%
and 0.6% due to withholding of extra neurons. The maximum
accuracy is achieved at dropout value of 0.2%, the results are
shown in bold. In this case, we kept 80% of the neurons for
the next layer.

We also evaluated the performance of our model with
and without EL (i.e. texture CNN and classic CNN config-
uration) to study the effect of EL on nodule classification
performance. The comparison of both configurations is given
in Table 5.

TABLE 5. Comparison of different dropout layers and dropout rates of
texture CNN, the best result is mentioned in bold.

The results show that the proposed texture CNN per-
formed well as compared to the classic configuration CNN
for both the databases. As the EL is identical to the aver-
age pooling and worked as dense orderless texture descrip-
tors, it learned texture features during forward and backward
propagation, which improved the classification performance.

From Table 5, it can be observed that the Texture CNN has
significant improvement in classification accuracy and other
metrics, as compared to the classic CNN configuration for
both the databases. Moreover, we also measured the clas-
sification accuracy for each class. These results are given
in Table 6.

TABLE 6. Classification accuracy score for each class for LIDC-IDRI and
LUNGx Challenge dataset.

From the results shown in Table 6, it can be observed that
the proposed texture CNN classified the malignant nodules
more accurately for both the databases, as compared to benign
nodules. The classification accuracy score of the malignant
nodules is 97.03% for the LIDC-IDRI dataset, whereas, it is
86.48% for the LUNGx challenge dataset.

B. PERFORMANCE EVALUATION WITH LIDC-IDRI
DATABASE
The proposed model achieved comparable classification
results on LIDC-IDRI Database. Table 7 shows the perfor-
mance comparison of the proposed texture CNN with state-
of-the-art traditional lung nodule classifications methods in
terms of classification accuracy, recall, specificity, and area
under the curve (AUC) scores.

TABLE 7. Performance comparison of proposed texture CNN with
state-of-the-art traditional methods.

From the given results, it can be observed that the achieved
accuracy, recall, specificity and AUC score are 96.69%,
97.16%, 97.19% and 99.11%, respectively. All of these met-
rics are better than the rest of the traditional lung nodule
classifications methods under consideration.

After comparing with the traditional approaches, we also
compared our texture CNN with deep learning-based mod-
els to prove the effectiveness of the model. Table 8 shows
the performance comparison of the proposed model with
various existing state-of-the-art deep learning-based models,
like Fuse-TSD algorithm [25], deep fully convolutional neu-
ral network (DFCNet) [45], MV-KBC learning model [29],
MK-SSAC model [30] and GD network [23] etc.

The results presented in Table 8 show that the proposed
model performs better as compared to all other deep learning
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TABLE 8. Performance comparison of proposed CNN on the LIDC-IDRI database with state-of-the-art methods.

techniques except LdcNet-FLwhich has a bit higher accuracy
and specificity score. LdcNet-FL computed the mentioned
score with approximately 3.3 million learnable parameters
and one million neurons. It is noteworthy to mention here,
that our proposed texture CNN computed the marginal lower
accuracy with considerably lesser learnable parameters and
neurons. The comparison of learnable parameters and neu-
rons of the proposed texture CNN with other deep learning
techniques is given in the subsequent subsection.

C. EVALUATION OF PRE-TRAINED MODE ON LUNGx
CHALLENGE DATABASE
First we, trained our proposed texture CNN from scratch
on the LUNGx challenge database and achieved compara-
ble results. After that we used our pre-trained model of the
LIDC-IDRI database to investigate the small dataset train-
ing issue of CNN by implementing the TL methodology.
The classification results of proposed CNN are compared
with Xie et al. [30], Fine Tuned MK-SSAC, MV-KBC, and
Mizuho Nishio, et al. [48], who proposed two classification
models, which are: CADx using SVM with tree parzen esti-
mator (TPE) and gradient tree boosting (XGBoost) with TPE.
Table 9 shows the comparison of our proposed texture CNN
on the LUNGx Challenge database.

TABLE 9. Performance comparison of proposed texture CNN with
state-of-the-art traditional methods.

The achieved classification score of our proposed tex-
ture CNN without TL (trained from scratch) for accuracy,
recall, specificity, and AUC score on LUNGx database are
86.14%, 88.76%, 93.11% and 92.63%, respectively, which
show that the proposed CNN performed better than all the
other considered techniques expect XGBoost (TPE) in terms
of accuracy score only. Furthermore, the results show that

the implementation of TL methodology with a pre-trained
model significantly improved the accuracy as compared to
our trained model, which proves the effectiveness of TL
methodology.

D. ARCHITECTURE COMPLEXITY COMPARISON WITH
STATE-OF-THE-ART TECHNIQUES
The architecture complexity is based on activation functions
like neurons and learnable parameters. We computed the
total number of neurons and learnable parameters of the
proposed model and compared themwith the recent proposed
state-of-the-art techniques like LdcNet with cross-entropy
loss (LdcNet-CE), LdcNet with Focal Loss (LdcNet-FL) [24]
and customized mixed link network (CMixNet) [4] as given
in Table 10.

TABLE 10. Comparisons with state-of-the-art methods in terms of
neurons and learnable parameter.

From Table 10, it can be observed that the proposed model
has a lesser number of neurons and learnable parameters
which leads to a reduction in the complexity. It is noteworthy
to mention here that the reduction of neurons and learn-
able parameters is due to the incorporation of EL. There-
fore, the EL reduced the complexity of the network without
degrading the classification accuracy.

E. PERFORMANCE VALIDATION OF TEXTURE CNN ON
MNIST DATASET
The proposed texture CNN was successfully trained and
tested for lung nodule malignancy classification. In addi-
tion, we also validated our proposed model on the MNIST
dataset which is a handwritten digits dataset. It consists
of 10,000 labeled test images and 60,000 labeled train-
ing images. We trained and tested our proposed model
successfully and compared the results with state-of-the-art
techniques. These results are given in Table 11.
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TABLE 11. Comparisons with state-of-the-art methods on the MNIST
dataset.

The results show that the proposed texture CNN also per-
formed well as compared to the other techniques. It can also
be observed that the proposed texture CNN computed the
marginal lower error rate of 0.02% than Tabik et al. [50]. Fur-
thermore, it is also mentioned that Grover et al. [54] achieved
recall and specificity of 97.73% and 99.74%, respectively.
However, the achieved recall and speficicity scores for both
metrics by our proposed model are 99.94% and 99.93%,
respectively, which reflect the effectiveness of the proposed
texture CNN.

V. CONCLUSION
In this paper, we have proposed a transferable texture CNN
architecture for lung nodule malignancy classification tasks.
We introduced the EL, which removes the overall shape
information and explores the texture features. Experimental
results show the effectiveness of the proposed technique for
benign and malignant nodules classification, without nodule
segmentation or any complex pre-processing. After success-
ful training, we evaluated the performance of the proposed
network by using various evaluation metrics. The results
were compared with state-of-the-art lung nodule classifica-
tion methods. The results show that our proposed texture
CNN architecture performed well for approximately all the
evaluation metrics. The training was done successfully by
six-fold cross-validation and achieved an accuracy, recall,
specificity, AUC, and error rate of 96.69%, 96.05%, 97.37%,
99.11%, and 3.30%, respectively, on LIDC-IDRI database.
The learned features of EL were analyzed and it was noted
that the EL extracted texture from the convolutional layer.
The EL also reduced the number of learnable parameters of
the network, which leads to minimize the memory require-
ments and complexity of CNN. Furthermore, we explored our
pre-trained model to handle the smaller dataset classification
problem by using TL. We also show that our pre-trained
model achieved better results than the compared techniques
on a small LUNGx Challenge database. Moreover, we also
validated the effectiveness of our proposed texture CNN on
the MNIST dataset, as our model achieved 99.89% accuracy
with only 0.12% error rate.
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