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ABSTRACT An automatic thresholding method based on Shannon entropy difference and dynamic synergic
entropy is proposed to select a reasonable threshold from the gray level image with a unimodal, bimodal,
multimodal, or peakless gray level histogram. Firstly, a new concept called Shannon entropy difference
is proposed, and the stopping condition of a multi-scale multiplication transformation is automatically
controlled by maximizing Shannon entropy difference to produce edge images. Secondly, the gray level
image is thresholded by the gray levels in order from smallest to largest to generate a series of binary images,
followed by extracting contour images from the binary images. Then, a series of gray level histograms that
can dynamically reflect gray level distributions and pixel positions are constructed using the edge images
and the contour images synergically. Finally, dynamic synergic Shannon entropy is calculated from this
series of gray level histograms, and the threshold corresponding to maximum dynamic synergic entropy
is taken as the final segmentation threshold. The experimental results on 40 synthetic images and 50 real-
world images show that, although the proposed method is not superior to 8 automatic segmentation methods
in computational efficiency, it has more flexible adaptivity of selecting threshold and better segmentation
accuracy.

INDEX TERMS Automatic thresholding, principle of maximum entropy, Shannon entropy difference,
dynamic synergic entropy.

I. INTRODUCTION
Image segmentation is one of the most fundamental, use-
ful, and studied topics in image processing and analysis.
The goal is a partition of the image into coherent regions,
which is an important initial step in the analysis of image
content. Numerous image segmentation algorithms have been
developed in the last several decades, from the earliest meth-
ods, such as image thresholding [1], region growing and
merging [2], [3], clustering [4], [5], watershed segmenta-
tion [6], [7], to more complex algorithms, such as active
contours [8], graph cuts [9], [10], and deep learning-based
methods [11], [12].

Among these methods, image thresholding is a simple,
yet effective, way of separating targets from the background,
when the gray levels of the pixels belonging to targets are
substantially different from the gray levels of the pixels
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belonging to the background [1], [13]–[15]. Image thresh-
olding is also one of the most commonly used low-level
image processing methods in various image analysis sys-
tems [1], [16]–[19]. Image thresholding compares the gray
level of each pixel in a gray level imagewith a selected thresh-
old to determinewhether the pixel belongs to the targets or the
background. Selecting an appropriate threshold thus becomes
a key step for accurate thresholding segmentation, and the
core goal of image thresholding is tomake the selected thresh-
old as close as possible to the expected optimal threshold [20].

In terms of automatically selecting threshold, one represen-
tative idea is to apply the principle of maximum entropy [21]
in information theory to select the segmentation threshold
[22], [23]. The types of entropy involved in the thresholding
methods derived from this idea are mainly Shannon entropy,
Rényi entropy, Tsallis entropy, Arimoto entropy, and Masi
entropy [24]. The basis for calculating the above various
entropies is first to obtain the gray level distribution, or the
gray level histogram, from a gray level image. According to
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the dimensions of gray level histogram and the spatial posi-
tion relationship between pixels involved in constructing the
gray level histogram, the gray level histogram can be divided
into two categories: global one-dimensional histogram and
local two-dimensional histogram. The change from global
one-dimensional histogram to local two-dimensional his-
togram reflects a main idea in the development of thresh-
olding methods based on the principle of maximum entropy:
considering both gray level distributions and pixel positions.

The global one-dimensional gray level histogram can be
established by counting the occurrence frequency of each
gray level in a gray level image. A thresholding method
based on the principle of maximum entropy with the global
one-dimensional gray level histogram is usually called a
global entropy method [25]–[30]. The global entropy method
can be traced back to maximum Shannon entropy (MSE)
method [25] proposed by Kapur et al. The core idea of
MSE method is that when the sum of the background Shan-
non entropy and the target Shannon entropy takes a maxi-
mum value, the corresponding gray level in that situation is
selected as a segmentation threshold. The theoretical premise
of applying theMSEmethod is that Shannon entropy satisfies
the additivity principle for statistics independent subsystems.
When the gray level distributions of the background and the
target are independent of each other, for example, the gray
level distributions of the background and the target are both
a uniform distribution and their distributions do not over-
lap, the MSE method can obtain a theoretical optimal seg-
mentation threshold [31]. However, many real-world images,
affected by factors such as noise and low pass filter, usually
contain non-extensive information that is long-range corre-
lation or long-term memory [30]. Shannon entropy cannot
effectively express non-extensive information. Thus, it is dif-
ficult for theMSEmethod to select a reasonable segmentation
threshold from those real-world images.

Many subsequent methods, such as maximum Rényi
entropy method [26], maximum Tsallis entropy method [27],
maximumArimoto entropymethod [28], andmaximumMasi
entropy method [30], continue this line of thinking similar
to the MSE method, but they adopt Rényi entropy, Tsallis
entropy, Arimoto entropy, orMasi entropy in terms of entropy
model. For statistics independent subsystems, Rényi entropy,
Tsallis entropy, and Arimoto entropy have the ability to
describe non-extensive information, while Masi entropy can
describe both extensive and non-extensive information [30].
Theoretically, the maximum Rényi, Tsallis, Arimoto, or Masi
entropymethod has the potential to improve theMSEmethod.
However, Rényi entropy, Tsallis entropy, Arimoto entropy,
andMasi entropy are all the entropywith parameters, and they
just utilize additional parameters to characterize the exten-
sibility and/or non-extensibility of random system. In prac-
tice, segmentation results are often sensitive to the used
parameters when these entropies with parameters are applied
to image thresholding [30]. This means that before a rea-
sonable threshold can be automatically selected, an appro-
priate entropy parameter should be first automatically

evaluated [29]. However, this is still currently an open issue.
If an empirical fixed parameter or manual adjustment param-
eter is adopted, it will inevitably limit the automatic adapt-
ability of these methods based on the principle of maximum
entropy.

A thresholding method based on the principle of maximum
entropy with the local two-dimensional gray level histogram
is usually called a local entropy method [22], [32]–[36].
Local entropy methods realize a common problem of global
entropy methods: the spatial correlation between pixels is not
considered when the one-dimensional gray level histogram is
constructed. For a specific global entropy method, as long as
the one-dimensional gray level histograms of the gray level
images are the same, the method will obtain a same segmen-
tation threshold even if the contents of the gray level images
are different. Local entropy methods attempt to alleviate the
deficiencies of global entropy methods in the description of
image content by constructing two-dimensional gray level
histograms. Local entropy methods mainly adopt two ways
to construct two-dimensional gray level histograms. The first
way is to use an original gray level image and its local
mean image [23], [32], [33], [35]. The second way is to
construct a gray level co-occurrence matrix from an original
gray level image [22], [34], [36]. Although it is possible
to construct various gray level co-occurrence matrices with
different directions and pixel distances, it mainly uses simple
four-neighbor relationship of pixel pairs to build the gray
level co-occurrence matrix because of the difficulty in auto-
matically determining themost reasonable direction and pixel
distance for a given gray level image.

While extending global entropy methods, local entropy
methods implicitly or explicitly inherit three shortcomings of
global entropy methods. First, although local entropy meth-
ods consider the spatial correlation between pixels, it lim-
its the correlation to a small range of local neighborhoods.
Second, if local entropy methods adopt Shannon entropy,
the non-extensive information in a two-dimensional gray
level histogram still acts as an obstacle to evaluating segmen-
tation thresholds; if Rényi entropy, Tsallis entropy, Arimoto
entropy or Masi entropy is adopted, local entropy meth-
ods will also face the problem of automatically evaluating
the corresponding entropy parameters. Third, local entropy
methods extend the dimension of the gray level histogram,
thus there are more choices when applying the principle of
maximum entropy. However, local entropymethods no longer
consider the original gray level image after establishing two-
dimensional gray level histograms, and this cuts off the
association between the original image and the segmentation
threshold.

In addition to the inherent shortcomings of global entropy
methods and local entropymethods, the complex and variable
targets and backgrounds also objectively increase the diffi-
culty of automatically selecting a reasonable segmentation
threshold. Affected by factors such as random noise, low pass
filter, as well as the size of target and background, the gray
level histogram of an image may be unimodal, bimodal,
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multimodal, or even peakless. When the basic distribution
constituting a gray level histogram is a non-Gaussian distribu-
tion, such as a gamma distribution, an extreme value distribu-
tion, a Rayleigh distribution, a uniform distribution or a beta
distribution, it remains challenging to automatically select the
segmentation threshold that is as reasonable as possible.

To overcome the shortcomings of global entropy methods
and local entropy methods, and also to deal with automatic
threshold selection under the above different gray level distri-
butions in a unified framework, this article proposes an auto-
matic thresholding method guided by maximizing dynamic
synergic entropy (MDSE). The MDSE method constructs
dynamically a series of one-dimensional gray level his-
tograms using synergically an invariant guiding edge image
and a series of changing contour images. The guiding edge
image is produced by performing a multi-scale multiplication
transformation on an original gray level image, where the
stopping condition of the multi-scale multiplication transfor-
mation is automatically controlled by maximizing Shannon
entropy difference. The changing contour images are gen-
erated by continuously thresholding the original gray level
image with every possible gray level, and then extracting
internal and external contours from these binary images.
The one-dimensional gray level histograms are synergically
constructed from the guiding edge image and the changing
contour images, which considers both gray level distributions
and pixel positions. Thus, the calculated Shannon entropy
(dynamic synergic entropy, DSE) based on this series of
one-dimensional gray level histograms lays a foundation for
applying the principle of maximum entropy to automatically
select a reasonable threshold.

Some main contributions of this study can be summarized
as follows: 1© In terms of extending the theory of Shannon
entropy, a new concept called Shannon entropy difference is
proposed, and it is used for automatically controlling the stop-
ping condition of a multi-scale multiplication transformation.
2© Based on the analysis of the monotonicity of DSE, a new
objective function is proposed to automatically select appro-
priate segmentation thresholds from the gray level images
with different gray level distributions. 3© A novel image
thresholding method called MDSE is proposed, which has
better segmentation adaptability and robustness than other
image thresholding methods. 4© 40 synthetic images and
50 real-world images with different gray level distributions
are generated or collected, and their corresponding segmen-
tation reference images are also provided. All these images
are shared online.

The rest of this article is organized as follows: Section II
focuses on a new concept, i.e., Shannon entropy differ-
ence, and its application. In particular, Section II.A defines
the concept of Shannon entropy difference, and discusses
the relationship between Shannon entropy difference and
gray level histogram; Section II.B analyzes a technique
called multi-scale multiplication transformation and pro-
poses a criterion maximizing Shannon entropy difference
to automatically stop computing multi-scale multiplication.

Section III proposes a new criterion of selecting threshold
based on DSE, and analyze the rationality of calculating the
final threshold according to the new criterion. Section IV
describes the corresponding algorithm steps. Section V ana-
lyzes and discusses the experimental results of the proposed
MDSE method and 9 compared methods on 40 synthetic
images and 50 real-world images. Finally, SectionVI draws
several conclusions and describes future works.

II. SHANNON ENTROPY DIFFERENCE AND
ITS APPLICATION
A. DEFINITION AND ANALYSIS OF SHANNON
ENTROPY DIFFERENCE

Given a gray level histogram of a gray level image, let a
gray level l divide this histogram into two parts (see Fig. 1).
Suppose that there are m gray levels on the left part, the dis-
crete probability distribution of these gray levels is qi(1 ≤

i ≤ m) and
m∑
i=1

qi = 1, and the total frequency on the left

part is L. Suppose that there are n gray levels on the right
part, the discrete probability distribution of these gray levels

is pi(1 ≤ i ≤ n) and
n∑
i=1

pi = 1, and the total frequency on the

right part is R.

FIGURE 1. Schematic diagram of the left division and the right division of
gray level histogram.

Let HLeft and HRight denote the Shannon entropy corre-
sponding to the left and the right parts, respectively. Accord-
ing to the definition of Shannon entropy, the following
equations can be given:

HLeft
= −

m∑
i=1

qilog2qi (1)

HRight
= −

n∑
i=1

pilog2pi (2)

Let HLeft∪Right indicate the Shannon entropy correspond-
ing to the whole histogram, and its expression is

HLeft∪Right
= −

m+n∑
i=1

oilog2oi (3)
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where

oi =


L

L + R
qi (1 ≤ i ≤ m)

R
L + R

pi (m+ 1 ≤ i ≤ m+ n)

(4)

Further, we defineHRight
−HLeft∪Right as Shannon entropy

difference. The next 3 propositions will be used for proving
and analyzing: to increase the Shannon entropy difference,
what kind of distribution characteristics the gray level his-
togram in Fig. 1 should have.
Proposition 1: HRight

−HLeft∪Right
= s(HRight

−HLeft)+
slog2s+ (1− s)log2(1− s), where s =

L
L+R .

Proof:

HLeft∪Right

= −

m+n∑
i=1

oilog2oi

= −

m∑
i=1

oilog2oi −
m+n∑
i=m+1

oilog2oi

= −

m∑
i=1

(
L

L + R
qi

)
log2

(
L

L + R
qi

)
−

n∑
i=1

(
R

L + R
pi

)
× log2

(
R

L + R
pi

)
= −

m∑
i=1

(
L

L+R
qi

)
log2

(
L

L+R

)
−

m∑
i=1

(
L

L+R
qi

)
log2qi

−

n∑
i=1

(
R

L+R
pi

)
log2

(
R

L+R

)
−

n∑
i=1

(
R

L+R
pi

)
log2pi

= −

(
L

L + R

)
log2

(
L

L + R

)
−

(
L

L + R

) m∑
i=1

qilog2qi

−

(
R

L + R

)
log2

(
R

L + R

)
−

(
R

L + R

) n∑
i=1

pilog2pi

= −slog2s+ sH
Left
− (1− s)log2(1− s)+ (1− s)HRight

Then we have

HRight
− HLeft∪Right

= s(HRight
− HLeft)+ slog2s

+ (1− s)log2(1− s).

Proposition 2: When s > 1

1+2(H
Right−HLeft)

, HRight
−

HLeft∪Right is a monotonically increasing function about s.
Proof: The variable s is discontinuous, so we cannot

directly find the derivative ofHRight
−HLeft∪Right with respect

to s. For this problem, we can extend the domain of s from
the original discontinuous point set to the continuous interval
(0, 1), then we can obtain the derivative of Shannon entropy
difference HRight

− HLeft∪Right with respect to s:

HRight
− HLeft

+ log2s+ s×
1
s
× log2e− log2(1− s)

+ (1− s)×
1

1− s
× (−1)× log2e.

After simplifying it, we have

HRight
− HLeft

+ log2s− log2(1− s)

Further, let the above expression be greater than 0, then we
get the solution s > 1

1+2(H
Right−HLeft)

.

According to the relationship between the derivative and
the monotonicity of a function, we can infer that when
s > 1

1+2(H
Right−HLeft)

, HRight
−HLeft∪Right is a monotonically

increasing function about s ∈ (0, 1).
Proposition 3: WhenHRight > HLeft,HRight

−HLeft∪Right

is a monotonically increasing function about HRight
−HLeft.

Proof: According to Proposition 1, the derivative of
HRight

−HLeft∪Right with respect toHRight
−HLeft is s, and it is

obvious that s is greater than 0. According to the relationship
between the derivative and the monotonicity of a function,
we can infer that HRight

− HLeft∪Right is a monotonically
increasing function about HRight

− HLeft.
Propositions 1, 2 and 3 show that when HRight > HLeft

and s > 1

1+2(H
Right−HLeft)

, the greater s and HRight
−

HLeft, the greater the Shannon entropy difference HRight
−

HLeft∪Right. Further, it is easy to infer that a relatively greater
L or a relatively smaller R, and a relatively greaterHRight or a
relatively smaller HLeft will make the Shannon entropy dif-
ference HRight

− HLeft∪Right take a relatively greater value.
In other words, the Shannon entropy HRight corresponding
to the right histogram composed of relatively few pixels
should be as great as possible, and the Shannon entropyHLeft

corresponding to the left histogram composed of relatively
many pixels should be as small as possible, which will make
the Shannon entropy difference HRight

− HLeft∪Right take
a relatively greater value. Further, according to the prop-
erty that more uniform the probability distribution tends to,
the greater the Shannon entropy becomes [37], a kind of gray
level histogram that makes the Shannon entropy difference
HRight

− HLeft∪Right tend to take a relatively greater value is
as follows: the right histogram composed of relatively few
pixels should be distributed as uniformly as possible over a
wider range of gray levels, and the left histogram composed
of relatively many pixels should be distributed as narrowly
as possible over a narrower range of gray levels. The next
Section II.B will elaborate on how to obtain the gray level
histogram with the above distribution characteristics.

B. GUIDING EDGE IMAGE BASED ON MAXIMIZING
SHANNON ENTROPY DIFFERENCE

Let the symbol f denote a gray level image, and let the
symbol ∇gx denote the partial derivative of two-dimensional

Gaussian function g(x, y; σ ) = 1
√
2πσ

e−
x2+y2

2σ2 with respect
to x. Let the symbol κx(σ ) denote the absolute value of the
output image resulting from the convolution of the image f
with the kernel ∇gx :

κx(σ ) = |f ∗ ∇gx | (5)
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FIGURE 2. The changing trend of the gray level histogram of the image Kux with gradually
increasing value ux . (a) a gray level image f and its gray level histogram; (b)-(e) show the
corresponding image Kux and its gray level histogram when ux is 1, 2, 3, and 4, respectively.
To clearly show the frequency of gray level in the interval [0,255], the gray level histograms in
(c)-(e) are truncated at the frequency around 400.

The image κx(σ ) is closely related to convolution scale σ , and
different σ will produce different image κx(σ ).

Define the multi-scale multiplication transformation of the
image f in the x-axis direction as the product of ux different
images κx(σi):

Kux =
ux∏
i=1

κx(σi) (6)

According to the sampling theory based on the Gaussian
kernel function, convolving an image with a (8σi + 1) ×
(8σi + 1) Gaussian kernel can ensure that the convolution
result sufficiently approximates the result obtained by con-
volving the image with the full Gaussian distribution [38].
In addition, for the convolution operation on digital images,
the neighborhood defined by a convolution kernel is often
centered on a pixel and the neighborhood size is usually
odd [39], such as 3×3, 5×5, 7×7, etc. Thus, each convolution
scale can be calculated in turn as σi = 0.25× i (i ≥ 1).
In Eq. (5), the existence of Gaussian function makes edge

signals and noises (or random details) have different response
characteristics to ∇gx . When the convolution scale σ grad-
ually increases, the responses of noises (or random details)
rapidly decrease, while the responses of edge signals show
the following characteristics: 1© the response at the center of
the edge remains relatively good; 2© the response gradually
decreases as the pixel position gets farther and farther from
the center of the edge.

Under the premise that the gray level of the image Kux
is normalized to [0, 255], as the number ux of images par-
ticipating in multi-scale multiplication transformation gradu-
ally increases, the product of the response values of noises

(or random details) will gradually approach the minimum
value 0, and the product of the response values of the edge
signals will be spread between 0 and 255 (see the left images
in Figs. 2(b)-(e)). As ux gradually increases, the gray level
histogram of the image Kux will show the following charac-
teristics or tendencies (see the right images in Figs. 2(b)-(e)):
1© the gray level histogram shows a heavy right tail distri-
bution. 2© the mode of the gray level histogram gradually
shifts to the left, and the mode will be equal to 0 when ux
is large enough. 3© if the value ux is continuously increased
so that it exceeds a certain critical value, the multiplicative
effect will cause more response values of edge signals to
gather near 0. As a result, the gray level distribution between
0 and 255 becomes increasingly sparse, and the number of
gray levels corresponding to the frequency 0 is gradually
increasing.

The relationship between the gray level histogram of the
image Kux and the value ux indicates that a relatively appro-
priate value ux needs to be found so that the gray level his-
togram of the imageKux is more consistent with the gray level
distribution characteristics expected in Section II.A. To this
end, a natural choice is to maximize the Shannon entropy
difference of the gray level histogram of the imageKux , which
can be formalized as:

(u∗x , l
∗
x ) = arg max

ux∈Z+
max

lx∈[0,255]

(
HRight
x − HLeft∪Right

x

)
(7)

Once the number u∗x of images participating in the multi-
scale multiplication transformation is determined, the cor-
responding image Ku∗x can be calculated by combining the
Eq. (5) and (6). Here the image Ku∗x will be called the guiding
edge image in the direction of x-axis.
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FIGURE 3. Schematic diagram of core concepts and key steps in the MDSE method. (a) a gray level
image f ; (b) a guiding edge image Ku∗x

obtained by performing multi-scale multiplication
transformation on the gray level image f ; (c) a binary image bt obtained by thresholding the gray
level image f with a gray level t ; (d) a contour image ct obtained by extracting the inner and outer
contours from the binary image bt ; (e) a gray level histogram constructed by sampling the image
Ku∗x

with the pixels taking value 1 in the image ct , to clearly show the frequency of gray level in
the interval [0,255], the gray level histogram is truncated at the frequency near 80.

The above analysis and reasoning to the image f in the
direction of x-axis are also applicable to the case in the
direction of y-axis. Thus, for the image Kuy in the direction
of y-axis, the relatively appropriate number u∗y of images
participating in multi-scale multiplication transformation can
be calculated according to the following Eq. (8):

(u∗y , l
∗
y ) = arg max

uy∈Z+
max

ly∈[0,255]

(
HRight
y − HLeft∪Right

y

)
(8)

Similarly, the imageKu∗y will be called the guiding edge in the
direction of y-axis.

III. CRITERION OF SELECTING THRESHOLD
BASED ON DSE

A binary image bt is produced by thresholding a gray
level image f with a gray level t (see Fig. 3(c)), and a
contour image ct is extracted from the binary image bt (see
Fig. 3(d)). The pixels with the value 1 in the image ct are
further utilized to sample the guiding edge images Ku∗x and
Ku∗y calculated in Section II.B, and then two new gray level
histograms ϒx and ϒy are reconstructed from the sampled
pixels. Figs. 3(b), (d), and (e) show a visual example of
constructing a gray level histogram ϒx .

The MDSE method proposes the following objective
function to select the final threshold t∗:

t∗ = argmax
t∈[tmin,tmax]

((
HLeftt∪Rightt
x + HLeftt∪Rightt

y

)/
2
)

(9)

where tmin and tmax represent the minimum and maximum
gray level in the gray level image f , and HLeftt∪Rightt

x and
HLeftt∪Rightt
y are Shannon entropy calculated from the gray

level histogram ϒx and ϒy, respectively.

When the gray level t gradually varies from tmin to
tmax, the contour image ct changes continuously, and con-
sequently the corresponding gray level histogram ϒx and
ϒy also change continuously, so that the Shannon entropy

HLeftt∪Rightt
x and HLeftt∪Rightt

y also change dynamically.
Moreover, the gray level histograms ϒx and ϒy are synergi-
cally constructed from the guiding edge image and the con-
tour image. Consequently,ϒx andϒy consider both gray level
distributions and pixel positions and reflect the gray level
statistical characteristics of different local regions distributed
in the original image. Since Shannon entropy is computed

from ϒx and ϒy, this allows H
Leftt∪Rightt
x and HLeftt∪Rightt

y to
dynamically and synergically reflect the spatial relationship
between the pixels that constitute targets and the background.
The Shannon entropy calculated in this way is hereinafter
called DSE (dynamic synergic entropy).

Here we further analyze the rationality of calculating the
final threshold t∗ according to Eq. (9). Because the analysis

of HLeftt∪Rightt
x and HLeftt∪Rightt

y is similar, here we will only
take HLeftt∪Rightt

x for an example. There are two ways to cal-
culate the DSE HLeftt∪Rightt

x corresponding to the gray level
histogramϒx . One is to do the calculation based on the entire
ϒx , the other is to divide the gray level histogramϒx into left
and right parts with the gray level l∗x calculated by Eq. (7),
and compute Shannon entropy in the same way asHLeft∪Right

in Section II.A. The first method is more direct and more
efficient, and it will be used in the specific implementation
of the proposed algorithm. The second method can construct
a multivariate function consisting of 3 independent variables,
which facilitates theoretical analysis of the rationale for the
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FIGURE 4. The family of curves of the DSE H
Leftt∪Rightt
x , where the circle on each curve

represents the maximum value of that curve, and the intersections of the red dashed
lines and the horizontal axis indicate the corresponding s⊥x . For each curve drawn from

top to bottom, the corresponding value H
Rightt
x is 6, 5, 4, 3, 2, 1, and 0, while H

Leftt
x

remains 0.

threshold t taking a reasonable value. According to the second
method, we can calculate HLeftt∪Rightt

x as follows:

HLeftt∪Rightt
x = (1− s∗x )H

Rightt
x + s∗xH

Leftt
x

− s∗x log2s
∗
x − (1− s∗x )log2(1− s

∗
x ) (10)

where HRightt
x denotes the Shannon entropy corresponding to

the right part in the gray level histogram ϒx greater than the
gray level l∗x ,H

Leftt
x denotes the Shannon entropy correspond-

ing to the left part in the gray level histogram ϒx less than
the gray level l∗x , and s

∗
x =

L∗x
L∗x+R∗x

, where L∗x and R∗x are the
number of pixels corresponding to the left and right part in
the gray level histogram ϒx , respectively.

Proposition 4: Let s⊥x =
1

1+2

(
H
Rightt
x −HLeftt

x

) , then when

s∗x ∈ (s⊥x , 1), the DSE HLeftt∪Rightt
x decreases monotonically

with respect to s∗x ; when s
∗
x ∈ (0, s⊥x ), the DSE HLeftt∪Rightt

x
increase monotonically with respect to s∗x .

Proof: The variable s∗x is discontinuous, so we cannot
directly find the derivative of HLeftt∪Rightt

x with respect to
s∗x . For this problem, we can extend the domain of s∗x from
the original discontinuous point set to the continuous inter-
val (0, 1), then we can obtain the derivative of the DSE
HLeftt∪Rightt
x with respect to s∗x :

−HRightt
x + HLeftt

x − log2s
∗
x − s

∗
x ×

1
s∗x
× log2e

+ log2(1− s
∗
x )+ (1− s∗x )×

1
(1− s∗x )

× log2e

= −HRightt
x + HLeftt

x − log2s
∗
x + log2(1− s

∗
x )

when s∗x ∈ (s⊥x , 1), −H
Rightt
x + HLeftt

x − log2s
∗
x + log2

(1 − s∗x ) < 0, according to the relationship between the
derivative and the monotonicity of a function, we can infer
that HLeftt∪Rightt

x decreases monotonically with respect to s∗x
in the interval (s⊥x , 1); when s

∗
x ∈ (0, s⊥x ),−H

Rightt
x +HLeftt

x −

log2s
∗
x + log2(1 − s∗x ) > 0, according to the relationship

between the derivative and the monotonicity of a function,
we can infer that HLeftt∪Rightt

x increases monotonically with
respect to s∗x in the interval (0, s⊥x ).

Proposition 4 points out two important properties of
the DSE HLeftt∪Rightt

x : 1© when s∗x ∈ (s⊥x , 1), the less s∗x ,
the greater the DSE HLeftt∪Rightt

x ; 2© when s∗x ∈ (0, s⊥x ),
the greater s∗x , the greater the DSE HLeftt∪Rightt

x . The gray
level histogram ϒx is constructed by sampling the guiding
edge image Ku∗x with the pixels taking the value 1 in the
contour image ct , and therefore the gray level histogramϒx is
composed of the edge and non-edge pixels in the guiding edge
image Ku∗x . In the gray level histogram ϒx , the left part less
than the gray level l∗x is mostly composed of non-edge pixels
in the image Ku∗x , and the right part greater than the gray level
l∗x is mostly composed of edge pixels in the image Ku∗x . Thus
the value s∗x reflects the ratio of the non-edge regions to the
edge regions in the contour image ct located in the guiding
edge image Ku∗x . For the contour image ct , the less s∗x , the less
the proportion of non-edge regions, which is an important
feature expected for good segmentation. Thus, we can find
a greater DSE HLeftt∪Rightt

x in the monotonically decreasing
interval (s⊥x , 1) according to Property 1©, or we can find a less

DSE HLeftt∪Rightt
x in the monotonically increasing interval
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(0, s⊥x ) according to Property 2©. Both strategies are expected
to achieve a more reasonable segmentation threshold.

There are two key techniques to increase the chance that s∗x
is in the monotonically decreasing interval (s⊥x , 1), thus the
strategy of ‘‘finding a greater DSE HLeftt∪Rightt

x in the mono-
tonically decreasing interval (s⊥x , 1) according to Property
1©’’ is more desirable in practice. One technique is to maxi-
mize the Shannon entropy difference in Section II.A and II.B,
and the other technique is to separately process in the direc-
tions of x-axis and y-axis. First, since s⊥x =

1

1+2

(
H
Rightt
x −HLeftt

x

) ,
then the greater HRightt

x − HLeftt
x is, the less s⊥x is, and

the wider the interval (s⊥x , 1) (see Fig. 4). Ideally, if s⊥x
approaches or even equals 0, then the DSE HLeftt∪Rightt

x will
decrease monotonically over the entire interval (0, 1). Maxi-
mizing Shannon entropy difference in Section II.A and II.B
tends to make HRight

x − HLeft
x as great as possible, while

HRightt
x and HLeftt

x are samples of HRight
x and HLeft

x , respec-
tively. A relatively greater HRight

x − HLeft
x also facilitates to

generate a relatively greater HRightt
x − HLeftt

x . Second, the
y-direction edge in the image f is also suppressed to near 0 in
the guiding edge image Ku∗x , whereas the y-direction contour
still exists in the contour image ct (see Figs. 3(b) and (d)),
which facilitates s∗x easier to be greater than s⊥x . This is
another reason why to separately process in the directions of
x-axis and y-axis.

IV. ALGORITHM DESCRIPTION
Algorithm 1. Algorithm Name: MDSE
Input: a gray level image f to be segmented
Output: a selected threshold t∗ and a thresholding result

image
Step 1: Calculate the guiding edge images Ku∗x and Ku∗y

according to Eqs. (5), (6), (7), and (8).
Step 2: Use Hxt and Hyt to record HLeftt∪Rightt

x and
HLeftt∪Rightt
y during the subsequent loop, respectively, and use

Ht to record the arithmetic mean of Hxt and Hyt . Use Hmax to
record the maximum Ht during the subsequent loop, and use
t∗ to record the gray level corresponding to Hmax. The initial
values ofHxt ,Hyt ,Ht ,Hmax, and t∗ are all 0. For each possible
gray level t ∈ [tmin, tmax] in the image f , repeat the following
Steps 3 to 6 in ascending order.

Step 3: Utilize the gray level t to threshold the image f to
obtain the corresponding binary image bt .
Step 4: Extract the contour image ct from the binary image

bt , which can be specifically divided into 3 small steps.
Initially, let all pixels in the image ct take value 1; then
extract the inner contour: if the value of a pixel in bt is 1
and its 4-neighborhood pixels all take value 1, set the pixel
value of its corresponding position in ct to 0; finally extract
the outer contour: after generating the complement image
b̃t by reversing 0 and 1 in the image bt , the pixel and its
4-neighborhood pixels in the image b̃t are analyzed and
judged in the same way as in the image bt , and the image
ct is also set accordingly.

Step 5: Utilize the pixels with the value 1 in the image
ct to sample the guiding edge image Ku∗x , and reconstruct
a normalized gray level histogram from the sampled pixels,
then calculate the DSE Hxt from this normalized gray level
histogram. Use the same way to process the guiding edge
image Ku∗y and calculate the corresponding DSE Hyt .

Step 6: Calculate the mean Ht of Hxt and Hyt , and then
judge the relationship between Ht and Hmax. If Ht > Hmax,
let Hmax equal Ht and t∗ equal t .

Step 7: Generate the binary image bt∗ by thresholding the
image f with the final threshold t∗, output the final threshold
t∗ and the binary image bt∗ .

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. TEST ENVIRONMENT, QUANTITATIVE EVALUATION
INDICATOR, AND METHODS PARTICIPATING
COMPARISONS

The main software and hardware used for the test experi-
ments are as follows: Intel Core i3-2350M2.3GHzCPU, 4GB
DDR2 memory, Windows 7 32-bit operating system, and
Matlab 2009a 32-bit development platform. The test image
set contains 40 synthetic images and 50 real-world images,
and these test images have different gray level histograms.
The test image set and the image set of segmentation refer-
ence are available online [40].

Misclassification error (ME) [20], [30] is a commonly
used quantitative evaluation indicator when the segmentation
accuracy of a thresholding method is evaluated. ME indicates
the percentage of background pixels that are misclassified
as target pixels and target pixels that are misclassified as
background pixels in a segmentation result image, and its
calculation formula is given as follows:

ME =
(
1−
|φ ∩ φt | + |ϕ ∩ ϕt |

|φ| + |ϕ|

)
× 100% (11)

where φ and ϕ respectively denote the set of the target and
background pixels in the reference image, φt and ϕt respec-
tively denote the set of the target and background pixels
in the result image obtained by thresholding the test image
with a threshold t , the symbol ∩ represents the intersection
operation, and the symbol |·|means to calculate the number of
elements in a set. MEwill be 0%when the thresholding result
image is exactly the same as the reference image; ME will be
100% when the thresholding result image is the complement
of the reference image.

Intersection over Union (IoU), also known as the Jaccard
index, is also a popular evaluation metric for tasks such as
segmentation, object detection and tracking [41]. IoU empha-
sizes similarity between finite sample sets, and is formally
defined as the size of the intersection divided by the size of
the union of the sample sets. Themathematical representation
of IoU is written as:

IoU =
|φ ∩ φt |

|φ| + |φt | − |φ ∩ φt |
(12)

IoU will be 0 when the target pixels of the reference image
and the thresholding result image do not overlap at all;
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FIGURE 5. ME values of 10 segmentation methods on 40 synthetic images with different gray level histograms.
In each subfigure, the red dots, the green dots, the blue dots, the black dots, the red triangles, the green triangles,
the blue triangles, and the black triangles indicate the ME values of the corresponding method on the first to
eighth group of test images, respectively.
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FIGURE 6. IoU values of 10 segmentation methods on 40 synthetic images with different gray level histograms.
In each subfigure, the red dots, the green dots, the blue dots, the black dots, the red triangles, the green triangles,
the blue triangles, and the black triangles indicate the IoU values of the corresponding method on the first to
eighth group of test images, respectively.
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FIGURE 7. The first group test images and the thresholds selected by the
MDSE method. In each subfigure, the test image is shown on the left, its
gray level histogram is displayed in the blue area on the right. In addition,
the black curve on the right shows the objective function curve of the
MDSE method for calculating thresholds, and the red dotted line and the
number next to it indicate the threshold selected by the MDSE method
(the same below). (a)-(e) sequentially show that the gray level
distributions of the target and the background are a Gaussian
distribution, a gamma distribution, an extreme value distribution,
a Rayleigh distribution, and a uniform distribution.

IoU will be 1 when the target pixels of the reference image
and the thresholding result image are a perfect match.

The proposed MDSE method is compared with global
Masi entropy thresholding (MET) method [30], global

FIGURE 8. The second group test images and the thresholds selected by
the MDSE method. (a)-(e) sequentially show that the gray level
distributions of the target and the background are a beta distribution
with different parameters: (a) α = 0.1, β = 0.8, (b) α = 0.5, β = 0.5,
(c) α = 1.0, β = 2.0, (d) α = 1.5, β = 1.5, (e) α = 1.5, β = 2.0.

adaptive Tsallis entropy thresholding (TET) method [29],
local Shannon entropy thresholding (SET) method [22],
iterative triclass thresholding (ITT) method [42], fuzzy
entropy thresholding (FET) method [31], transition region
thresholding (TRT) method [20], slope difference distribu-
tion (SDD) clustering method [4], fast and robust fuzzy
c-means (FRFCM) clustering method [5], and interactive
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FIGURE 9. The third group test images and the thresholds selected by the
MDSE method. (a)-(e) sequentially show that the gray level distributions
of the target and the background are a Gaussian distribution, a gamma
distribution, an extreme value distribution, a Rayleigh distribution, and a
uniform distribution.

thresholding (IT) method [43]. The IT method interactively
selects a segmentation threshold, and the binary image corre-
sponding to this threshold has the smallest ME value. There-
fore, the IT method can be used as a reference method for
other methods participating comparisons in terms of segmen-
tation accuracy.

FIGURE 10. The fourth group test images and the thresholds selected by
the MDSE method. (a)-(e) sequentially show that the gray level
distributions of the target and the background are a beta distribution
with different parameters: (a) α = 0.1, β = 0.8, (b) α = 0.5, β = 0.5,
(c) α = 1.0, β = 2.0, (d) α = 1.5, β = 1.5, (e) α = 1.5, β = 2.0.

B. EXPERIMENTS ON SYNTHETIC IMAGES
Affected by factors such as random noise, low pass filter,

as well as the size of target and background, the gray level
histograms of different gray level images may show differ-
ent histogram patterns. In addition to the common bimodal
pattern, there are unimodal, peakless, and even multimodal
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FIGURE 11. The fifth group test images and the thresholds selected by
the MDSE method. The test images sequentially displayed in (a)-(e) are
obtained by performing a Gaussian point diffusion on the test images in
Figs. 7(a)-(e).

patterns. Moreover, there are many possibilities for the basic
distribution consisting of the histogram pattern. In addition to
the common Gaussian distribution, there are also gamma dis-
tribution, extreme value distribution, Rayleigh distribution,
uniform distribution, and beta distribution.

In comparison experiments on synthetic images, to com-
prehensively test the segmentation adaptability of 10 segmen-
tation methods to different histogram patterns, 40 different

FIGURE 12. The sixth group test image and the thresholds selected by the
MDSE method. The test images sequentially displayed in (a)-(e) are
obtained by performing a Gaussian point diffusion on the test images
in Figs. 8(a)-(e).

synthetic images are divided into 8 groups and tested sep-
arately. Figs. 5-6 shows the quantitative results about the
segmentation accuracy of these 10 segmentation methods on
these 8 groups of test images, and Figs. 7-14 show these
8 groups of test images in sequence.

In the first group test images, the size ratio of the target
to the background is approximately equal to 3:7. To simulate
the basic distributions such as Gaussian distribution, gamma
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FIGURE 13. The seventh group test image and the thresholds selected by
the MDSE method. The test images sequentially displayed in (a)-(e) are
obtained by performing a Gaussian point diffusion on the test images
in Figs. 9(a)-(e).

distribution, extreme value distribution, Rayleigh distribu-
tion, and uniform distribution, the test images are generated
by adding Gaussian noise, gamma noise, extreme value noise,
Rayleigh noise, and uniform noise to the noise-free synthetic
image, respectively (see Fig. 7). Because the size ratio of the
target to the background is relatively balanced, when the basic
distribution is a Gaussian distribution, a gamma distribution,

FIGURE 14. The eighth group test image and the thresholds selected by
the MDSE method. The test images sequentially displayed in (a)-(e) are
obtained by performing a Gaussian point diffusion on the test images
in Figs. 10(a)-(e).

an extreme value distribution, and a Rayleigh distribution,
the gray level histograms of these test images show typical
bimodal patterns (see Figs. 7(a)-(d)); when the basic distribu-
tion is a uniform distribution, the gray level histogram of the
test image show peakless pattern (see Fig. 7(e)). As shown by
the red dots in Figs. 5-6 (the corresponding image numbers
are 1 to 5): 1© the overall segmentation result of the MET
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method is the worst. 2© the segmentation results of the TET
method are slightly better than the MET method in general,
but its mis-segmentation is serious when the basic distri-
bution is a gamma distribution and a uniform distribution.
3© the overall segmentation results of the SET, FET, and SDD
method are better than the MET and TET methods, but their
mis-segmentation are also serious when the basic distribution
is a uniform distribution or a gamma distribution. 4© the
segmentation results of the ITT, TRT, FRFCM, and MDSE
methods are obviously better than the other 5 compared
methods; in particular, the segmentation results of the MDSE
and IT methods are completely consistent, and they achieve
the theoretically optimal segmentation in terms ofminimizing
ME and maximizing IoU.

In the second group test images, the size ratio of the target
to the background is approximately equal to 3:7. The test
images are generated by adding beta noise with different
parameters to the noise-free synthetic image, respectively.
As a result, the gray level histograms of the test images are
bimodal (see Figs. 8(a), (c)-(e)) or multimodal (see Fig. 8(b)).
As shown by the green dots in Figs. 5-6 (the corresponding
image numbers are 6 to 10): 1© both the MET and SET
methods have serious mis-segmentations. 2© the segmenta-
tion results of the TET, ITT, FET, and SDD methods are
unstable, and theME value is sometimes large and sometimes
small. 3© compared with the other 6 methods, the TRT,
FRFCM, MDSE, and IT methods obtain significantly better
segmentation accuracy; in particular, the proposed MDSE
method and the IT method achieve completely consistent
segmentation results, and they once again get the theoretically
optimal segmentation.

In the third and fourth group test images, the size ratio
of the target to the background is approximately equal to
3:1997. The test images in the third group are generated by
adding Gaussian noise, gamma noise, extreme value noise,
Rayleigh noise, and uniform noise to the noise-free synthetic
image, respectively (see Fig. 9), while the test images in
the fourth group are generated by adding beta noise with
different parameters to the noise-free synthetic image (see
Fig. 10). Because the size ratio of the target to the background
is seriously unbalanced, the gray level histograms of the
test images show a unimodal pattern (see Figs. 9(a)-(d) and
Figs. 10(a), (c)-(e)) or a bimodal pattern (see Fig. 10(b)) or a
peakless pattern (see Fig. 9(e)). We can observe that from the
blue dots and the black ones in Figs. 5-6 (the corresponding
image numbers are 11 to 15, and 16 to 20, respectively):
1© the MET and TET methods are more suitable for seg-
menting test images with right-biased unimodal histogram,
but not for test images with left-biased unimodal histogram
(see Fig. 9(c)); 2© the SET, ITT, FET, TRT, SDD, and FRFCM
methods have serious mis-segmentations on these two groups
of test images, which shows that these methods are not suit-
able for segmenting images with a serious imbalance between
the size of target and background. 3© On these two groups of
test images, the thresholds calculated by the MDSE method
are always consistent with the thresholds selected by the IT

method, so their ME values and IoU values are also always
consistent.

The test images of the fifth and sixth group are generated
by performing Gaussian point diffusion on the test images
of the first and second group, respectively (see Figs. 11-
12). The targets and the backgrounds in these two groups
of test images are both blurred. As a result, the gray level
histograms of these test images are bimodal and with flat
valleys, but they are different in the flat valleys. We can
observe that from the red triangles and green ones in Figs. 5-
6 (the corresponding image numbers are 21 to 25, and 26 to
30, respectively): 1© the ME values of MET, SET, FET, and
SDD methods significantly decrease in general, and the IoU
values of MET and SET methods significantly increase in
general, which indicates that, contrasted with the test images
with bimodal deep-valley histograms, the MET and SET
methods are more suitable for segmenting the images with
bimodal flat-valley histograms; 2© some ME or IoU values
of the TET method have risen and some have fallen, but
the TET method has relatively better a daptability to the test
image with bimodal flat-valley histograms; 3© the average
ME values of the ITT method, the MDSE method, the TRT
method, and the IT method on the test images of Group 5 and
Group 6 are 0.94%, 0.59%, 0.44%, and 0.42%, respectively,
which indicates the ITT method, the TRT method, and the
MDSE method can segment test images with bimodal flat-
valley histogram very well.

The test images of the seventh and eighth group are
generated by performing Gaussian point diffusion on the
test images of the third and fourth group, respectively (see
Figs. 13-14). The two groups of test images all show a
small blurred target on a blurred background. The gray level
histograms of these test images are right-biased unimodal.
As shown by the blue triangles and black ones in Figs. 5-6
(the corresponding image numbers are 31 to 35, and 36 to 40,
respectively): 1© the MET, TET, FET, TRT, and SDD meth-
ods are more suitable for segmenting test images with right-
biased unimodal histogram; 2© the SET, ITT, and FRFCM
methods have more serious mis-segmentation on these two
groups of test images; 3© the MDSE and IT methods have
completely consistent segmentation results on the seventh
group test images; only on the first, second, and fourth test
images in the eighth group, the segmentation results of the
MDSE and IT methods are slightly different.

C. EXPERIMENTS ON REAL-WORLD IMAGES
50 real-world images with different gray level histograms

are utilized to further test the segmentation adaptability
of 10 segmentation methods. The gray level histograms of
these real-world images can be approximated by a mixture
of several distributions such as Gaussian distribution, gamma
distribution, extreme value distribution, Rayleigh distribu-
tion, uniform distribution, and beta distribution. The 50 test
images are divided into 4 groups. The first group of images
are numbered from 1 to 11, the second group of images
are numbered from 12 to 28, the third group of images are
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numbered from 29 to 46, and the fourth group of images
are numbered from 47 to 50. The gray level histograms of
the first group of test images appear as unimodal left-biased,
unimodal right-biased or unimodal unbiased patterns; the
gray level histograms of the second group of test images are
shown as bimodal deep-valley or bimodal flat-valley patterns;
due to the complex background, the gray level histograms of
the third group of test images appear as multimodal patterns
with the number of modalities greater than or equal to 3;
the gray level histograms of the fourth group of test images
appear as peakless patterns.

FIGURE 15. 4 real-world images numbered 3, 18, 39, and 47 (left column),
their corresponding gray level histograms (middle column), and the
segmentation results of the MDSE method (right column). In the middle
column, each gray level histogram is displayed in a blue area, each black
curve shows the objective function curve of the MDSE method for
calculating thresholds, and the red dotted line and the number next to it
indicate the threshold selected by the MDSE method.

As 4 representative examples, Fig. 15 shows 4 test images
numbered 3, 18, 39, and 47 and their corresponding gray level
histograms, as well as the segmentation results obtained by
theMDSEmethod. It can be observed that theMDSEmethod
accurately separates the target from the background. In fact,
for the 4 test images, the corresponding differences of the
ME values between the MDSEmethod and the IT method are
0.088%, 0.092%, 0.003%, and 0.317%, respectively; the cor-
responding differences of the IoU values between the MDSE
method and the IT method are −0.053, −0.003, −0.01, and
−0.005, respectively. Additionally, the differences between
the selected thresholds obtained by the MDSE method and
the IT method are −4, −1, 1, and 1, respectively. All this

indicates that the segmentation results of the MDSE method
are very close to the optimal segmentation results determined
by the IT method.

Figs. 16-17 shows the quantitative comparison results
about segmentation accuracy of 10 segmentation methods on
50 real-world images. As shown in Figs. 16-17: 1© for the
test images with unimodal, bimodal, multimodal, or peakless
histograms, the average ME values of the MDSE method
and the IT method are much smaller than the average ME
values of other methods, and the average IoU values of the
MDSE method and the IT method are much larger than
the average IoU values of other methods; 2© although the
ITT and FRFCM methods have good segmentation accu-
racy for the images with bimodal histogram, they have seri-
ous mis-segmentation in the case of unimodal, multimodal,
and peakless patterns; 3© the SET method has serious mis-
segmentation in all 4 cases, and the respective average ME
values all exceed 11%, and the respective average IoU values
are less than 0.736; in particular, the ME values on 12 test
images are greater than 20%; 4© compared with the SET, ITT,
and FRFCMmethods, the overall segmentation accuracies of
the TET, FET, and MET methods are slightly better, but they
have relatively greater ME values for some test images, even
greater than 20%.

The IT method interactively selects segmentation thresh-
olds under the criterion of minimizing the ME value, so the
thresholds it chooses are optimal ones in the sense of mini-
mizing ME value. By calculating and comparing the differ-
ences between the thresholds selected by the IT method and
other methods (see Fig. 18), the degree of deviation in the
threshold selection of other methods can be quantitatively
compared. As shown in Fig. 18: 1© the threshold differences
between the MDSE, MET, TET, SET, ITT, FET, TRT meth-
ods and the IT method are distributed in intervals [−7, 9],
[−97, 119], [−169, 24], [−120, 89], [−153,84], [−134,84],
and [−108,71]; 2© although the thresholds selected by the
MET, TET, SET, ITT, FET, and TRT methods on partial test
images are relatively close to the optimal thresholds, their
selected thresholds are far from the optimal thresholds as
a whole: the number of cases where the absolute value of
the threshold difference is greater than or equal to 10 are
45, 41, 37, 35, 44, and 27, respectively; the number of
cases where the absolute value of the threshold difference
is greater than or equal to 20 are still 33, 31, 31, 28, 33,
and 15, respectively; 3© overall, the thresholds selected by the
MDSE method on different gray level histograms are closer
to optimal thresholds, and the absolute value of the threshold
difference are all within 9 gray levels.

D. COMPARISON EXPERIMENTS ON
COMPUTATIONAL EFFICIENCY

Comparing CPU time of different methods under same
software and hardware conditions can intuitively reflect the
difference in the computational efficiency of different meth-
ods. Note that CPU time of same program will fluctuate
slightly when running at different times. To reduce this kind
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FIGURE 16. ME values of 10 segmentation methods on 50 real-world images with different gray level histograms.
In each subfigure, the red dots, the green dots, the blue dots, and the black dots indicate the ME values of the
corresponding method on the first to fourth group of test images, respectively.
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FIGURE 17. IoU values of 10 segmentation methods on 50 real-world images with different gray level histograms.
In each subfigure, the red dots, the green dots, the blue dots, and the black dots indicate the IoU values of the
corresponding method on the first to fourth group of test images, respectively.
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FIGURE 18. The differences between the thresholds selected by the MDSE, MET, TET, SET,
ITT, FET, TRT methods and the thresholds selected by the IT method. In each subfigure,
the abscissa represents the image number, the ordinate represents the threshold
difference, and the number next to each black dot indicates the corresponding threshold
difference.

TABLE 1. Comparisons of 9 automatic segmentation methods in CPU time.

of fluctuating effect, each segmentation method to be com-
pared can be continuously run 20 times on same test image,
and then take the average CPU time of these 20 times as the
CPU time of this segmentation method on this test image.

Further, the mean and standard deviation of the CPU time
for each segmentation method on 40 synthetic images and
50 real-world images can be calculated. It can be observed
from Table 1 that the computational efficiencies of the ITT,
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TABLE 2. The average CPU time, average ME, and average IoU of the MDSE method at different jumping step size.

MET, FRFCM, and SDDmethods are relatively higher, while
the computational efficiencies of the SET, FET, and MDSE
method is relatively lower.

The ITT method first constructs the gray level distribution
of original gray level image, and then performs a relatively
simple calculation about mean and variance, therefore it takes
the least average CPU time. The MET method also needs
to calculate the gray level distribution of original image in
advance, and then computes Masi entropy. The computation
of Masi entropy involves logarithm operation and is rela-
tively more complicated than the computation of mean and
variance, so the computational cost of the MET method is
slightly higher than that of the ITT method. The FRFCM
method is an improved FCM clustering algorithm. Its main
computations include morphological reconstruction of the
image to be segmented, constructing gray level histogram of
the reconstructed image, and fast filtering of membership.
The computational cost of the FRFCMmethod is higher than
that of the ITT method, so its average CPU time is more
than that of the ITT method. The SDD method is also a
clustering segmentation method. It first constructs a normal-
ized gray level histogram and smooths the histogram in the
frequency domain, and then calculates a slope difference of
the smoothed gray level histogram. It finally selects clustering
centers based on the peaks of the computed slope difference
distribution. The last two calculations of the SDDmethod are
more complex than the calculation of Masi entropy of the
MET method, so the calculation cost of the former is slightly
higher than the latter.

In addition to the gray level distribution of original image,
the TET method also needs to automatically calculate the
entropy index q of Tsallis entropy by analyzing the redun-
dancy of original image, as well as the power of q of each gray
level distribution probability. As a result, its average CPU
time is greater than the MET’s CPU time. The TRT method
is a thresholding method based on transition region. Its key
points are to first extract a transition region set between tar-
gets and the background, and then follow a basic rule, that is,
the elements of stable transition region set are equal or close
to each other in the average gray level, to obtain the
final segmentation threshold using the maximizing 1-STRS
strategy. The main computations of this method occur in the
construction of transition region set.

The SET method is a local entropy method. It needs to
utilize an original gray level image to first construct a gray
level co-occurrence matrix, and then divide the gray level
co-occurrence matrix into 4 quadrants, and define the Shan-
non entropy on each quadrant. Compared with the ITT, MET,
and TET methods that all are based on one-dimensional gray
level histogram, the SET method is more time-consuming
to build a gray level co-occurrence matrix, so its average
CPU time is greater than ITT, MET, and TET methods.
The FET method is a thresholding method based on fuzzy
entropy. It essentially utilizes a fuzzy membership function
to modify the gray level histogram of an original gray level
image. Its main work involves two parts: one is to construct
a fuzzy membership function based on the division of the
gray level histogram, and the other is to define new fuzzy
entropy based on the constructed fuzzymembership function.
The computational cost of the MDSE method mainly arises
from the relatively complex calculations involving the guid-
ing edge images, the changing contour images, and the DSE.
Consequently, its average CPU time is the relatively largest.

To reduce the CPU time of the MDSE method, the goal of
determiningmaximumDSE can be divided into 2 procedures:
jumping processing and stepwise processing. In the jump-
ing processing, processing the gray level one by one in the
interval [tmin, tmax] in Step 2 of Algorithm 1 in Section IV is
changed to a jumping processing with a certain step size γ ,
while the other steps for calculating the DSE are unchanged.
A gray level t∗temp is output after completing the jumping
processing, and it corresponds to the maximum DSE gener-
ated during the jumping processing. Then, in the stepwise
processing, the gray level in the interval [t∗temp − γ + 1,
t∗temp + γ − 1] is processed one by one, that is, the interval
[tmin, tmax] in Step 2 in Algorithm 1 is replaced by the interval
[t∗temp − γ + 1, t∗temp + γ − 1], while the other steps for
calculating the DSE are unchanged. The final threshold t∗

is output after completing the stepwise processing, and it
corresponds to the maximum DSE in the gray level interval
[t∗temp − γ + 1, t∗temp + γ − 1].
As shown in Table 2, for 40 synthetic images and 50 real-

world images: 1© when the step size γ changes from 1 to 5,
the corresponding average CPU time decreases gradually, but
the corresponding average ME value and average IoU value
remain basically unchanged; 2©when the step size γ changes
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from 5 to 10, the corresponding average CPU time remains
basically stable, but the corresponding average ME value and
average IoU value fluctuate. Consequently, when the step
size γ is 3, 4, or 5, the MDSE method can approach the
TET method or the TRT method in terms of computational
efficiency, while maintaining the segmentation accuracy.

VI. CONCLUSION AND FUTURE WORKS
For the gray level images with a unimodal, bimodal, multi-

modal or peakless histogram, when the gray level distribution
of the target or the background can be approximated by
a Gaussian distribution, a gamma distribution, an extreme
value distribution, a Rayleigh distribution, a uniform distri-
bution, or a beta distribution, compared with the MET, TET,
SET, ITT, FET, TRT, SDD, and FRFCMmethods, the MDSE
method has more flexible adaptivity of selecting threshold
and better segmentation accuracy.

The MDSE method possesses the above 2 advantages
mainly due to the following 3 aspects: 1© the MDSE method
generates the guiding edge images in horizontal and vertical
directions respectively, which is conducive to highlighting the
transitional regions between the target and the background in
advance. Moreover, sampling the guiding edge images with
the changing contour images favors constructing dynami-
cally the gray level distribution of the transitional and non-
transitional regions. 2© the MDSE method constructs a series
of one-dimensional gray level histograms using the invariant
guiding edge image and the dynamically changing contour
images, and utilizes the Shannon entropy without parameter
as the entropy calculation model. Thus, the MDSE method
can calculate the Shannon entropy that indirectly reflects
both gray level distributions and pixel positions. 3© for each
possible gray level in the original image, the MDSE method
utilizes it to threshold the original image to generate a corre-
sponding binary image, and extracts a contour image from the
binary image. During this whole procedure, the segmentation
threshold maintains a close relationship with the original
image by means of the contour image.

The MDSE method needs to calculate the guiding edge
image and the changing contour images, which makes it
inferior to the MET, TET, SET, ITT, FET, TRT, SDD, and
FRFCMmethods in terms of computational efciency. How to
improve the computational efficiency of the MDSE method
is worth further investigation. In the future, some generalized
entropies can be considered to replace the Shannon entropy
adopted by the MDSE method, then the automatic evaluation
of the parameters in those generalized entropies will be worth
further study.
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