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ABSTRACT Channel estimation is still a challenge for space time block coding (STBC) multiple-input
multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems in time-varying envi-
ronments. To estimate the channel state information (CSI) precisely without increasing complexity in any
significant way, this paper utilizes the sparsity and the inherent temporal correlation of the time-varying
wireless channel, and proposes a novel channel estimation method applied to STBCMIMO-OFDM systems.
The proposed method consists of two schemes: adaptive multi-frame averaging (AMA) and improved mean
square error (MSE) optimal threshold (IMOT). First, the temporal correlation of the time-varying channel
is modeled by a linear Gauss-Markov (LGM) model, and the AMA scheme is incorporated to refine the
initial estimated channel impulse response (CIR) through noise reduction. Based on the LGM model, the
optimal average frame number is adaptively determined by minimizing the MSE of the denoised CIR.
Then, the sparsity of the wireless channel is utilized to model the CIR as a sparse vector, and the IMOT
scheme is performed to further remove the noise effect by discarding most of the noise-only CIR taps.
Specifically, the IMOT scheme is achieved by recovering the CIR support across the optimal ‘‘tap-to-tap’’
threshold derived by minimizing the MSE of each CIR tap. Moreover, the prior confidence level of the tap
to be active is calculated through multi-frame statistics to further improve the performance of the IMOT
scheme. Simulation results verify that the proposed AMA-IMOT channel estimation method can achieve
better performance than comparison methods.

INDEX TERMS Sparse channel estimation, multiple-input multiple-output (MIMO), orthogonal frequency
division multiplexing (OFDM), space time block coding (STBC), multi-frame averaging, threshold.

I. INTRODUCTION
A. BACKGROUND AND CONTRIBUTIONS
As the communication requirement is growing by leaps and
bounds, multiple-input multiple-output (MIMO) techniques,
which have the potential to increase the channel capacity
significantly, have gained considerable attention from both
academia and industry. Meanwhile, diversity techniques can
be applied to MIMO systems to further improve the link
reliability in the flat fading channel [1], [2]. On the other
hand, orthogonal frequency division multiplexing (OFDM)
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techniques can divide the frequency-selective fading channel
into multiple flat fading subchannels, which are widely used
in modern communication systems for its superior perfor-
mance and high spectral efficiency [3]–[5]. The cyclic pre-
fix (CP) is inserted in the front of each OFDM symbol as a
guard interval (GI), which can avoid the inter-symbol inter-
ference (ISI) effectively [5]. For these reasons, the MIMO
and OFDM systems are usually combined as MIMO-OFDM,
which can improve the system capacity and performance
simultaneously [6].

Space-time block coding (STBC) is a widely used trans-
mitter diversity scheme in MIMO-OFDM systems [7],
which can obtain the maximum diversity gain and achieve
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maximum likelihood (ML) decoding through simple linear
operation [8]. Recently, non-orthogonal multiple access-
ing (NOMA) integrated with MIMO-OFDM as a promis-
ing technology is actively investigated, which enables
multi-user overlapping transmissions over the same time-
frequency resource and thus has an improved spectral
efficiency [9], [10]. However, both space-time block decod-
ing (STBD) and the multiple user detection of NMOA all
require accurate channel state information (CSI) of multiple
transceiver channels. In addition, for MIMO-OFDM systems
with estimated CSI, coherent demodulation can be imple-
mented instead of differential demodulation and can obtain
a 3–4 dB signal-to-noise ratio (SNR) gain [5]. For these
reasons, channel estimation is an important module for STBC
MIMO-OFDM systems and the accuracy of channel estima-
tion directly affects the recovery quality of the final received
signals [11]. Nevertheless, channel estimation is a challeng-
ing problem in wireless systems due to the noise effect and
time varying of wireless channels. Specially, in MIMO sys-
tems, the signals from other transmit antennas add further
complexity for a certain transceiver channel [12].

Channel estimation for OFDM systems has been widely
researched [13]–[15]. In general, channel estimation meth-
ods can be categorized into three types: data-aided channel
estimation, blind channel estimation, and semi-blind channel
estimation [13]. Although blind and semi-blind channel esti-
mationmethods have higher spectral efficiency, they are often
subjected to high complexity. In addition, blind channel esti-
mation methods often require some prior knowledge of chan-
nel statistics (KCS), which is difficult to obtain [14], [15].
In practice applications, data-aided channel estimation meth-
ods are more attractive for its reliability and simplicity.
By multiplexing the known time-domain training preambles
or frequency-domain pilot signals into OFDM symbols, data-
aided channel estimation methods can accurately estimate
the channel frequency response (CFR) or channel impulse
response (CIR) in a simpler way [13].

To extend the data-aided channel estimation methods into
MIMO-OFDM systems, the multiplexed known data signal
must be orthogonal to avoid the interference of multiple
antennas. In practice, the orthogonality is usually realized
by using orthogonal training sequences in code domain or
silent pilot approach in frequency domain [16], [17]. Spe-
cially, for STBC MIMO-OFDM systems where the channel
is assumed to be quasit-static over two or more sequential
OFDM symbols, a space-time orthogonal pilot pattern is
proposed in [18], which can be used for channel estimation
without the reduction of frequency-domain sampling density.
This pilot pattern can work well when the channel is constant
over several sequential OFDM symbols, which is coincide
with the assumption of STBCMIMO-OFDMsystems. There-
fore, the pilot pattern in [18] is also used in this paper.

Recently, researchers have proved that for some broad-
band wireless channels, the equivalent sampled CIR often
presents a sparse structure due to the delay disparity and
the relatively high sampling rate [19]. Such channels usually

appear in ultra-wideband [20] and underwater [21] communi-
cations. Since many CIR taps correspond to delays where no
propagation channel paths are actually present, sparse CIR
indeed contains only a small proportion of nonzero valued
taps whose positions form the CIR support. Through tracking
and recovering of the CIR support, channel estimation accu-
racy can be significantly improved with a small number of
pilots [19]–[21]. At the same time, for the time-varying chan-
nel, the channel variation among different OFDM symbols
has an inherent temporal correlation. Such correlation can be
utilized for averaging [22] or polynomial-fitting [23], which
can further improve the performance of channel estimation.

Based on the sparsity and the inherent temporal correlation
of the time-varying wireless channel, this paper proposes a
new method for channel estimation in STBC MIMO-OFDM
systems. The proposed method consists of two schemes:
Scheme (a) is the adaptive multi-frame averaging (AMA) and
scheme (b) is the improved mean square error (MSE) optimal
threshold (IMOT). In the first scheme (a), the time-varying
channel is assumed to follow an underlying linear Gauss-
Markov (LGM) model [24], and the multi-frame averaging
is incorporated to refine the initial time-domain least squares
(LS) [25] CIR estimate through noise reduction. Based on the
LGMmodel, the optimal average frame number is adaptively
determined by minimizing the MSE of the denoised CIR.
In the second scheme (b), the objective is here to propose
enhancements on the denoised LS CIR by discarding noise-
only taps and retaining the most significant taps (MSTs).
To precisely select the MSTs and recover the CIR support,
an optimal ‘‘tap-to-tap’’ threshold is derived by minimizing
the MSE of each CIR tap. For this MSE optimal threshold,
the prior probability of the tap to be active is a key parameter.
In the scheme (b), this key parameter is obtained by calculat-
ing the confidence level through multi-frame statistics, which
utilizes the probability distribution of the estimated CIR and
thus can further improve the performance of theMSE optimal
threshold. It is noted that a prior channel sparsity degree, i.e.
the number of nonzero taps, is required to combine these
two schemes. In addition, scheme (a) and scheme (b) can
also be adopted separately without any prior KCS. Simu-
lation results show that the proposed method outperforms
the conventional counterparts in terms of true CIR structure
detection rate (TCSDR), bit error rate (BER) and normalized
MSE (NMSE) over the time-varying sparse channel without
significant increase in complexity.

B. RELATED WORK
There have been many conventional pilot-based channel esti-
mation methods for MIMO-OFDM systems, such as the LS
method [25], minimum MSE (MMSE) method [26], and
linear MMSE (LMMSE) method [27]. The LS estimator has
the advantage of low complexity, but it is easily affected
by noise [25]. By taking advantage of channel statistics, the
MMSE estimator is robust to noise effect and has good esti-
mation performance. However, the MMSEmethod has a high
computational complexity because it involves the inverse
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operation of the matrix [26]. The LMMSE estimator is a
simplified version of the MMSE estimator at the expense of a
slight performance degradation, but it still requires prior KCS
to calculate the channel autocorrelation matrix [27].

The additive white Gaussian noise (AWGN) in the wire-
less channel is an important factor affecting the accuracy of
channel estimation. Recently, much research work is being
devoted to suppressing the noise effect without increasing
complexity in any significant way. The main idea to achieve
this goal is to exploit the sparse properties of the wireless
channel [19]–[21]. The number of the MSTs in a sparse
CIR is small and most CIR taps are indeed noise-only.
Therefore, if one can get completely correct CIR support
and only remove all the noise-only taps, the noise effect
can be suppressed without complexity increase, and the per-
formance of channel estimation can be improved naturally.
Rosati et al. [28] have proved that MSTs-based estimator
with ideal CIR support has the potential to reach comparable
performance with respect to the MMSE estimator. With this
aim, Minn and Bhargava [29] propose to directly select the
positions of only J strongest CIR samples as the CIR support.
When J is exactly equal to the channel sparsity degree, good
performance can be achieved. In addition, by introducing a
certain unitary transformation into pilots, Zhou et al. [30] pro-
pose a real-valued sparse Bayesian learning (SBL) approach
to convert complex-valued channel recovery problems into
real ones, which brings a decrease in computational complex-
ity, as well as a good noise suppression.

The classic compressed sensing (CS) theory has been suc-
cessfully applied to recover the sparse CIR support [31]. The
greedy pursuit (GP) algorithms such as orthogonal matching
pursuit (OMP) [32], regularized OMP (ROMP) [33], and
block OMP (BOMP) [34] are the most commonly used CS
algorithms, which are based on a simple greedy selection
of the dictionary matrix columns. To improve the recovery
performance, Ma et al. [34] propose an adaptive support
aware BOMP (ASA-BOMP) algorithm, in which both time-
domain preambles and frequency-domain pilots are adopted.
In the ASA-BOMP algorithm, jointly sparse property of
MIMO channel and the training in time domain are firstly
exploited to obtain the partial common support (PCS) of
multiple transceiver channels. Then, the PCS can be used
to improve the recovery probability and reduce the compu-
tational complexity of the BOMP algorithm. On the other
hand, according to the data fusion principle, Uwaechia and
Mahyuddin [35] built a CS collaborative framework by com-
bining OMP, ROMP and other CS algorithms, which can
significantly improve the signal recovery performance. How-
ever, the above mentioned CS algorithms [32]–[35] often
require a large number of iterations to correct approximation
errors [36], so its computational complexity is high. More-
over, a prior KCS about channel sparsity degree is often
necessary for the GP-based CS algorithms to achieve the
optimal performance.

To achieve CIR support recovery with low computational
complexity and without any prior KCS, threshold-based

selection (TBS) method is more appropriate [37]. In the
TBS method, the CIR support can be recovered only need
to compare the amplitude of each sample of the raw CIR
estimate with a predetermined threshold. Obviously, the oper-
ation of the TBS method is very simple and how to deter-
mine an appropriate threshold is the primary and crucial
task of the TBS method [37]. According to the research of
Minn and Bhargava [29], a suitable choice of the threshold
depends on the operating signal-to-noise ratio (SNR), which
is only related to the noise variance for power normalized
transmission signal. Following that, Kang et al. [38] use the
absolute value of twice the noise variance as the threshold,
and Lee et al. [39] directly use the noise standard deviation
obtained by wavelet decomposition as the threshold. It can
be seen that the appropriate threshold is highly associated
with the noise energy added to the signal, and the accuracy
of the estimated noise variance is very important for the TBS
method. Therefore, Xie et al. [40] propose a more rigorous
universal threshold with a two-step iterative noise variance
estimation method, which can greatly improve the estima-
tion accuracy of the noise variance. In this way [38]–[40],
a dynamic number of MSTs is selected per OFDM symbol,
and the noise effect can be effectively suppressed without any
prior KCS during different SNR scenarios.

However, the above thresholds [38]–[40] are set accord-
ing to heuristics, which is not optimal and can be further
improved based on some optimal criteria. Therefore, by max-
imizing the correct detection probability of the MSTs, Oliver
et al. [41] propose an optimal threshold for sparse Rayleigh
channel estimation. In the same way, Rosati et al. [42]
derive a sub-optimal threshold by minimizing the MSE of the
global CIR. As expected, the performance of thresholds [41]
and [42] is better than conventional heuristic threshold. How-
ever, due to the derivation of these optimal thresholds is
usually based on the channel statistic, to obtain optimal per-
formance, the calculation of thresholds [41] and [42] requires
a prior KCS about channel sparsity degree. To overcome this
disadvantage and further improve the performance, Jellali and
Atallah [43] derive a tap-tuned threshold by minimizing the
MSE of each CIR tap. Different from conventional global
threshold [38]–[42], which is constant in one OFDM symbol,
this tap-tuned threshold allows the value of the threshold for
each CIR tap can be different in one OFDM symbol, and thus
have the potential to achieve better performance. Inspired by
the threshold in [43], this paper proposes an IMOT approach,
which is the scheme (b) in the proposed method, to obtain
better recovery performance. It is noted that the gain of the
IMOT compared to the threshold [43] will be shown in the
simulation results of Section IV.

Although the TBS method with an ideal threshold can
effectively suppress noise effect by discarding noise-only
taps, the noise existing in MSTs still restricts the accuracy
of channel estimation. To address this problem, multi-frame
averaging can be used to suppress the noise effect in MSTs,
which is based on the inherent temporal correlation of the
time-varying channel. Following that, Lee et al. [44] propose
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FIGURE 1. System model of the STBC MIMO-OFDM system.

a noise reduction method by averaging the channel coeffi-
cients of LS estimation in two or more OFDM frames. The
averaging method in [44] uses a preset and fixed average
frame number, and works well in the static channel. However,
in the time-varying channel, the Doppler spread will bring
Doppler distortion in the averaging process. Although the
multi-frame averaging method with more average frames can
obtain better noise suppression ability, the Doppler distortion
caused by it will be more serious [45]. Therefore, the average
frame number is a crucial parameter for the multi-frame aver-
aging method and should be carefully determined. According
to the research of Zhang et al. [45], a suitable choice of the
average frame number is related to the Doppler spread and the
operating SNR in the time-varying channel. To quantitatively
analyze the effect of Doppler distortion on the accuracy of
channel estimation, the LGM model can be used to describe
the variation of the time-varying channel [24]. After that,
by minimizing theMSE of the CIR after averaging, this paper
proposes an AMA approach, which is the scheme (a) in the
proposed method, to obtain the MSE optimal average frame
number.

In addition, the multi-frame averagingmethod can not only
be used to suppress the noise effect. According to the research
of Rosati et al. [28], by extending the observation window
over several OFDM symbols, which is similar to the multi-
frame averaging, higher reliability of the MSTs selection can
be achieved, especially in low SNR conditions. Therefore,
by combining the multi-frame averaging method and the
TBS method, this paper proposes an AWA and IMOT based
channel estimation method in STBCMIMO-OFDM systems.
The three main novelties in this paper are as follows: First,
based on the tap-tunedMSE optimal threshold in [43], a ‘‘tap-
to-tap’’ IMOT is derived by modifying the MSE introduced
in the case of false alarm and missed detection. Moreover,
the prior confidence level of the tap to be active is calcu-
lated through multi-frame statistics to further improve the
performance of the IMOT approach. Second, based on the
LGMmodel, the effect of Doppler distortion in the averaging
process is analyzed quantitatively. Then, the AMA approach

is derived to obtain the optimal average frame number by
minimizing the MSE of the denoised CIR. Third, the IMOT
approach and the AMA approach are combined, which can
not only suppress the noise in the MSTs, but also further
improve the recovery probability of the CIR support.

The remainder of this paper is organized as follows.
Section II introduces the sparse channel estimation in STBC
MIMO-OFDM systems where the system model, the sparse
channel model, and the time-domain LS estimator are
described. Section III details the proposed AMA and IMOT
based channel estimation method. The experimental results
of the proposed method are presented in Section IV. Finally,
the conclusions are discussed in Section V.

II. SPARSE CHANNEL ESTIMATION IN STBC
MIMO-OFDM SYSTEMS
A. SYSTEM MODEL
A 2 × 2 STBC MIMO-OFDM system with N subcarri-
ers and utilizing the proposed channel estimation method,
is presented in Fig. 1, where a space-time orthogonal pilot
pattern [18] is used to avoid interference from other transmit
antennas. This paper assumes that the system is perfectly
synchronized and that the CP length NCP is longer than the
maximum channel delay spreadM . It is noted that the exten-
sion of the proposed channel estimation method from 2 × 2
STBCMIMO-OFDM system to other types of STBCMIMO-
OFDM systems is possible, if different codeword matrices
and orthogonal pilot patterns are used.

At the transmitter side, the input bits are first grouped
andmapped according to a pre-specified modulation scheme-
quadrature phase shift keying (QPSK). Then, the modulated
symbols are sent to the STBC block. The codeword matrix
of the STBC is different depending on the number of the
transmit antenna Nt. For example, for a MIMO-OFDM sys-
tem with Nt = (2, 3, 4), the full rate Alamouti [7], rate 3/4
non-square and square [11] codeword matrices are widely
used in practice, respectively. Therefore, the Alamouti code
is employed in this paper for the 2× 2 STBCMIMO-OFDM
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system, and its codeword matrix X(k) corresponding to the
kth subcarrier can be represented as [7]:

X(k) =
[
X1(k, n) X1(k, n+ 1)
X2(k, n) X2(k, n+ 1)

]
=

[
sn(k) − s∗n+1(k)
sn+1(k) s∗n(k)

]
,

(1)

where the superscript (·)∗ represents the conjugate operation,
Xt (k, n) and Xt (k, n + 1), t = 1, 2 represent the frequency-
domain data transmitted from the tth transmit antenna, and
located on the kth subcarrier of the nth and (n+ 1)th OFDM
symbols, respectively. The complex symbol sn(k) and sn+1(k)
corresponding to the kth subcarrier are drawn from the QPSK
constellation at the nth and (n+ 1)th time slots, respectively.
Therefore, at a given symbol period, two complex symbols
are simultaneously transmitted from two antennas, and the
actual number of the QPSK symbols per Alamouti codeword
matrix is two.

At the receiver side, after CP removal operation, the fast
Fourier transform (FFT) output Y r (n) ∈ CN×1, r = 1, 2 at
the r th receive antenna and the nth OFDM symbol can be
represented as [11]:

Y r (n)=
[
diag (X1(n)) diag (X2(n))

]
(I2 ⊗ F)hr (n)+ nr (n),

(2)

where diag (X t (n)), t = 1, 2 denotes the N × N diagonal
matrix with the vector X t (n) on its principal diagonal, and
X t (n) = [Xt (1, n),Xt (2, n), · · · ,Xt (N , n)]T ∈ CN×1 repre-
sents the transmitted nth OFDM symbol corresponding to the
tth transmit antenna. The notation I2 is a 2×2 identity matrix
and the matrix F ∈ CN×M is obtained by selecting the first
M columns of the standard N ×N discrete Fourier transform
(DFT) matrix. The operator ⊗ denote the Kronecker product
and hr (n) = [hT1r (n),h

T
2r (n)]

T
∈ C2M×1 is the channel

vector for the nth OFDM symbol obtained by stacking htr
for all the transmit antennas, where htr ∈ CM×1 is the
sampled equivalent CIR between the tth transmit antenna
and r th receive antenna. The noise nr (n) ∈ CN×1 at the r th
receive antenna and the nth OFDM symbol is the zero-mean
complex AWGN with covariance matrix σ 2IN , i.e. nr (n) ∼
CN (0, σ 2IN ). After FFT transformation, the estimated CSI
for each transmitter-receiver pair is obtained by the proposed
AWA and IMOT based channel estimation method, which
will be detailed in Section III. For the 2 × 2 STBC MIMO-
OFDM system, it is assumed that the channel responses are
constant during two sequential OFDM symbols. Therefore,
STBD can be implemented only by using CFR estimated for
a specific OFDM symbol, and the received signals corre-
sponding to the kth subcarrier after STBD can be represented
as [18]:

[
ŝn(k)
ŝn+1(k)

]
=

2∑
r=1

[(
Ĥ∗1r (k, n) Ĥ2r (k, n)
Ĥ∗2r (k, n) − Ĥ1r (k, n)

)(
Yr (k, n)

Y ∗r (k, n+1)

)]
2∑
t=1

2∑
r=1

∣∣∣Ĥtr (k, n)∣∣∣2 ,

(3)

where ŝn(k) and ŝn+1(k) corresponding to the kth subcarrier
are the decoded QPSK symbols at the nth and (n+ 1)th time
slots, respectively. Yr (k, n) and Yr (k, n + 1) are the received
frequency-domain data at the r th receive antenna, and located
on the kth subcarrier of the nth and (n+1)th OFDM symbols,
respectively. Ĥtr (k, n) represents the estimated CFR between
the tth transmit antenna and r th receive antenna. Obviously,
the accuracy of channel estimation directly affects the recov-
ery quality of the final received signals.

B. SPARSE CHANNEL MODEL
In typical broadband wireless channels, the CIR is intrinsi-
cally sparse due to several significant scatterers [31]. For a
2 × 2 MIMO-OFDM system, the CIR htr (τ ) at the time τ
between the tth transmit antenna and r th receive antenna can
be modeled as:

htr (τ ) =
L−1∑
l=0

αltr (τ )δ
(
τ − τ ltr

)
, 1 ≤ t ≤ 2, 1 ≤ r ≤ 2,

(4)

where the quantities αltr , τ
l
tr , δ(·) and L represent the path gain

and path delay for the lth multipath component, the Dirac
delta function, and the total number of dominant channel
paths, respectively. In Rayleigh fading, at any time instant
αltr (τ ) can be modeled as a complex Gaussian random vari-
able with zero mean and variance σ 2

l /2 per branch. The total
channel energy is normalized to one, i.e.

∑L−1
l=0 E

[
(αltr )

2
]
=∑L−1

l=0 σ
2
l = 1.

For the STBC MIMO-OFDM system, it is assumed
that the channel responses are constant for each codeword
matrix [11]. Therefore, it is reasonable to consider that the
CIR is quasi-static during one OFDM symbol. Consequently,
the time-domain sampled equivalent CIR htr [m, n] at the mth
sample of the nth OFDM symbol can be expressed as:

htr [m, n] =
L−1∑
l=0

αltr (n)δ
[
m−

τ ltr

Ts

]
, 0 ≤ m ≤ M − 1, (5)

where Ts is the system sample period. For each dominant
channel path, depending on whether its delay τ ltr is integer
multiples of Ts or not, its energy is mapped into one tap or
leaks over more adjacent taps. It should be noted that the
non-sample spaced channel can be approximated as sample
spaced when over-sampling is applied [43]. Therefore, for
simplicity without losing generality, the CIR considered in
this paper is only sample spaced, and it exhibits a perfect
sparse structure, which can be represented as:

htr [m, n] =
L−1∑
l=0

αltr (n)δ
[
m− cltr

]
, 0 ≤ m ≤ M − 1, (6)

where cltr is an integer and τ ltr = cltrTs. Hence, c
l
tr indi-

cates the position of the lth nonzero CIR tap, i.e. lthMST, and
the set C tr = [c0tr , c

2
tr , · · · , c

L−1
tr ] denotes the CIR support of

the channel between the tth transmit antenna and r th receive
antenna. Since the CIR is intrinsically sparse, the number of
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the nonzero CIR taps is much smaller than the maximum
channel delay spread, i.e. L � M .

FIGURE 2. The sparse channel modeling in two domains.

Following the continuous transmission of OFDM sym-
bols, the channel for each transmitter-receiver pair can be
abstracted as two domains, i.e., tap and symbol, which is
shown in Fig. 2. In Fig. 2, the arrows groups are CIR gains
of the channels. Each arrow represents a nonzero tap for the
CIR. Consequently, the figure illustrates the variation of the
path gains for a L-tap sparse channel.

In tap domain, the CIR for a specific OFDM symbol is
modeled by (6), and the tap-based CIR at the nth OFDM
symbol for the tth transmit antenna and r th receive antenna
can also be expressed as a sparse vector:

htr (n) = [htr [0, n], htr [1, n], · · · , htr [M − 1, n]]T . (7)

htr (n) ∈ CM×1 is a L-sparse vector, and its nonzero elements
are indexed by the support set C tr . For wireless channels,
in symbol domain, the variation of the path delays is much
slowly in contrast to the path gains. Thus, the CIR support
is nearly unchanged over a large number of OFDM sym-
bols [19]. Moreover, based on the inherent temporal cor-
relation of the time-varying wireless channel, the variation
of the path gains is continuous and highly correlated for
adjacent OFDM symbols, and it can be modeled using an
underlying LGMmodel. For ease of notation, this paper uses
h(l)n = αltr (n) to represent the lth path gain of any transmitter-
receiver pair at the nth OFDM symbol. Provided that the
lth CIR nonzero tap remains active, the probability density
function (PDF) for h(l)n would be illustrated as the following
equations [24]:

f (h(l)1 ) = CN (h(l)1 ; 0, σ
2
l ), (8)

f (h(l)n
∣∣∣h(l)n−1 ) = CN

(
h(l)n ; γ h

(l)
n−1, (1− γ

2)σ 2
l

)
, (9)

where σ 2
l is the average power of the lth path and γ is the

temporal autocorrelation of the CIR.

C. TIME-DOMAIN LS CHANNEL ESTIMATION
The LS estimator can be directly applied to STBC
MIMO-OFDM systems by using space-time orthogonal pilot

pattern [18]. In space-time orthogonal pilot pattern, the pilot
symbols from different transmit antennas are orthogonal in
time domain instead of in frequency domain. Therefore, NP
uniformly spaced subcarriers (withNP ≤ N ) are used as pilot
subcarriers which are shared by different transmit antennas,
and the pilot position ranged in ascending order is denoted
as [P1,P2, · · · ,PNP ]. In 2 × 2 MIMO-OFDM system, the
space-time orthogonal pilot pattern can be expressed as:{

X tP(n) = XP, if mod(n, 2) = mod(t, 2),
X tP(n) = 0, if mod(n, 2) 6= mod(t, 2),

(10)

where X tP(n) = [Xt (P1, n),Xt (P2, n), · · · ,Xt (PNP , n)]
T
∈

CNP×1 represents the pilot symbol corresponding to the tth
transmits antenna and the nth OFDM symbol. XP is the pilot
vector with element randomly drawn from the QPSK con-
stellation, and mod(·) is the modulo operation. After substi-
tuting (10) into (2), the FFT output Y rP(n) ∈ CNP×1 over the
pilot subcarriers at the r th receive antenna and the nth OFDM
symbol can be expressed as:{

Y rP(n) = diag(XP)FPhtr (n)+ nrP(n),
s.t. mod(n, 2) = mod(t, 2),

(11)

where FP ∈ CNP×M and nrP(n) ∈ CNP×1 are both the subma-
trix indexed by [P1,P2, · · · ,PNP ] in row, obtained from the
matrix F and nr (n), respectively. It can be seen from (11) that
for a specific transmitter-receiver pair, there is no interference
from other transmit antennas over the pilot subcarriers.

For ease of notion without losing generality, this paper
drops the antenna index in subscript when next to illustrate the
channel estimation method, and the CIR LS estimate ĥLS(n)
at the nth OFDM symbol can be expressed as [45]:

ĥLS(n) = F+P [diag(XP)]−1YP(n)

= F+P FPh(n)+ F+P [diag(XP)]−1nP(n)

= h(n)+ nLS(n), (12)

where F+P = (FH
PFP)−1FH

P = (1/NP)FH
P , the superscript

(·)H stands for Hermitian transposition. h(n) ∈ CM×1 is the
actual CIR and nLS(n) ∈ CM×1 is the noise in the CIR
LS estimate, which is the zero-mean complex AWGN with
covariance matrix σ 2

n IM , i.e. nLS ∼ CN (0, σ 2
n IM ).

Then, this paper will characterize the statistical properties
of the LS estimation. Considering the sparsity of the wireless
channel, the LS CIR in (12) can also be represented as:

ĥLS(m, n) =
{
h(m, n)+ nLS(m, n), m ∈ C,
nLS(m, n), m /∈ C. (13)

In typical Rayleigh fading channel, the CIR coefficient
h(m, n) can be modeled as a zero-mean complex Gaussian
random variable with variance σ 2

m/2 per dimension. Actually,
it can be seen from (4) and (6), whenm is the lth element in the
CIR support setC, it is a fact that σ 2

m ≡ σ
2
l . Since nLS(m, n) is

the complex AWGN, the independence between h(m, n) and
nLS(m, n) allows to deduce that h(m, n) + nLS(m, n) is also
a zero-mean complex Gaussian random variable. Therefore,
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the random variable ĥLS(m, n) is distributed as:

ĥLS(m, n) ∼
{
CN (0, σ 2

m + σ
2
n ), m ∈ C,

CN (0, σ 2
n ), m /∈ C.

(14)

III. PROPOSED CHANNEL ESTIMATION METHOD BASED
ON AMA AND IMOT
To suppress the noise effect and improve the estimation accu-
racy without increasing complexity in any significant way,
this paper proposes a novel channel estimation method which
consists of two schemes: AMA and IMOT. For the noise
suppression of these two schemes, AMA scheme, based on
the inherent temporal correlation of the time-varying channel,
is achieved by averaging the estimated channel coefficients of
the latest few frames; IMOT scheme, based on the sparsity of
the wireless channel, is performed by recovering the CIR sup-
port across the optimal ‘‘tap-to-tap’’ threshold and removing
all the noise-only taps. Furthermore, these two schemes can
also be adopted separately. Next, this paper will detail these
two schemes firstly, and then illustrate the combination of the
two schemes.

A. AMA SCHEME
As can be seen from (12), the noise in the LS CIR is the main
factor that restricts the accuracy of channel estimation, and
the MSE of the LS channel estimation can be derived as:

MSELS = E
[∣∣∣ĥLS(n)− h(n)∣∣∣2] = Mσ 2

n . (15)

Therefore, the MSE of the LS estimation is determined by
the noise power. To reduce the MSE of the LS estimation,
multi-frame averaging is used to suppress the noise power.
If the wireless channel is time-invariant, i.e. h(i) ≡ h(n), i =
1, 2, · · · ,Nn, the averaging of multi-frame LS CIR can be
expressed as:

ĥAVE(n) =
1
F

n∑
i=n−F+1

ĥLS(i) = h(n)+ nAVE(n), (16)

where 1 ≤ n ≤ Nn, the quantities F , Nn, ĥAVE(n), and
nAVE(n) are the average frame number, the total number
of transmitted OFDM symbols, the denoising CIR, and the
noise of the nth OFDM symbol after multi-frame averaging,
respectively. It is noted that nAVE(n) is still the zero-mean
complex AWGN, but its variance has been reduced to σ 2

n /F .
Thus, the MSE after multi-frame averaging can be expressed
as:

MSEAVE = E
[∣∣∣ĥAVE(n)− h(n)∣∣∣2] = M

F
σ 2
n . (17)

As can be seen from (17), the MSE of the multi-frame aver-
aging method decreases with the increase of F in the time-
invariant channel.

However, in the time-varying channel, due to the effect
of Doppler spread, the path gains during multiple continu-
ous OFDM symbols cannot be kept constant. Nevertheless,
based on the inherent temporal correlation of the time-varying

channel, the multi-frame averaging method can still work by
carefully selecting F . For the mth CIR tap of the nth OFDM
symbol, the estimation error ε(m,n)AVE =

∣∣∣ĥAVE(m, n)− h(m, n)∣∣∣
after multi-frame averaging can be expressed as:

ε
(m,n)
AVE =


1
F

n∑
i=n−F+1

[h(m, i)+nLS(m, i)]−h(m, n), m∈C,

1
F

n∑
i=n−F+1

nLS(m, i), m /∈C.

(18)

Subsequently, the MSE after multi-frame averaging in the
time-varying channel can be derived as:

MSEAVE=
∑
m∈C

E
(∣∣∣ε(m,n)AVE

∣∣∣2)+∑
m/∈C

E
(∣∣∣ε(m,n)AVE

∣∣∣2)

=

∑
m∈C

E


∣∣∣∣∣∣ 1F

n∑
i=n−F+1

h(m, i)− h(m, n)

∣∣∣∣∣∣︸ ︷︷ ︸
Doppler distortionDmF

2


+
M
F
σ 2
n ,

(19)

where the first and second item in the MSE results are
contribute from the Doppler distortion DmF and the noise,
respectively.

It can be seen from (19) that both Doppler distortion and
noise are controlled by the parameter F . Therefore, to achieve
the minimum of the MSE after multi-frame averaging, it is
necessary to adaptively obtain and adjust F according to
the channel parameters, which is also the main idea of the
proposed AMA scheme. Next, to derive the optimal average
frame number FOPT, DmF in the MSE result should be further
analyzed.

1) ANALYSIS OF THE DOPPLER DISTORTION
To quantitatively analyze the effect of Doppler distortion in
the averaging process, the LGM model in (8) and (9) can be
extended to describe the variation of the CIR tap between any
two different OFDM symbols [24]:

f (hmn ) = CN (hmn ; 0, σ
2
m), (20)

f (hmn+j
∣∣hmn ) = CN

(
hmn+j; γjh

m
n , (1− γ

2
j )σ

2
m

)
, (21)

where j is an integer, m ∈ C, and hmn = h (m, n) represents
the value of the mth CIR tap at the nth OFDM symbol. γj is
the temporal autocorrelation between h(n) and h(n + j), it is
given by [46]:

γj = E
[
hHtr (n)htr (n+ j)

]
= J0(2πfd |j|TG), (22)

where J0(·), fd, and TG = (N + NCP)Ts represent the first
type of zero-order Bessel function, Doppler spread, and the
OFDM symbol period with the GI, respectively. Obviously,
γj is an even function, i.e. γj = γ−j.
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According to (21), hmn+j can be represented by hmn :

hmn+j = γjh
m
n + e

m
j , (23)

where emj ∼ CN (0, (1 − γ 2
j )σ

2
m) represents the modeling

error, and it is independent with the CIR. Therefore, the
Doppler distortion DmF can be expressed as:

DmF =

∣∣∣∣∣∣ 1F
n∑

i=n−F+1

hmi − h
m
n

∣∣∣∣∣∣ = 1
F

∣∣∣∣∣∣
F−1∑
j=0

DmFj

∣∣∣∣∣∣ , (24)

where DmFj = hmn−j − hmn represents the variation of the CIR
tap after jOFDM symbols, based on (23), it can be re-written
as:

DmFj = hmn+(−j) − h
m
n = (γj − 1)hmn + e

m
−j. (25)

Based on (22)–(25), the first item in the MSE result (19),
which is contribute from the Doppler distortion, can be fur-
ther analyzed, and (19) can be re-written as:

MSEAVE

=
1
F2

∑
m∈C

E


∣∣∣∣∣∣
F−1∑
j=0

[
(γj − 1)hmn + e

m
−j

]∣∣∣∣∣∣
2
+ M

F
σ 2
n

=
1
F2

∑
m∈C

E(∣∣hmn ∣∣2)φ2F + F−1∑
j=0

E(
∣∣∣em−j∣∣∣2)

+ M
F
σ 2
n

=
φ2F

F2

∑
m∈C

σ 2
m +

1
F2

F−1∑
j=0

∑
m∈C

[
(1− γ 2

j )σ
2
m

]
+
M
F
σ 2
n

=
1
F2

φ2F + F−1∑
j=0

(1− γ 2
j )

+ M
F
σ 2
n , (26)

where φF =
∑F−1

j=0 (γj − 1).
Obviously, based on (22), (26) has only three unknown

parameters: F , fd, and σ 2
n . Next, this paper uses two simple

methods to estimate fd and σ 2
n , respectively.

2) ESTIMATION OF UNKNOW PARAMETERS
It can be seen from (12) that the LS noise nLS(m, n) is a
complex AWGN, and consequently its amplitude |nLS(m, n)|
follows the Rayleigh distributionwith cumulative distribution
function (CDF) given by:

Qn(x) = 1− e−x
2/σ 2n . (27)

For the nth OFDM symbol, when Qn(x) = 0.5, the corre-
sponding value of x is themedian of |nLS(n)|, thus the relation
between the variance of nLS(n) and its amplitude’s median
value median(|nLS(n)|) can be written as [40]:

σ 2
n =

[median(|nLS(n)|)]2

ln 2
. (28)

For sparse channel, the number of the nonzero CIR taps
is much smaller than the maximum channel delay spread,
the majority of taps are noise-only tap. Therefore, it is

Algorithm 1 Searching the Optimal Average Frame Number
Variable Declaration:

σ̂ 2
n : estimated LS noise variance according to (29)
f̂d : estimated Doppler spread according to (32)
γmin : allowable minimum temporal autocorrelation
Nn : total number of transmitted OFDM symbols
TG : OFDM symbol period with the GI
F : average frame number
Fmax: allowable maximum average frame number
FOPT: optimal average frame number

The Searching Procedure:
1: Initialization

Fmax = 0, FOPT = 0
2: Determine the search space

for F = 1 : Nn do
if J0(2πf̂dFTG) ≥ γmin
Fmax = Fmax + 1

else
break // Close the loop

end if
end for

3: Searching FOPT step by step
for F = 1 : Fmax − 1 do

calculateMSEAVE(F) // By substituting σ̂ 2
n ,

f̂d, and F into (29)
ifMSEAVE(F) > MSEAVE(F + 1)
FOPT = FOPT + 1

else
break // Close the loop

end if
end for

4: Output FOPT

possible to obtain an approximated estimation of LS noise
variance σ̂ 2

n :

σ̂ 2
n =

[median(
∣∣∣ĥLS(n)∣∣∣)]2
ln 2

. (29)

The estimation of fd is investigated in [45], and it is based
on the fact that the autocorrelation function of the received
pilot symbols is the same as that of the CIR, i.e. γ (j) =
J0(2πfd |j|TG). Searching for the first negative value of γ (j),
and then let that j be z. Then, the first zero crossing point z0
of γ (j) can be calculated as [45]:

ẑ0 =
γ (z)

γ (z− 1)− γ (z)
+ z, (30)

where the autocorrelation γ (·) is estimated as follows:

γ̂ (j) =
1

Nn − |j|

Nn−|j|∑
n=1

YP(n)YH
P (n+ j). (31)

The first zero crossing point of J0(x) is x = 2.405 [45]. Thus,
using the estimated zero crossing point z0, the Doppler spread
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can be estimated as:

f̂d =
2.405
2πTGẑ0

. (32)

3) THE IMPLEMENTATION OF AMA
The main idea of the proposed AMA scheme is to adaptively
adjust F according to the parameters σ̂ 2

n and f̂d, which are
estimated from (29) and (32), to obtain FOPT minimizing
the MSEAVE in (26). Note that F is a positive integer and
it is limited to the range of [1, Nn], therefore FOPT can be
directly searched step by stepwith step length1F = 1. At the
same time, considering that there should be a strong temporal
correlation between the frames used for averaging, the search
space can be further reduced by setting an allowable mini-
mum temporal autocorrelation γmin. The procedure to search
FOPT is described in Algorithm 1.
In Algorithm 1, we first reduce the search space by deter-

mining the maximum allowable average frame number Fmax,
and then search FOPT step by step in the reduced search space
[1,Fmax]. Based on the LS estimate and theAlgorithm 1, the
specific process of the proposed AMA scheme is shown in
Fig. 3. It is noted that the red dotted line block in Fig. 3 is
actually the Algorithm 1, which is also the core process of
the AMA scheme.

B. IMOT SCHEME
Due to the introduction of Doppler distortion in the time-
varying channel, the performance of AMA scheme in the
scenarios of high Doppler spread will not be improved appar-
ently. To suppress the noise effect in more general scenarios,
the sparse properties of broadband wireless channels can be
exploited. In typically sparse channel, not all the LS CIR
taps are significant; in fact, most of them contain only noise.
Therefore, by collecting all the positions of the MSTs and
discarding other noise-only taps, the noise in LS CIR can be
significantly suppressed. Obviously, the critical aspect of this
method is the recovery of the CIR support.

The TBS method is a simple and effective strategy to
recover the CIR support [38]–[43], and it is based on the
concept that only those CIR taps whose amplitude overcome
the threshold T are retained:

ĥTBS(m) =

ĥLS(m), if
∣∣∣ĥLS(m)∣∣∣ ≥ T

0, if
∣∣∣ĥLS(m)∣∣∣ < T

,

0 ≤ m ≤ M − 1, (33)

where for ease of notation, we drop the symbol index without
any loss of generality. It is clear that, how to determine
an appropriate threshold T is the primary and crucial task
for the TBS method. Different from typically global thresh-
old [38]–[42], which is constant in one OFDM symbol, this
paper adopts a ‘‘tap-to-tap’’ threshold Tm, which is inspired
by [43], to track and recover the CIR support, hoping to
achieve an improved recovery performance. This ‘‘tap-to-
tap’’ threshold Tm allows the value of the threshold for each
CIR tap can be different in one OFDM symbol, and it is

FIGURE 3. The specific process of the proposed AMA scheme.

obtained by deriving a closed form expression for the TBS
MSE per CIR tap, and then minimizing it with respect to Tm.

1) ANALYSIS OF THE TBS MSE PER CIR TAP
Based on the estimated LS CIR in (13), for the mth CIR
tap, the estimation error εmTBS =

∣∣∣ĥTBS(m)− h(m)∣∣∣ after the
threshold decision of Tm can be expressed as:

εmTBS =



0, if
∣∣∣ĥLS(m)∣∣∣ < Tm and m /∈ C,

|nLS(m)| , if
∣∣∣ĥLS(m)∣∣∣ ≥ Tm and m /∈ C,

|h(m)| , if
∣∣∣ĥLS(m)∣∣∣ < Tm and m ∈ C,

|nLS(m)| , if
∣∣∣ĥLS(m)∣∣∣ ≥ Tm and m ∈ C.

(34)

Then, the tap elementwise MSE can be derived as:

MSEmTBS = E
(∣∣∣ĥTBS(m)− h(m)∣∣∣2) = E

(∣∣εmTBS∣∣2) . (35)

It can be seen from (34) and (35), for the MSE of tap m after
decision, four events are possible:

Correct Rejection (CR): A non-significant tap such as∣∣∣ĥLS(m)∣∣∣ = |nLS(m)| < Tm is correctly rejected, because
the amplitude of its noise component is smaller than the
threshold. This case does not contribute to MSEmTBS.

False Alarm (FA): A non-significant tap such as∣∣∣ĥLS(m)∣∣∣ = |nLS(m)| ≥ Tm is regarded as belonging to MST,
since the amplitude of its noise component is greater than the
threshold. In this case, it contributes to MSEmTBS with noise
components, and MSEmTBS is expressed as:

MSEmTBS = E
(
|εmTBS|

2
|FA

)
= σ 2

n + T
2
m. (36)

The analytical derivation is provided in Appendix. A.
Missed Alarm (MA): A significant tap that actually con-

tains channel energy is rejected, since it does not overcome
the threshold, i.e.

∣∣∣ĥLS(m)∣∣∣ = |h(m)+ nLS(m)| < Tm.
This case contributes to MSEmTBS with the neglected channel
energy, and MSEmTBS is expressed as:

MSEmTBS = E
(
|εmTBS|

2
|MA

)
= σ 2

m −
T 2
m

eT
2
m
/
σ 2m − 1

. (37)

The analytical derivation is also provided in Appendix. B.
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Correct Detection (CD): A significant tap that contains
channel energy is correctly detected as MST, i.e.

∣∣∣ĥLS(m)∣∣∣ =
|h(m)+ nLS(m)| ≥ Tm. In this case, it contributes to MSEmTBS
with the noise components of the estimated LS CIR, and
MSEmTBS is expressed as:

MSEmTBS = E
(
|εmTBS|

2
|CD

)
= E

(
|nLS(m)|2

)
= σ 2

n . (38)

Based on the above analysis of these four possible cases,
the tap elementwise MSE after threshold decision can be
written as sum of three terms that represent the different
contributions from, respectively, FA, MA, and CD:

MSEmTBS
= PmE(|εmTBS|

2
|m ∈ C )+ (1− Pm)E(|εmTBS|

2
|m /∈ C )

= Pm
(
PMA
m E(|εmTBS|

2
|MA)+ PCDm E(|εmTBS|

2
|CD)

)
+ (1− Pm)

(
PFAm E(|εmTBS|

2
|FA)

)
, (39)

where Pm is the prior probability of the mth tap to be active.
PMA
m , PCDm , and PFAm are respectively the probabilities of

missed alarm, correct detection, and false alarm. It can be
seen from (14) that ĥLS(m) is a complex Gaussian random
variable, and consequently its amplitude

∣∣∣ĥLS(m)∣∣∣ follows the
Rayleigh distribution. Therefore, the probabilities PMA

m , PCDm ,
and PFAm can be derived as:

PMA
m = P

(
|ĥLS(m)| < Tm |m ∈ C

)
= 1− e−T

2
m
/
(σ 2m+σ

2
n ),

(40)

PCDm = P
(
|ĥLS(m)| ≥ Tm |m ∈ C

)
= 1− PMA

m , (41)

PFAm = P
(
|ĥLS(m)| ≥ Tm |m /∈ C

)
= e−T

2
m
/
σ 2n . (42)

Substituting (36)–(38) and (40)–(42) into (39), the tap
elementwise MSE can be re-written as:

MSEmTBS(Tm) = Pm(σ 2
m − σ

2
n − µ1)(1− e−T

2
m
/
(σ 2m+σ

2
n ))

+Pmσ 2
n + (1− Pm)(σ 2

n + µ2)e−T
2
m
/
σ 2n ,

(43)

where µ1 = T 2
m

/
(eT

2
m
/
σ 2m − 1), µ2 = T 2

m.

2) OPTIMAL THRESHOLD: ANALYTICAL EXPRESSION
The aim of the IMOT is to find the optimal ‘‘tap-to-tap’’
threshold T IMOT

m which minimizes MSEmTBS, which equals to
the search of the global minimum of (43). For this purpose,
the first order derivative of MSEmTBS(Tm) with respect to Tm
is analyzed. From (43), the derivative is expressed as:

∂MSEmTBS
∂Tm

= 2Tm(1− Pm)
σ 2
n + µ2

σ 2
n

e−T
2
m
/
(σ 2m+σ

2
n )

×

[
Pm

1− Pm

σ 2
n

σ 2
n + µ2

σ 2
m − σ

2
n − µ1

σ 2
m + σ

2
n
− e
−

T2mσ
2
m

σ2n (σ
2
m+σ

2
n )

]

−Pmµ′1(1−e
−T 2

m
/
(σ 2m+σ

2
n ))+ (1−Pm)µ′2e

−T 2
m
/
σ 2n , (44)

where µ′1 and µ
′

2 are respectively the first order derivative of
µ1 and µ2 with respect to Tm. Setting (44) equals to zero, and
it can be expressed as:

2Tm(1− Pm)
σ 2
n + µ2

σ 2
n

e
−

T2m
σ2m+σ

2
n

×

[
Pm

1− Pm

σ 2
n

σ 2
n + µ2

σ 2
m − σ

2
n − µ1

σ 2
m + σ

2
n
− e
−

T2mσ
2
m

σ2n (σ
2
m+σ

2
n )

]

= Pmµ′1(1− e
−

T2m
σ2m+σ

2
n )− (1− Pm)µ′2e

−
T2m
σ2n . (45)

Note that (45) is a transcendental equation, so it is hardly to
obtain its analytical solution directly.

Intuitively, the complexity of (45) is mainly from µ1 and
µ2, which are related to Tm. Therefore, to simplify the equa-
tion (45), this paper assumes that ‘‘tap-to-tap’’ threshold Tm
in µ1 and µ2 can be approximated by a global threshold T̂
proposed in [40]:

T̂ = σn
√
2 ln(NCP). (46)

This assumption is reasonable, since the global threshold
T̂ is simple and shows great performance [40]. Under this

assumption, µ̂1 = T̂ 2
/

(e
T̂ 2
/
σ 2m
− 1) and µ̂2 = T̂ 2, which

are both constant during one OFDM symbol, are used to
replace µ1 and µ2 in (45) respectively. In this case, µ̂′1 =
µ̂′2 ≡ 0, and (45) can be re-written as:

2Tm(1− Pm)
σ 2
n + µ̂2

σ 2
n

e
−

T2m
σ2m+σ

2
n × β = 0,

α =
Pm

1− Pm

σ 2
n

σ 2
n + µ̂2

σ 2
m − σ

2
n − µ̂1

σ 2
m + σ

2
n

,

β = α − e
−

T2mσ
2
m

σ2n (σ
2
m+σ

2
n ) .

(47)

It can be seen that (47) is true if and only if at two possible
values of Tm, denoted Tm1 and Tm2, which verify:

Tm1 = 0, (48)

β = α − e
−

T2m2σ
2
m

σ2n (σ
2
m+σ

2
n ) = 0. (49)

Obviously, Tm1 is meaningless, and the optimal ‘‘tap-to-tap’’
threshold is only related to Tm2. The equation (49) makes
sense if and only if 0 ≤ α ≤ 1. In the following, we will
discuss two cases.

(1) σ 2
m ≤ σ 2

n + µ̂1: In this case α ≤ 0 and β ≤ 0
resulting in ∂MSEmTBS

/
∂Tm ≤ 0. Then, the optimal ‘‘tap-

to-tap’’ threshold minimizing the MSEmTBS is T IMOT
m = +∞.

In other words, any taps are treated as noise-only taps at this
time and removed.

(2) σ 2
m > σ 2

n + µ̂1: In this case α > 0 which will lead to
two sub-cases:
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• if α ≤ 1, (47) can be directly solved and its solution
denoted T IMOT

m given by:

T IMOT
m =

√
σ 2
n (1+

σ 2
n

σ 2
m
) ln(

1
α
), (50)

which coincides with Tm2 in (49).
• if α > 1, in this case β > 0 is always true, which

results in ∂MSEmTBS
/
∂Tm ≥ 0. Then, the optimal ‘‘tap-to-

tap’’ thresholdminimizing theMSEmTBS is T
IMOT
m = Tm1 = 0.

In other words, any taps are treated as MSTs and retained.

3) THE IMPLEMENTATION OF IMOT
The equations (47) and (50) show that for T IMOT

m evaluation,
the parameters σ 2

n , σ
2
m, and Pm must be known. The estimated

LS noise variance σ̂ 2
n can be obtained according to (29).

Meanwhile, the variance of the CIR coefficient σ 2
m can also

be estimated from the raw LS CIR estimate ĥLS(m) [43]:

σ̂ 2
m = 2max

(
2
π

∣∣∣ĥLS(m)
∣∣∣2 − σ̂ 2

n

2
, 0
)
. (51)

Furthermore, the parameter Pm is the prior probability of the
mth tap to be active, and it is crucial for the accuracy of the
optimal ‘‘tap-to-tap’’ threshold.

In the literature [43], two possible values are proposed to
evaluate Pm. One is P̂m = σ̂ 2

m denoted as ‘‘local sparsity
level (LSL)’’, and the other is P̂m = P ≡ L

/
NCP denoted

as ‘‘global sparsity level (GSL)’’. The performance of LSL is
slightly better than GSL, and the calculation of LSL requires
no prior KCS about channel sparsity degree. Therefore, based
on LSL and the raw LS CIR estimate, this paper proposes
an enhancement method to evaluates Pm by calculating the
confidence level through multi-frame statistics, which uses
the probability distribution of the AWGN and thus can further
improve the performance of the optimal ‘‘tap-to-tap’’ thresh-
old.

Suppose the number of statistical frames is W , for every
W consecutive frames, the estimated multi-frame LS CIRs
[ĥLS(n), ĥLS(n+1), · · · , ĥLS(n+W−1)] are collected. Next,
for the mth tap of the collected multi-frame LS CIRs, this
paper counts the number of the real part of the mth LS CIR
tap value located in the intervals of (−∞, 0) and (0,+∞),
which can be expressed as Nm

Re1 and N
m
Re2 respectively [3]:

Nm
Re1 = count

[
Re
(
ĥmLS,n, ĥ

m
LS,n+1, · · · , ĥ

m
LS,n+W−1

)
∈ (−∞, 0)

]
, (52)

Nm
Re2 = count

[
Re
(
ĥmLS,n, ĥ

m
LS,n+1, · · · , ĥ

m
LS,n+W−1

)
∈ (0,+∞)

]
, (53)

where ĥmLS,n = ĥLS(m, n) represents the value of the mth LS
CIR tap at the nth OFDM symbol, count[·] and Re(·) denote
the operations of element counting and extracting the real part
of an element respectively. In the same way, the number of
the imaginary part of the mth LS CIR tap value located in the

intervals of (−∞, 0) and (0,+∞) can be expressed as Nm
Im1

and Nm
Im2 respectively.

Then, this paper defines a variable Nm
max as:

Nm
max = Nm

Re + N
m
Im, (54)

where Nm
Re = max(Nm

Re1,N
m
Re2) and N

m
Im = max(Nm

Im1,N
m
Im2).

Without losing any generality, W is assumed to be an odd
number for convenience, so all the possible value range of
both Nm

Re and N
m
Im is [(W +1)/2, (W +3)/2, · · · ,W ]. Conse-

quently, all the possible values ofNm
max are only in the range of

[W+1,W+2, · · · , 2W ]. If themth LS CIR tap is noise-only
tap, i.e. m /∈ C, based on the PDF of the zero-mean complex
AWGN, the probabilities of the real or imaginary part of the
mth tap value located in the intervals of (−∞, 0) and (0,+∞)
both are 0.5. So, in the case of m /∈ C, Nm

Re = Nm
Im =

(W + 1)/2 is highly possible, and Nm
max ≈ W + 1 is an event

with high confidence level. On the other hand, considering
the power of the propagation channel path is usually much
greater than noise power in practice [43], if the mth LS CIR
tap is MST, i.e. m ∈ C, the values of Nm

Re and N
m
Im are almost

only depend on the pure CIR tap (hmn , h
m
n+1, · · · , h

m
n+W−1).

Although the path gain values during multiple continuous
OFDM symbols in the time-varying channel are variable,
the positive or negative signs of the path gains among W
statistical frames are almost constant, which is based on the
inherent temporal correlation of the time-varying channel [3].
Therefore, in the case of m ∈ C, Nm

Re = Nm
Im = W is more

possible, and Nm
max ≈ 2W is an event with high confidence

level.
Summarily, after conducting multi-frame statistics, the

resulting variable Nm
max will indicate whether themth CIR tap

is active or not. That is, the closer Nm
max is to 2W , the higher

the confidence level of the mth CIR tap is active. Conversely,
the closer Nm

max is to W + 1, the lower the confidence level
of the mth CIR tap is active. Therefore, this paper plans
to use the confidence level to evaluate Pm, which can be
expressed as:

P̂m(i) = P(m ∈ C|Nm
max = i), (55)

where i ∈ [W + 1,W + 2, · · · , 2W ]. According to the Bayes
formula, (55) can be re-written as:

P̂m(i) =
Pi1P(m ∈ C)

Pi1P(m ∈ C)+ P
i
2P(m /∈ C)

, (56)

where Pi1 = P(Nm
max = i|m ∈ C), Pi2 = P(Nm

max = i|m /∈ C).
P(m /∈ C) = 1−P(m ∈ C), and P(m ∈ C) denotes the initial
probability of themth CIR tap is active, it can be evaluated by
LSL, i.e.P(m ∈ C) = σ̂ 2

m. It is noted that the calculation ofP
i
1

and Pi2 involves the derivation of the distribution law of the
sum of two independent discrete variables, and the specific
calculations of Pi1 and Pi2 are provided in Appendix. C and
Appendix. D, respectively.
Now, by taking the calculated Pi1 and Pi2 into (56), the

specific confidence level P̂m(i) after multi-frame statistics can
be obtained to evaluate Pm. So far, the unknown parameters
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FIGURE 4. The specific process of the proposed IMOT scheme.

σ 2
n , σ

2
m, and Pm for T IMOT

m evaluation in (50) have all been
estimated, and the specific process of the proposed IMOT
scheme is shown in Fig. 4. Noted that the red dotted line
blocks in Fig. 4 are the core processes of the IMOT scheme.

C. THE COMBINATION OF AMA AND IMOT SCHEMES
Although the IMOT scheme can effectively suppress noise
effect by discarding noise-only taps, the noise existing in
MSTs still restricts the accuracy of channel estimation.
To address this problem, this paper proposes a novel channel
estimation method, named as AMA-IMOT, by combining
AMA and IMOT schemes. The basic process of the AMA-
IMOT method is to make a threshold decision on the esti-
mated CIR after multi-frame averaging. As a result, the
AMA-IMOT method can not only remove the noise effect
at the noise-only taps, but also suppress the AWGN at the
MST taps. Furthermore, since the derived optimal threshold
shown in (50) is related to noise power, the noise suppression
of the preceding AMA scheme can enhance the performance
of the subsequent IMOT scheme naturally, and the TCSDR
can be further improved. The specific process of the proposed
AMA-IMOT channel estimation method is shown in Fig. 5.

To achieve the appropriate combination of scheme
(a) AMA and the scheme (b) IMOT, some modifications
different from the separately schemes are required, and the
modified steps have been marked by yellow filling block in
Fig. 5. Since the noise in noise-only taps will be removed by
IMOT scheme, the MSE contribute from the noise-only taps
can be ignored for searching the optimal average frame num-
ber in scheme (a), and the MSE after multi-frame averaging
shown in (26) should be re-written as:

MSEAVE =
1
F2

φ2F + F−1∑
j=0

(1− γ 2
j )

+ L̂
F
σ 2
n , (57)

where L̂ is the estimated channel sparsity degree. In theory,
the best performance is obtained in case of L̂ = L, however,
as shown in the simulation results, the AMA-IMOT method
is robust even in the case of a mismatch between L̂ and L.
Therefore, in scheme (a) the searching of the optimal average
frame number is still based on Algorithm 1, only the MSE
expression (26) in step 3 should be replaced by (57).

Since the introduction of Doppler distortion, it is a fact that
FOPT = 1 is a common case in the scenarios of high Doppler

FIGURE 5. The specific process of the proposed AMA-IMOT method.

spread. In other words, the multi-frame averaging method is
invalid for high-mobility situations. To improve the TCSDR
in the case of FOPT = 1, scheme (b) is divided into two cases
depending on the value of FOPT.
In the case ofFOPT 6= 1, the process of scheme (b) is almost

the same as that of IMOT scheme, with the main difference
being the initial input CIR. The initial input CIR of scheme
(b) can be expressed as:

ĥAVE(n) =
1

FOPT

n∑
i=n−FOPT+1

ĥLS(i). (58)

For the derivation of the optimal threshold, the noise and path
variances of the initial input CIR must be known. Obviously,
the estimation of the noise variance of the initial input CIR
ĥAVE is σ 2

A = σ 2
n
/
FOPT, and the estimation of the path

variance σ̂ 2
m can be obtained by replacing ĥLS and σ̂ 2

n in (51)
with ĥAVE and σ̂ 2

A.
Then, by substituting σ̂ 2

m and P̂m into (50) and replacing
σ 2
n with σ 2

A, the optimal ‘‘tap-to-tap’’ threshold T IMOT
m can be

calculated. Finally, the estimated CIR ĥAI of the AMA-IMOT
method in the case of FOPT 6= 1 can be expressed as:

ĥAI(m) =

ĥAVE(m), if
∣∣∣ĥAVE(m)∣∣∣ ≥ T IMOT

m ,

0, if
∣∣∣ĥAVE(m)∣∣∣ < T IMOT

m .
(59)

On the other hand, in the case of FOPT = 1, the noise sup-
pression ability of the scheme (a) is invalid, but the TCSDR of
the derived threshold can also be improved by extending the
observation window over several OFDM symbols, which is
similar to the multi-frame averaging in form, but the param-
eter FOPT is replaced by Fmax:

ĥAVE(n) =
1

Fmax

n∑
i=n−Fmax+1

ĥLS(i). (60)

Then the estimation of the noise variance of the initial input
CIR ĥAVE is σ 2

A = σ
2
n
/
Fmax, and the estimation of the path
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variance is same as the case of FOPT 6= 1. However, although
the threshold is still obtained based on ĥAVE and (50), it is
noted that the coefficient of the finally estimated CIR ĥAI
after threshold decision is based on ĥLS:

ĥAI(m) =

ĥLS(m), if
∣∣∣ĥAVE(m)∣∣∣ ≥ T IMOT

m ,

0, if
∣∣∣ĥAVE(m)∣∣∣ < T IMOT

m .
(61)

Therefore, the estimated CIR after maximum averaging is
only used to recovery the CIR support, but the finally obtained
values of the MSTs are still based on the LS CIR. In other
words, in the case of FOPT = 1, the TCSDR of AMA-IMOT
method is further improved than IMOT scheme, but the noise
in the MSTs is no longer suppressed.

IV. SIMULATION RESULTS AND DISCUSSIONS
In this section, the simulation experiments are presented to
demonstrate the performance of the proposed AMA-IMOT
channel estimation method. The simulation is performed
in the time-varying multipath environments with different
Doppler spread. For obtaining a comprehensive evaluation
of the proposed AMA-IMOT method, three sparse chan-
nel models, namely Channel-A [19], Channel-B [29], and
Channel-C [37], with different channel sparsity degrees and
power delay profiles (PDPs) are considered. The Channel-A
model is the typical exponentially decaying sparse channel
with a CIR length M = 256, where only L = 6 taps
with random positions are non-zero MSTs. An exponentially
decaying PDP with rate γ = 4/M is used in the Channel-A,
thus the path power for theMST is σ 2

m = e−γm. The Channel-
B is the advanced television technology center (ATTC) and
the Grand Alliance DTV laboratory’s ensemble E model,
while the Channel-C model is the Hilly Terrain channel.
The PDPs of both models are shown in Tables 1 and 2,
respectively.

This paper considers a QPSK modulated 2 × 2 STBC
MIMO-OFDM system, and the main simulation parameters
for the system are presented in Table 3. In the STBC MIMO-
OFDM system, the number of the total subcarriers is 1280,
and the CP occupies 256 subcarriers. Therefore, the total
number of actual application subcarriers including pilots and
data is N = 1280 − 256 = 1024, where NP = N/4 = 256
comb type pilot subcarriers are employed. For both pilots and
data, the symbols are drawn from a QPSK constellation. The
system sample period is Ts = 0.1 µs and the duration of each
OFDM symbol with the GI is TG = 1280×0.1 µs = 128 µs.
Moreover,Nn = 200 OFDM symbols are considered for each
simulation, and the finally simulation results are obtained
by averaging totally 40000 trail runs. In dynamic multipath
environments, Doppler spread is chosen to be 20 Hz, 40 Hz,
80 Hz, and 160 Hz, respectively. For a better study of the per-
formance of the proposed channel estimation method, neither
interleaving methods nor any channel coding techniques are
used.

In this paper, the performance of channel estimation is
evaluated in terms of BER, TCSDR, and NMSE, and the

TABLE 1. Power delay profile for 6 tap Channel-B model.

TABLE 2. Power delay profile for 12 tap Channel-C model.

TABLE 3. Simulation parameters of STBC MIMO-OFDM system.

TCSDR and NMSE are defined as:

TCSDR = 1−
E {NFA + NMA}

M
, (62)

NMSE =

√√√√E
{
|htr − ĥtr |2

}
E
{
|htr |2

} , (63)

where NFA and NMA respectively represent the number of
false alarm taps and missed alarm taps after threshold deci-
sion, ĥtr and htr respectively denote the estimated CIR and
real CIR for the tth transmit antenna and r th receive antenna.
In the following, we will start with the parameter selec-
tion and robustness evaluation of the proposed AMA-IMOT
method. Then, the performance of the proposed method is
compared with those of the conventional channel estimation
methods, i.e. time-domain LS method [25], several different
TBS methods respectively proposed by Kang et al. [38],
Oliver et al. [41], and Jellali and Atallah [43], and the
CS-based OMP method [31]. Moreover, two ideal channel
estimation methods, known the true CIR support and the per-
fect CSI respectively, are simulated as the benchmark. After
that, the complexity of the proposed method is analyzed.

A. ANALYSIS OF PARAMETERS SETTING
For the proposed AMA-IMOT channel estimation method,
the parameters γmin and W should be set in advance, at the
same time, a prior channel sparsity degree L should be esti-
mated to combine scheme (a) and scheme (b). In this subsec-
tion, the effects of different γmin andW on channel estimation
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FIGURE 6. The TCSDR performance of the proposed AMA-IMOT method
with γmin = 0.9, L̂ = 6, and different W under Channel-A.

accuracy will be demonstrated and analyzed based on sim-
ulation results. Meanwhile, the robustness of the proposed
AMA-IMOT method against mismatch on the parameter L
will be tested.

In Fig. 6, under Channel-A with different SNR and
Doppler spread, the TCSDR performance of the proposed
AMA-IMOT method with differentW is presented. It can be
observed that the influence of W parameter on the TCSDR
performance of the AMA-IMOTmethod is not obvious at the
low Doppler spread range (from 0 Hz to 50 Hz); however,
in majority of considered Doppler spread range (from 50 Hz
to 250 Hz), with the increase of Doppler spread, the TCSDR
performance of the AMA-IMOT method improves with the
increase of W , especially in the low SNR scenario. In the
case of SNR = 0 dB, the TCSDR gaps among W = 1,
W = 3, W = 5, W = 7, W = 9, and W = 11 are about
0.13%, 0.09%, 0.07%, 0.05%, and 0.02% at the Doppler
spread of 240 Hz, respectively. It is clearly that the TCSDR
improvement obtained by increasingW is gradually decreas-
ing. Meanwhile, considering the complexity of the multi-
frame statistics increases with the increase of W , to obtain
a tradeoff between performance and complexity, this paper
finally choosesW = 7 for the proposed AMA-IMOTmethod
and all the following simulation.

Under Channel-B with different SNR and Doppler spread,
Fig. 7 displays the NMSE performance of the proposed
AMA-IMOT method with different γmin. It can be seen that
the AMA-IMOT method is not sensitive to the change of
γmin parameter, especially in the high SNR scenario. In a
fixed SNR scenario, with the increase of Doppler spread,
the NMSE of the AMA-IMOT method with different γmin
parameters converge to a same value. Meanwhile, the AMA-
IMOTmethod with larger γmin reaches the convergence value
earlier. At the SNR = 5 dB, the NMSE of the AMA-IMOT
method with γmin = 0.99, γmin = 0.98, γmin = 0.96, and
γmin = 0.93 reaches the convergence value respectively at

FIGURE 7. The NMSE performance of the proposed AMA-IMOT method
with W = 7, L̂ = 6, and different γmin under Channel-B.

the Doppler spread of 150 Hz, 180 Hz, 270Hz, and 360Hz.
Therefore, to reach the NMSE convergence value at a larger
Doppler spread, the γmin parameter should be as smaller as
possible. On the other hand, considering the search space
of the optimal average frame number can be reduced by
using the larger γmin parameter, this paper finally chooses
γmin = 0.90 for the proposed AMA-IMOT method and all
the following simulation.

Fig. 8 reports the comparison between AMA-IMOT and
the conventional OMP channel estimation method under the
Channel-C with L = 12. Since both methods require the
knowledge of the channel sparsity degree L, this paper tested
the robustness to a mismatch on this parameter. Even in the
case of no mismatch, i.e. L̂ = 12, AMA-IMOT outperforms
OMP at majority of considered SNR range. When L̂ differs
from L, especially L̂ < L, OMP performance degrades
rapidly. On the other hand, AMA-IMOT method has good
performance even in the case of a large mismatch. Obviously,
different from the OMP method, the AMA-IMOT method is
robust to a mismatch on the L, which relaxes the require-
ment for the prior channel sparsity degree, indicating that the
AMA-IMOT method is suitable for practical applications.

Therefore, this paper assumes that the L parameter is a
prior knowledge for the following simulation, i.e. L̂ = L.

B. ANALYSIS OF TCSDR AND NMSE PERFORMANCE
In this subsection, the TCSDR and NMSE performance of
the proposed method is analyzed by comparing with several
different TBS methods and the CS-based OMP method. The
TCSDRperformance of different channel estimationmethods
under static Channel-A is shown in Fig. 9.

As shown in Fig. 9, the TCSDR curves of the six chan-
nel estimation methods all improve with the increase of the
SNR, and the proposed AMA-IMOT method has the best
TCSDR performance in all the considered SNR range. Not
only that, the IMOT scheme can also be used separately,
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FIGURE 8. The NMSE performance of AMA-IMOT and OMP methods with
different L̂ under Channel-C.

FIGURE 9. The TCSDR performance of different channel estimation
methods under static Channel-A.

and obtained the sub-optimal TCSDR performance. At the
SNR of 0 dB, compared with the OMP method and the
TBS methods derived by Jellali et al., Oliver et al., and
Kang et al., the IMOT method has about 0.82%, 0.98%,
3.72%, and 12.04% TCSDR improvement, respectively.
Although the ‘‘tap-to-tap’’ threshold is also be used by
Jellali et al., the calculation of the confidence level of the tap
to be active further improve the performance of the IMOT
method.

Fig. 10 displays the TCSDR and NMSE performance
of different channel estimation methods under dynamic
Channel-A with Doppler spread 20 Hz. Compared Fig. 10(a)
with Fig. 9, it can be seen that the TCSDR performance under
Doppler spread of 20 Hz is almost identical with that of
the static case, indicating that the channel estimation method
based on CIR support recovery can be well applied to time-
varying channel. As shown in Fig. 10(a), except for TBS

FIGURE 10. The TCSDR and NMSE performance of different channel
estimation methods under dynamic Channel-A with Doppler spread
20 Hz: (a) TCSDR and (b) NMSE.

method of Kang et al., all other channel estimation methods
can recover the CIR support almost exactly at the high SNR
region, which is mainly due to only the threshold derived
by Kang et al. is not based on optimal criterion, and its
false alarm probability is high. In Fig. 10(b), it is clear that
the time-domain LS and the separate AMA scheme cannot
provide satisfactory estimation performance, since both of
them doesn’t exploit the sparse property of channels. In other
words, the conventional methods are not suitable for the
sparse channel estimation. Nevertheless, the AMA scheme
can be used to further significantly improve the performance
of IMOT scheme, and enables the final AMA-IMOT method
has the best NMSE. At the NMSE of 10−1, compared with
the true support and the IMOT methods, the AMA-IMOT
method has about 3.8 dB and 4.4 dB SNR gains respectively.
Obviously, the AMA-IMOT method performs even better
than the ideal channel estimation with the true CIR support,
the main reason is that the AMA-IMOT method can not
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FIGURE 11. The TCSDR and NMSE performance of different channel
estimation methods under dynamic Channel-B with Doppler spread
40 Hz: (a) TCSDR and (b) NMSE.

only remove the noise effect at the noise-only taps, but also
suppress the AWGN at the MST taps.

The TCSDR and NMSE performance of different channel
estimation methods under dynamic Channel-B with Doppler
spread 40Hz is shown in Fig. 11. In Fig. 11(a), comparedwith
other conventional CIR support recovery-based methods, the
proposed AMA-IMOT and IMOT methods still show the
optimal and sub-optimal TCSDR performance, respectively.
At the TCSDR of 0.99, the AMA-IMOT methods exhibits a
SNR gain of 4.0 dB, 8.1 dB, and 9.3 dB over IMOT, TBS
of Jellali et al., and OMP methods, respectively. It is clear
that the TCSDR performance of IMOT scheme can be further
improved after the noise suppression of AMA scheme, which
is because the optimal threshold derived in IMOT scheme
is also noise-related. In Fig. 11(b), the NMSE performance
of all methods descends with the increase of SNR, and the
proposed AMA-IMOT method still has the best performance
in majority of the considered SNR range. At the NMSE of

FIGURE 12. The TCSDR and NMSE performance of different channel
estimation methods under dynamic Channel-C with Doppler spread
80 Hz: (a) TCSDR and (b) NMSE.

10−1, the AMA-IMOT method can provide about 1.2 dB
and 2.7 dB SNR gains compared with the true support and
the IMOT methods, respectively. However, the SNR gains
in Fig. 11(b) are obviously lower than that of Fig. 10(b),
the main reason is the optimal average frame number FOPT
decreases with the increase of Doppler spread, resulting in
the reduced noise suppression ability of AMA scheme.

The TCSDR and NMSE performance of different channel
estimation methods under dynamic Channel-C with Doppler
spread 80 Hz and 160 Hz is shown in Figs. 12 and 13,
respectively. By comparing Figs. 12 and 13 with Fig. 11,
it can be seen that the performance under Channel-C is worse
than Channel-B, the reason is that Channel-C has stronger
frequency selectivity and Doppler spread than Channel-A.
However, the proposed AMA-IMOTmethod still has the best
TCSDR and NMSE performance among the six CIR support
recovery-based methods. By comparing Fig. 12 and Fig. 13,
it can be seen that the NMSE performance of AMA-IMOT
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FIGURE 13. The TCSDR and NMSE performance of different channel
estimation methods under dynamic Channel-C with Doppler spread
160 Hz: (a) TCSDR and (b) NMSE.

method under Doppler spread 160 Hz is obviously infe-
rior to that of 80 Hz. At the target NMSE of 10−1, the
AMA-IMOT method outperforms the true support and the
IMOT methods with a SNR gain of 0.8 dB and 1.8 dB
under Doppler spread 80 Hz; however, under Doppler spread
160 Hz, the AMA-IMOT method slight inferior to the true
support method, and outperforms the IMOT method only
with a SNR gain of 0.5 dB. The main reason is that the
noise suppression ability of AMA scheme degrades rapidly
in the scenario of high Doppler spread. Specially, the scheme
(a) in the AMA-IMOTmethod only considers the noise in the
MSTs, as shown in (57), making the optimal average frame
number FOPT in AMA-IMOT method is smaller than that of
the separate AMA scheme under the same conditions. On the
other hand, the TCSDR performance of AMA-IMOTmethod
under Doppler spread 80 Hz and 160 Hz is almost identical.
This is because although the noise suppression of multi-
frame average becomes invalid in AMA-IMOT method, i.e.

FIGURE 14. The BER performance of different channel estimation
methods under static Channel-A.

FIGURE 15. The BER performance of different channel estimation
methods under Channel-A with Doppler spread 20 Hz.

FOPT = 1, at the SNR = 13 dB and the SNR = 4 dB
for the Doppler spread 80 Hz and 160 Hz respectively, the
TCSDR performance can still be improved by extending the
observation window through maximum average.

C. ANALYSIS OF BER PERFORMANCE
In this subsection, the BER performance of the proposed
method is analyzed. The BER performance of different chan-
nel estimation methods under static Channel-A and dynamic
Channel-A with Doppler spread 20 Hz is shown in Figs. 14
and 15, respectively.

As shown in Figs. 14 and 15, the BER performance of
OMP method and the TBS method of Jellali et al. is almost
identical, and the proposed AMA-IMOT has the best BER
performance expect the ideal estimation with the perfect
CSI, which is coincides with the TCSDR and NMSE perfor-
mance shown in Figs. 9 and 10. In Fig. 14, at the BER of
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FIGURE 16. The BER performance of different channel estimation
methods under Channel-B with Doppler spread 40 Hz.

10−2, compared with TBS methods derived by Jellali et al.,
Oliver et al., and Kang et al., the AMA-IMOT method has
about 0.5 dB, 0.7 dB, and 2.7 dB SNR gains, respec-
tively. Meanwhile, in Fig. 15, at the BER of 10−3, the
AMA-IMOT method outperforms the TBS methods derived
by Jellali et al., Oliver et al., and Kang et al., with a SNR gain
of about 0.3 dB, 0.4 dB, and 2.4 dB SNR gains, respectively.
This again confirms that the proposed method is capable
of significantly suppressing noise, thereby enabling reliable
communication especially in the low-to-medium SNR
scenarios.

Figs. 16 and 17 display the BER performance of different
channel estimation methods under dynamic Channel-B and
Channel-C, respectively. By comparing Fig. 16 and Fig. 17,
it can be seen that with the increase of Doppler spread or
SNR, the BER gap between the AMA-IMOT method and
perfect CSI increases. For example, in Fig. 16 with Doppler
spread 40 Hz, at the BER of 10−3, compared with perfect
CSI, the AMA-IMOT method has about 0.2 dB SNR degra-
dation; in Fig. 17 with Doppler spread 80 Hz, at the BER of
10−4, compared with perfect CSI, the AMA-IMOT method
has about 0.5 dB SNR degradation. Nevertheless, compared
with other conventional channel estimation methods, the
AMA-IMOT method still maintains the best BER perfor-
mance. This is because although the AWGN at the MST taps
cannot be suppressed by AWA in the scenario with high SNR
and high Doppler spread, the superiority of IMOT scheme
and the introduction of maximum average make the final
AMA-IMOT method work well in time-varying channels.

Finally, to more intuitively present the superiority of the
proposed AMA-IMOT method under different scenarios,
the comparison of BER and NMSE performance of the
AMA-IMOT method with time-domain LS method and TBS
method of Jellali et al. under three channels with different
Doppler spread and SNR is shown in Table 4. As shown in
Table 4, with the increase of Doppler spread, the BER and

FIGURE 17. The BER performance of different channel estimation
methods under Channel-C with Doppler spread 80 Hz.

NMSE performance of the three channel estimation methods
all tend to increase. Compared with the time-domain LS
and TBS method derived by Jellali et al., the AMA-IMOT
method is more sensitive to Doppler spread. Nevertheless, the
proposedAMA-IMOT always keeps the optimal performance
under all different channel scenarios, especially at the low
SNR scenarios, the superior of AMA-IMOT method to the
conventional channel estimation methods is more obvious.
Therefore, the proposed AMA-IMOT is suitable for the chan-
nel estimation of time-varying channels.

D. COMPLEXITY ANALYSIS
In this subsection, the computational complexity (for sim-
plicity only complex multiplications are considered) of the
proposed AMA-IMOT method within one OFDM symbol is
analyzed. The complexity of the proposed method is mainly
composed of four parts, which are the initial time-domain LS
CIR estimate, the AMA scheme, the IMOT scheme, and the
final FFT operation. The time-domain LS CIR estimate given
in (12) can mainly be realized by a NP size IFFT operation,
so its computational complexity is aroundO(NP log2 NP). For
AMA scheme, the computational complexity of multi-frame
averaging and the noise variance estimation in (29) both are
O(M ), and the complexity of Algorithm 1 approximates to
O(Fmax). Note that the estimation of Doppler spread is imple-
mented only once, not for each OFDM symbol, so its com-
putational complexity can be neglected. Considering Fmax �

M is general, the total complexity of AMA scheme is about
O(M ). For IMOT scheme, the computational complexity of
path variance estimation in (51) is O(M ), and the complexity
of confidence level calculation for each tap is O(W 2). Since
only in the case of σ 2

m > σ 2
n + µ̂1 the confidence level is

required, the total complexity of confidence level calculation
is about O(LW 2), which approximates to O(LM ). The com-
plexity of threshold decision can be neglected and the final
complexity of IMOT scheme is O(LM ). To convert the CIR
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TABLE 4. Comparison of BER and NMSE performance of the proposed AMA-IMOT method with time-domain LS method and TBS method of Jellali et al.
under three channels with different Doppler spread and SNR.

TABLE 5. Computational complexity comparison.

into CFR, a N size FFT with computational complexity
O(N log2 N ) is needed, and thus the total computational com-
plexity of AMA-IMOT isO(NP log2 NP)+O(M )+O(LM )+
O(N log2 N ) ≈ O(LM )+ O(N log2 N ).
The computational complexity comparison for the pro-

posed AMA-IMOT method and the conventional channel
estimation methods is shown in Table 5. As shown in Table 5,
a N size FFT operation is required for all CIR-based chan-
nel estimation methods, and the computational complexity
of AMA-IMOT method is lower than that of the conven-
tional OMP method and slightly higher than that of the TBS
method of Jellali et al. Overall, the complexity of AMA-
IMOT method is within an acceptable range, and the merit
of the proposed method is that it can obtain much better
system performance than the conventional channel estimation
methods under reasonable computational complexity.

V. CONCLUSION
In this paper, we study the sparsity and the inherent temporal
correlation of the time-varying wireless channel, and propose
an AWA and IMOT based channel estimation method in
STBC MIMO-OFDM systems. First, based on the temporal
correlation of the time-varying channel, the AMA scheme
is incorporated to refine the initial CIR through multi-frame
averaging. By utilizing the LGM model, the optimal average
frame number is adaptively determined by minimizing the
MSE of the denoised CIR. Then, the sparsity of the wireless
channel is utilized to model the CIR as a sparse vector, and
the IMOT scheme is performed to further remove the noise
effect by discarding most of the noise-only CIR taps. Specif-
ically, the IMOT scheme is achieved by recovering the CIR
support across the optimal ‘‘tap-to-tap’’ threshold derived by

minimizing the MSE of each CIR tap. Meanwhile, the prior
confidence level of the tap to be active is calculated through
multi-frame statistics to further improve the performance of
the IMOT scheme. Finally, considering the AMA scheme is
invalid in the scenario of high Doppler spread, the maximum
average extending the observation window is introduced to
assist the IMOT scheme.

The proposed AMA-IMOT method can not only remove
the noise effect at the noise-only taps, but also suppress the
AWGN at the MST taps. Compared with the conventional
LS, TBS, and OMP methods, simulation results demonstrate
that the AMA-IMOT method has the best TCSDR, BER,
and NMSE performance in the time-varying channel, espe-
cially in the low-to-medium SNR scenarios. Additionally,
the proposed method has a lower computational complexity
compared with OMP method, and its performance does not
depend too much on the prior channel sparsity degree, so the
proposed method can be easily implemented in practice and
has broad prospects.

APPENDIX
A. MSE FOR FALSE ALARM
In the case of FA, the estimation error after threshold decision
can be expressed as:

εmTBS |FA = |nLS(m)| |(|nLS(m)| ≥ Tm) . (64)

Since nLS(m) is the complex AWGN, the noise amplitude
|nLS(m)| follows the Rayleigh distribution R(σ 2

n
/
2), and its

PDF is given by:

fn(x) =
x

σ 2
n
/
2
e
−

x2

σ2n , x > 0. (65)

Consequently, the estimation error εmTBS |FA has a truncated
Rayleigh distribution, and it can be represented as [42]:

εmTBS |FA ∼ K1R(σ 2
n

/
2), εmTBS ≥ Tm, (66)

where K1 is a normalization factor, and it can be given by:

K1 = e−T
2
m
/
σ 2n . (67)
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Taking (65)–(67) into account, the derivation of the MSE for
the mth tap in the case of FA is given by:

MSEmTBS = E
(
|εmTBS|

2
|FA

)
=

∫
+∞

Tm
x2K1fn(x)dx

= e
−
T2m
σ2n

∫
+∞

Tm

2x3

σ 2
n
e
−

x2

σ2n dx

= σ 2
n + T

2
m. (68)

B. MSE FOR MISSED ALARM
In the case of MA, the estimation error after threshold deci-
sion can be expressed as:

εmTBS |MA = |h(m)| |(|h(m)+ nLS(m)| < Tm) . (69)

Since the power of the propagation channel path is usually
much greater than noise power in practice [42], it is reason-
able to transform the constraint |h(m) + nLS(m)| < Tm into
|h(m)| < Tm. Consequently, (69) can be re-written as:

εmTBS |MA = |h(m)| |(|h(m)| < Tm) . (70)

In typical Rayleigh fading channel, the amplitude |h(m)|
of the CIR coefficient follows the Rayleigh distribution
R(σ 2

m
/
2), and its PDF is given by:

fh(x) =
x

σ 2
m
/
2
e
−

x2

σ2m , x > 0. (71)

Therefore, similar to the case of FA, the estimation error
εmTBS |MA also follows a truncated Rayleigh distribution, and
it can be represented as:

εmTBS |MA ∼ K2R(σ 2
m

/
2), εmTBS < Tm, (72)

where K2 is given by:

K2 =
1

1− e−T
2
m
/
σ 2m
. (73)

Taking (71)–(73) into account, the derivation of the MSE for
the mth tap in the case of MA is given by:

MSEmTBS = E
(
|εmTBS|

2
|MA

)
=

∫ Tm

0
x2K2fh(x)dx

=
1

1− e−T
2
m
/
σ 2m

∫ Tm

0

2x3

σ 2
m
e
−

x2

σ2m dx

= σ 2
m −

T 2
m

eT
2
m
/
σ 2m − 1

. (74)

C. THE CALCULATION OF THE PROBABILITY ONE
In the case of m ∈ C, the (W + 1)/2 × 1 vectors Ψ 1, Ψ 2,
and theW × 1 vector Ψ are used to represent the conditional
distribution law of Nm

Re, N
m
Im, and N

m
max, respectively, which

can be expressed as:Ψ 1(ρ) = P[Nm
Re = (W − 1)/2+ ρ|m ∈ C],

Ψ 2(ρ) = P[Nm
Im = (W − 1)/2+ ρ|m ∈ C],

Ψ (q) = P(Nm
max = W + q|m ∈ C),

(75)

where ρ ∈ [1, 2, · · · , (W +1)/2], q ∈ [1, 2, · · · ,W ]. Ψ 1(ρ),
Ψ 2(ρ), andΨ (q) denote the ρth and qth element of the vectors
Ψ 1, Ψ 2, and Ψ respectively. Considering Nm

max = Nm
Re+N

m
Im,

Ψ is depend on Ψ 1 and Ψ 2, and it is actually the linear
convolution of them:

Ψ = Ψ 1 ∗ Ψ 2. (76)

where ∗ denotes the operation of linear convolution. Accord-
ing to (13), for all W statistical frames, the mth LS CIR tap
value ĥmLS, n = hmn + nmLS, n can be regarded as a complex
Gaussian random variable with mean hmn and variance σ 2

n ,
i.e. ĥmLS, n ∼ CN (hmn , σ 2

n ). Therefore, the PDF fLS(x) of
Re(ĥmLS, n) can be expressed as:

fLS(x) =
1
√
πσn

e
−

[x−Re(hmn )]2

σ2n . (77)

Consequently, the probability PRe of the value of Re(ĥmLS, n)
located in the interval of (0,+∞) can be calculated as:

PRe = P[Re(ĥmLS, n) > 0|m ∈ C]

=

∫
+∞

0
fLS(x)dx =

1
2
erfc

[
−Re(hmn )
σn

]
, (78)

where erfc[·] is the complementary error function. Since hmn
is unknown in practice, ĥmLS, n is used to approximate it in this
paper, and the approximated PRe is shown as:

P̂Re =
1
2
erfc

[
−Re(ĥmLS, n)

σn

]
. (79)

Based on (79) and the binomial theorem, Ψ 1(ρ) can be cal-
culated as:

Ψ 1(ρ) = C
W−1
2 +ρ

W (P̂Re)
W−1
2 +ρ(1− P̂Re)

W+1
2 −ρ

+C
W+1
2 −ρ

W (P̂Re)
W+1
2 −ρ(1− P̂Re)

W−1
2 +ρ . (80)

Analogy to Ψ 1(ρ), Ψ 2(ρ) can be calculated as:

Ψ 2(ρ) = C
W−1
2 +ρ

W (P̂Im)
W−1
2 +ρ(1− P̂Im)

W+1
2 −ρ

+C
W+1
2 −ρ

W (P̂Im)
W+1
2 −ρ(1− P̂Im)

W−1
2 +ρ, (81)

where P̂Im = 0.5 · erfc[−Im(ĥmLS, n)
/
σn], and Im(·) denotes

the operation of extracting the real part of an element. Thus,
taking (80) and (81) into (76), the conditional distribution
law Ψ of Nm

max can be completely obtained. Naturally, Pi1 =
P(Nm

max = i|m ∈ C) = Ψ (i−W ) can also be calculated.

D. THE CALCULATION OF THE PROBABILITY TWO
In the case of m /∈ C, the (W + 1)/2 × 1 vectors Φ1, Φ2,
and theW × 1 vector Φ are used to represent the conditional
distribution law of the discrete random variables Nm

Re, N
m
Im,

and Nm
max, respectively, which can be expressed as:Φ1(ρ) = P[Nm

Re = (W − 1)/2+ ρ|m /∈ C],
Φ2(ρ) = P[Nm

Im = (W − 1)/2+ ρ|m /∈ C],
Φ(q) = P(Nm

max = W + q|m /∈ C),
(82)
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where Φ1(ρ), Φ2(ρ), and Φ(q) denote the ρth and qth ele-
ment of the vectors Φ1, Φ2, and Φ, respectively. Similar to
Ψ , Φ is actually the linear convolution of Φ1 and Φ2:

Φ = Φ1 ∗Φ2, (83)

Based on the PDF of the zero-mean complex AWGN, it is a
fact that Φ1(ρ) = Φ2(ρ), which can be expressed as:

Φ1(ρ) = Φ2(ρ) = 2C
W−1
2 +ρ

W
1
2W
= C

W−1
2 +ρ

W
1

2W−1
. (84)

Therefore, taking (84) into (83), the conditional distribution
law Φ of Nm

max can be completely obtained. Naturally, Pi2 =
P(Nm

max = i|m /∈ C) = Φ(i−W ) can also be calculated.
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