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ABSTRACT Partial multiview clustering, which aims to effectively merge multiple prespecified incomplete
views to improve clustering performance, is a research hotspot and difficulty in the field of machine learning.
Guo et al. proposed a partial multiview clustering method (APMC) based on anchor graph, which uses a
Gauss kernel function to solve the similarity matrix. The Gaussian kernel function is sensitive to parameter
σ , and it is difficult to find the optimal value only by stepwise adjustment in practical applications. This
undoubtedly affects the practicality of the APMC algorithm. To address this issue, an adaptive partial
multiview clustering method based on anchor graph (AAPMC) is developed in this paper, which proposes
an adaptive neighbor assignment strategy and utilizes it to improve the anchor-based similarity matrix
computation of each view. The method proposed in this paper uses an adaptive method to solve the similarity
matrix, eliminating the tediousness of parameter adjustment. In addition, the non-iterative method based on
anchors is used to solve the optimal solution with low time complexity and is suitable for large-scale datasets.
In short, our method is simple and effective, and it is easier to implement in practice. Extensive experiments
show that our model can not only effectively solve the parameter setting problem, but also performs better
than the state-of-the-art partial multiview clustering methods.

INDEX TERMS Adaptive neighbor, anchor graph, partial multiview clustering.

I. INTRODUCTION
With the development of information technology, multiview
data is becoming more and more common in reality [1], [2].
For example, a patient’s physical condition can be monitored
simultaneously by multiple sensors in a home care system,
or an image can be represented by visual features or text
annotations. In general, different views provide complemen-
tary information to describe the data, which makes multiview
learning get better performance than single view method [3].
As one of the most representative methods of multiview
learning, multiview clustering can obtain better clustering
results by exploring the consistency and complementarity
of different views, and has been widely applied in data
analysis, image classification, significance detection and
information retrieval [4]–[6]. Many advanced methods have
been proposed for multi-view clustering. Zhou et al. [7]
propose a novel incremental multi-view spectral clustering
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method (IMSC). In IMSC, instead of ensembling the
collection of all views simultaneously, they integrate them
one by one in an incremental way. This method is scalable
and applicable to streaming views. Wang et al. [8] propose a
Multi-view Clustering via Late Fusion Alignment Maximiza-
tion (MVC-LFA). MVC-LFA proposes to maximally align
the consensus partition with the weighted base partitions.
Such a criterion is beneficial to significantly reduce the
computational complexity and simplify the optimization
procedure. However, due to noise, failure of data-collecting
equipment and many other unforeseen factors, data can be
lost randomly in a single view or multiple views, making
partial view data widely exist [9]. Traditional multiview
clustering methods cannot directly process this data because
they work under the assumption that all views are complete.
In recent years, partial multi-view clustering has attracted
extensive attention.

Researchers have proposed a variety of methods for
partial multiview clustering [10]–[20], which can be gener-
ally divided into two categories: matrix factorization-based
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clustering method and graph-based clustering method. The
matrix factorization technique directly learns the low dimen-
sional consistent representation of all views. For example,
PVC [10] uses nonnegative matrix factorization (NMF) and
L1 regularization to learn a common latent subspace of all
views where instances of different views are forced to have
the same representation. MIC [11] first fills the missing
samples with the average of all instances in the corresponding
view, and then extends MultiNMF [12] through L2,1 regular-
ized NMF to learn the consistent representation of all views.
DAIMC [13] further extends MIC by seminegative matrix
factorization and L2,1 regularization regression. However,
they only pay attention to the consistent representation of
learning and ignore the internal structure of the data, and
cannot guarantee the distinguishability and compactness of
the representation. Graph based methods aim to learn low
dimensional representations from different graphs, which
reveal the relationships among all samples. Compared with
the method based on matrix factorization, the geometric
structure of data can be effectively used. Trivedi et al. [14]
proposed to complete the view lacking instances by referring
to the Laplacian matrix of the complete view, and then
learn the low-dimensional representation of different views
through the kernel CCA. It requires at least a complete view,
which is the biggest disadvantage of this method. IMG [15]
integrates latent subspace generation and compact global
structure into a unified framework through a Laplacian graph
on a complete data instance, and this integration brings
more parameters. DCNMF [16] develops a dual constraint
framework by combining cluster similarity and manifold
keeping constraints. Gao et al. [17] proposed to fill the
missing views with the average of the instances in the
corresponding views for the construction of the graph and
the learning of the subspace. However, this method will
not work when the multiview data has a large number
of missing instances in all views. Liu et al. [18] unifies
the estimation and clustering of partial multiview into a
single optimization process, proposes MKKM-IK algorithm,
which has good performance, but has high computational
and storage complexity at the same time. On the basis of
MKKM-IK, LF-IMVC [19] proposed a late fusion method
to simultaneously clustering and imputing the incomplete
base clustering matrices. Though both MKKM-IK and
LF-IMVC unify the imputation and clustering into a single
optimization, they are different in the manner of imputation:
the former is early fusion (or kernel-level imputation),
while the latter is a kind of late fusion (or decision-level
imputation).

Inspired by anchor-based strategies [21], [22], Guo and
Ye [20] proposed an anchor-based partial multiview clus-
tering (APMC) method. APMC uses anchors to reconstruct
clustering relationships between instances, and integrates
intra-view and inter-view similarities through anchors. This
anchor-based approach effectively improves the calculation
efficiency, and easy to be extended for more than two partial
views.

However, there are still some limitations in APMC. Firstly,
there are two parameters involved in the intra-view similarity
computation, one is k, which controls how many nearest
anchors are selected as the basis for sample representation,
the other is σ , which adjusts the local influence range of
the Gaussian kernel function. Especially the Gaussian kernel
function used for solving the similarity matrix is very sensi-
tive to the parameter σ , but APMC does not give effective
setting criteria or method. Parameters problem leads to poor
operability of APMC in practical applications [23],[24].
Secondly, ignoring of the credibility of view itself. At the
stage of synthesizing inter-view similarity, APMC treats all
views equally. Affected by factors such as missing samples
or noise, the credibility of different views should be different.

In this paper, to solve the limitations of APMC, we intro-
duce an adaptive strategy to solve the similarity matrix,
which is effective and easy to operate for partial multiview
clustering. On this basis, an Adaptive Anchor-based Partial
multiview Clustering (AAPMC) method is presented. The
experimental results verify its superiority.

The rest of this paper is organized as follows.
Section 2 briefly introduces some works related to the
proposed method. Section 3 introduces AAPMC in detail.
Section 4 presents the experimental results. Section 5 con-
cludes the paper.

II. RELATED WORK
In this section, we review relevant research of partial multi-
view clustering and anchor-based similarity reconstruction as
our foundations for the subsequent discussion.

A. NOTATIONS AND PROBLEM DEFINITION
We summarize the notations used in this paper, which is
shown in the Table 1.

TABLE 1. Summary of the notations.

To solve the missing examples clustering problem, partial
multiview clustering method always assume that instances
share the common feature space in each individual view and
the two different views are bridged by the shared common
examples. To facilitate the discussion and without loss of
generality, we take two views for illustration. Suppose there
are n samples {x1, x2, . . . , xn} in total. We separate the
original data of the two partial views as {X (1,2),X (1),X (2)

}.
X (1,2)

∈ Rnc×(d1+d2) represents the common samples present
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in both views, nc is the number of common samples. X (1)
∈

Rn1×d1 represents the samples that appear only in view-1,
n1 is the number of samples that only appear in view-1,
X (2)
∈ Rn2×d2 denotes the samples only appearing in view-2,

n2 is the number of samples only appearing in view-2. Here
d1 and d2 denote the feature dimension of view-1 and view-2
respectively. Obviously, the formula n = nc+ n1+ n2 can be
derived.

As shown in Fig 1, the paired common part of the two views
are X (1,2)

= {x3, x4, x5}. The samples appear only in view-1
are X (1)

= {x1, x2} and the samples appear only in view-2 are
X (2)
= {x6, x7}.

FIGURE 1. Partial multiview data.

The purpose of partial multiview clustering is to group all
the above samples into c clusters, where c is given in advance
by the user.

B. THE SIMILARITY MATRIX CONSTRUCTION IN APMC
The APMC algorithm uses spectral clustering method to
classify the data at last, and as known, spectral clustering
classifies the data according to the similarity matrix of the
input data, so the clustering results of APMC depend on the
similarity learning of the data to a great extent.

APMC algorithm firstly select the k nearest anchor points
as a set of bases to represent every sample, and then
uses a similarity calculation method adopt Gaussian kernel
function to calculate the intra-view similarity. At the stage of
solving the inter-view similarity, the APMC synthesize the
similarities between common instances and anchors in the
proportion of two views each accounting for half. The steps
of anchor-based similarity construction in APMC algorithm
are briefly described as follows.

(1) Intra-view similarity construction. Suppose there are
l pairs of anchor points by selecting the common instances
that appear in both views, i.e., l = nc. Denote the set of all
instances in the v-th view as (x(v)i )nc+nvi=1 , the anchor points in
the v-th view as (u(v)i )nci=1. The similarity between the instance
x(v)i and anchor point u(v)j is defined as

Z (v)
ij =


exp(−D2(x(v)i , u

(v)
j )/σ 2)∑

j∈〈i〉v exp(−D2(x(v)i , u
(v)
j )/σ 2)

∀j ∈ 〈i〉v

0 otherwise
where 〈i〉v is an index set of k (� l) nearest anchors of
x(v)i according to a distance function D2(x, u) and σ is the
parameter controlling the neighborhood width.

(2) Inter-view similarity solving. The final unified similar-
ity matrix is composed of three parts Z = [Z̃ ; Z̃ (1)

; Z̃ (2)] ∈
Rn×l , here Z̃ (v)

∈ Rnv×l(v = 1, 2) indicates the similarity
between the samples appear only in the v-th view and
anchors, which is consist of the last nv rows of the Z v ∈
R(nc+nv)×l . Z̃ ∈ Rnc×l indicates the similarity between
the common instances and anchors. In APMC, to leverage
the information of both views, the element of Z̃ is defined
as z̃ij = 1

2 (̃z
(1)
ij + z̃

(2)
ij ).

The consistent similarity matrix S ∈ Rn×n among all
instances is approximated as S = Z3−1ZT in APMC, and
here 3 = diag(ZT 1) ∈ Rl×l .

C. MOTIVATIONS AND CONTRIBUTIONS
Clustering is a solution process from the local structure of
the sample to the global structure of the sample set. The
accurate expression of the local structure of the sample is the
prerequisite to ensure the final clustering quality.

In partial multiview clustering, it is more challenging to
accurately express and fuse the local structure of samples
with incomplete information through samples with complete
information. APMC provides a solution, but it involves
multiple parameters, and there is a problem of parameter
sensitivity. In complete single view clustering problem,
Nie et al. [25] proposed an adaptive neighbor assignment
strategy to learn the data similarity matrix by assigning the
adaptive and optimal neighbors for each data point based on
the local connectivity. We improve this strategy and apply it
to the calculation of sample similarity in partial multiview
clustering.

To be specific, first we should select the common parts
of the views as anchors to build an anchor graph and
use an adaptive neighbor assignment strategy to construct
a similarity matrix between samples and anchors, then
we integrate intra-view and inter-view similarities. Finally,
perform spectral clustering on the consensus matrix to obtain
clustering results.

In general, our approach has the following advantages:
(1) Our method uses the parameter-free adaptive neighbor-

hood assignment strategy to construct the similarity matrix,
which avoids the tedious parameter adjustment and is easier
to use. Finally, perform spectral clustering on the consensus
matrix to obtain clustering results.

(2) Our method adopts a non-iterative approach with
low time complexity. In addition, this method solves the
similarity matrix only involving basic operations of addition,
subtraction, multiplication, and division. It does not require
the calculation of Gaussian kernel functions and other more
operations, so it is more efficient.

(3) This method has good generalization ability and can be
extended to more than two views.

III. THE PROPOSED METHOD
A. METHOD FRAMEWORK
The partial multiview clustering method proposed in this
paper can be divided into two stages. Fig 2 shows the
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FIGURE 2. The framework of the proposed method.

process of the two stages. The consensus similarity matrix
is constructed at the first stage and spectral clustering is
performed at the following stage. The method we proposed
in this paper aims to learn a consensus representation S from
multiple views for clustering, and the solution process of the
consensus similarity matrix is shown in Fig 3. We still use
two views to illustrate.

B. ANCHOR-BASED ADAPTIVE SIMILARITY
CONSTRUCTION
The similarity matrix is learned by assigning a local
connection-based adaptive optimal neighbor to each sample.
The similarity z(1)ij between the samples x(1)i and the

anchor u(1)j is expressed as the probability that u(1)j is the

neighbor of x(1)i . A closer distance corresponds to a greater
probability and similarity. Therefore, the neighbor probability
of obtaining the i-th sample in view-1 needs to solve the
following problems:

min
z(1)i

T
1=1,z(1)ij ≥0

∑l

j=1
‖ x(1)i − u

(1)
j ‖

2
2 z

(1)
ij + γ

∑l

j=1
z(1)ij

2
,

(1)

where z(1)i
T
represents the i-th row of Z (1), z(1)ij is the j-th value

of z(1)i
T
, 1 denotes a column vector with all elements equal

to 1, l is the number of anchors and γ is the regularization

parameter. Let d (1)ij =

∥∥∥x(1)i − u
(1)
j

∥∥∥2
2
, and (1) can be rewritten

in vector form as

min
z(1)i

‖ z(1)i +
d (1)i

2γ
‖
2
2 s.t. z(1)i

T
1 = 1, z(1)ij ≥ 0, (2)

Given the equality and inequality constraints in (2), we use
the Lagrangian function with KKT condition [26] to solve.
The Lagrangian function of (2) is

L
(
z(1)i , η, βi

)
=

1
2
‖ z(1)i +

d (1)i

2γi
‖
2
2−η

(
z(1)i

T
−1
)
−βTi z

(1)
i ,

(3)

where η and βi are the Lagrangian multipliers, η is the
equality constraint coefficient, and βi is the inequality
constraint coefficient. According to the KKT condition,
to solve the above optimization problem, the following
conditions must be met:

∂L
∂z(1)i

∣∣∣∣
z(1)i =z

′
i

= 0

η 6= 0
βi ≥ 0
βiz′i = 0
z′i
T 1− 1 = 0

z′i ≥ 0,

(4)

where z′i is the optimal solution, and γ can be set as γ =
k
2d

(1)
i,k+1 −

1
2

∑k
j=1 d

(1)
ij [25], such that the optimal solution to

(3) is

z(1)ij =


d (1)i,k+1 − d

(1)
ij

kd (1)i,k+1 −
∑k

j=1 d
(1)
ij

j ≤ k

0 j > k.

(5)

The number of neighbors k is much easier to adjust than
the regularization parameter γ , because k is an integer with an
explicit meaning. For each sample, we can use (5) to assign its
neighbors and obtain a sparse z(1)i that has exactly k nonzero
values.

C. INTEGRATING INTRA-VIEW AND INTER-VIEW
SIMILARITIES
After getting the intra-view similarity of two views respec-
tively, Z (1) and Z (2), we use Z = W (1)Z (1)

ij + W
(2)Z (2)

ij , Z ∈
Rn×l to represent the similarity of all samples and anchors in
the two views in order to make full use of the information.
In Fig 2, matrices W (1) and W (2) can help to realize this
inter-view fusion.W (1) andW (2) represent the fusion weights
of view-1 and view-2 respectively.Wi

(1)
= 1 if the i-th sample
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FIGURE 3. The solution process of the consensus similarity matrix.

only appears in view-1, andWi
(1)
= 0 if the i-th sample only

appears in view-2.
The non-missing samples in a view represent the informa-

tion that we can use. The more information a view provides,
the greater the weight of this view. Moreover, the view with
more missing samples should be assigned a smaller weight to
help achieve a highly reliable and consistent representation
and to reduce the negative impact of incomplete views. If a
large difference is observed in the sample missing rates of
multiple views and if the weights are equally assigned, then
those views with too many missing samples may provide too
much inaccurate information and affect the final clustering
results. Therefore, in our method, when the i-th sample
appears in both views,Wi

(1) can be expressed in the following
formula.

Wi
(1)
= (nc + n1)/(nc + n1 + nc + n2)

= (nc + n1)/(nc + n) (6)

In a similar way,W (2) can be computed.Wi
(1)
+Wi

(2)
= 1.

The fusion similarity matrix S ∈ Rn×n among all samples in
the two views can be obtained by [27].

S = Z3−1ZT , 3 ∈ Rl×l, 3 = diag(ZT 1)

S combines intra-view and inter-view similarities.

D. SPECTRAL CLUSTERING
After obtaining the fused similarity matrix S, we perform
spectral clustering to obtain the final clustering result.

Spectral clustering learns a low-dimensional representa-
tion F ∈ Rn×c for clustering according to the consensus
matrix S. Spectral clustering minimizes the problem (7)
through feature decomposition on L, obtains the correspond-
ing c minimum feature vectors, and then performs k-means
clustering to obtain the clustering result.

min
FTF=I

Tr(FTLF), (7)

where Tr(.) is the trace of the matrix, and c is the number of
clusters of the cluster. L = D-S is a Laplacian matrix [28],
D ∈ Rn×n is a diagonal matrix with Dii ∈

∑n
j=1 Sij and I is

the identity matrix.

Algorithm 1 AAPMC

Input: Partial multiview data {X(1,2),X(1),X(2)};
the number of nearest anchors k; the number of

clusters c;
Output: The cluster indicators;
1: Select the common part as anchors, the number of anchors
is l = nc.
2: Use formula (5) to calculate intra-view similarities Z(1)

and Z(2).
3: Weighted fusion Z(1), Z(2), get Z ∈ Rn×l .
4: Calculate the fusion similarity matrix S = Z3−1ZT .
5: Perform spectral clustering to obtain the results.

E. EXTENSION FOR MULTIPLE VIEWS
TheAAPMCmethodwe proposed can not only handle partial
multi-view clustering of two views, but also can be easily
extended to more than two partial views. Taking three views
as an example, the entire extension process is shown in Fig 4.

Fig 4 considers all possible situations in the incomplete
three-view data, which contains three types of examples:
missing no view, missing one view, and missing two views.
nc represents the number of instances that appear in all three
views. n12 represents the number of instances shared by view
1 and view 2. n13 and n23 have similarmeanings. nv represents
the number of instances that only exist in the v-th view.
We first divide this partial three-view case into three

two-view subcases. To adjust each subcase so that we can
directly conduct two-view anchor-based similarity construc-
tion, we rearrange the instances according to their types.
After dividing the partial three-view case, we then construct
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FIGURE 4. Anchor-based similarity reconstruction for partial three-view data.

a similarity matrix for each subcase. The anchor-based
similarity reconstruction method can be parallelly applied
here. For each partial two-view subcase, we select the
common instances present in both views as anchors. Next,
we compute a truncated similarity matrix and the correspond-
ing similarity matrix for each subcase. To further fuse the
above similarity matrices in three partial two-view subcases,
we rearrange them into aligned similarity matrices whose
rows and columns follow the original order of instances.
Finally, we perform spectral clustering on the consensus
matrix S to obtain the clustering results.

F. COMPUTATIONAL COMPLEXITY ANALYSIS
At the first stage of the similarity reconstruction, the time
complexity of generating the similarity matrix S is
O
(
nl
∑

v dv
)
, where n is the total number of samples, l is

the total number of anchors and dv is the feature dimension
of the v-th view.

At the second stage of spectral clustering on the fused
similarity matrix S, benefiting from the properties of the
similarity matrix S, by executing SVD, the time complexity
becomes O

(
min{nl2, n2l}

)
. If we only need the c largest

singular values, the time complexity can be reduced to
O
(
nc2
)
[29].

IV. EXPERIMENTS
To verify the effectiveness of AAPMC proposed in this paper,
we compare it with eight advanced methods on five datasets.

A. DATASETS
Oxford Flowers Dataset (Flowers17) [30] is made up
of 17 flower classes, each with 80 images which are described
by color, shape, and textures. Following [11],[20], we take
the X2 distance matrix of color and shape features as the two
views.

TABLE 2. Description of the used datasets.

Multiple Features Handwritten Dataset (Digit) [31]
has six feature sets of ten classes of digits and each
class holds 200 instances, summing up to 2,000 instances.
Following [20], we set view-1 as 76 Fourier coefficients of
the character shapes, and view-2 as 216 profile correlations.

USPS-MNIST Dataset merges two famous handwritten
datasets: USPS [32] and MNIST [33]. USPS includes 9,
298 digit images with the size of 16× 16 in ten classes, while
there are 70,000 digit images with the size of 28 × 28 in the
MNIST. The same digits in two datasets can be considered
as described in two different views. We follow [20] and
randomly select 50 images per digit class from each dataset.
Consequently, each view comprises 500 instances.

Synthetic Dataset [34] consists of two views. For each
view, we select 200 data points from a two-component
Gaussian mixture model as instances at random. There are
two clusters (i.e., cluster 1 and 2). Specifically, the cluster
means are U (1)

1 = [1, 1] and U (1)
2 = [4, 2] in view-1,

U (2)
1 = [1, 3] andU (2)

2 = [3, 1] in view-2. The corresponding
covariances are∑(1)

1
=

[
0.3 0
0 0.4

] ∑(1)

2
=

[
0.2 0.15
0.15 0.35

]
∑(2)

1
=

[
0.25 − 0.05
−0.050 0.2

] ∑(2)

2
=

[
0.4 0.1
0.1 0.3

]
3Sources Dataset [35] is collected from three online news

sources: BBC, Reuters, and The Guardian. In all, there are
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FIGURE 5. The ACC indicator of two-view datasets.

FIGURE 6. The NMI indicator of two-view datasets.

948 news articles including 416 distinct news stories of six
topic classes from the period February to April 2009. Among
these distinct stories, 169 are reported in all three sources,
194 are in two sources, and 53 appear in a single news source.

B. COMPARISON METHODS
1) BSV (BEST SINGLE VIEW)
As a fundamental method, the best single view (BSV)method
firstly fills in the missing values in each feature with the
average value of the feature for each view, and then performs
clustering on each view and reports the best result.

2) SC[C]
After preprocessing, we concatenate each instance’s features
from different views into a single feature vector. Then,
we obtain an instance-to-instance similarity matrix and
perform spectral clustering.

3) SC[A]
After preprocessing, we first compute an instance to instance
similarity matrix for each view. Then, we fuse these similarity
matrices by equal-weighted average and perform spectral
clustering.

4) MultiNMF [12]
In multiview NMF, a structure sparsity based unsupervised
feature selection method is proposed to seek a common latent
subspace for multiview clustering. It is designed for complete
multiview learning, meanwhile it is the foundation of the
following partial multiview algorithms. Therefore, we impute
all the missing values as BSV, and then perform themultiview
NMF.

5) PVC [10]
The partial multiview clustering is the first work in dealing
with partial multi-modal data based on subspace mapping.

FIGURE 7. The ACC and NMI indicator of three-view dataset.

It is proposed based on NMF to establish a latent sub space,
in which the instances described a same sample in different
views are close to each other and similar instances in the same
view should be well grouped.

6) MIC [11]
Extends MultiNMF via weighted NMF with L2,1 regulariza-
tion.

7) IMG [15]
Incomplete MultiModality Grouping which integrate global
structure of data to subspace learning.

8) APMC [20]
Anchor based Partial multiview Clustering method, which
utilizes anchors to reconstruct instance-to-instance relation-
ships for clustering.

C. EXPERIMENTAL SETTINGS
3Sources is a partial multiview dataset, while other datasets
are complete. We set Partial Data Ratio (PDR) from 10%
to 90% with 20% as interval. 0% means that all views are
complete. The lost samples are evenly distributed across all
views, and each sample is available in at least one view.
Same to APMC, each method was operated 20 times, and the
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TABLE 3. The running time (seconds) of different methods on different datasets at 50% PDR.

FIGURE 8. Influence of the number of nearest anchors k with different PDR settings on ACC.

average was calculated to eliminate the uncertainty caused by
randomness.

In order to evaluate the performance of the clustering
results, two classic clustering evaluation indicators are
adopted in this paper: clustering accuracy (ACC) and stan-
dardized mutual information (NMI). These two evaluation
indicators measure the clustering algorithm performance by
the similarity between the clustering results and the reference
results. The values of these two indicators are between
0 and 1, and the larger the value is, the better performance
of clustering algorithm will be.

D. RESULTS AND ANALYSIS
Fig 5 and Fig 6 report the results of ACC and MIN values on
two-view datasets with different PDR settings, respectively.
Fig 7 gives the result of ACC and MIN values on three-view
dataset with different PDR settings. Table 3 shows the
running time of different methods on different datasets at 50%
PDR. It has the same trend under other PDRs. Based on these
results, the following observations and discussions are made.

When the dataset is complete, all methods show relatively
high performance. As PDR increases, the performance of all
algorithms drops, the improvement of our AAPMCover BSV,
SC[C], SC[A], MultiNMF, PVC, IMG and APMC becomes
larger.

Over two-view data sets, according to the trends of
ACC and NMI with varied PDR, the above algorithms can
be roughly divided into 3 classes: BSV, SC[C], SC[A],
MultiNMF, MIC, and PVC, IMG, APMC, respectively. The
first class, SC[C] and BSV perform poorly in most cases,
which demonstrates that concatenating all views into a
long single view is not a good approach in dealing with
the multiview clustering tasks. This is mainly because the
differences between views in feature scales and distribution
are ignored and the complementary information between
different views cannot be utilized. For the second class,
as the PDR increases, the value of ACC and NMI of the

SC[A], MIC, and MultiNMF methods decreases signifi-
cantly, especially on the Digit dataset and the Synthetic
dataset. This shows that filling the missing samples with
corresponding average samples is not a good way to solve
the partial multiview clustering problem. As for the third
class, we found that the PVC, IMG, and APMC methods can
obtain relatively acceptable performance, which proves that
using the complementary information of the view to solve the
partial multiview clustering problem is an effective method.
Compared with all the above methods, our AAPMC mostly
shows better performance. In the case of two views, only
in the complete Synthetic dataset, can’t our method achieve
the best performance, but the gap between our result and the
optimal result is very small.

Over 3Sources dataset, our proposed AAPMC method
consistently outperforms other competitors in terms of ACC
indicator in three two-view cases and one three-view case.
In terms of NMI indicator, the three-view case is better than
all competitors, but on the two two-view data sets, the APMC
algorithm has a better NMI value. When the number of views
is increased from two to three, AAPMC produces better
results, which indicates that it can be extended to more than
two views.

Compared with the previous method, the running time of
APMC has been greatly reduced. But our method has the least
running time on all data sets, and it still has a certain reduction
compared to APMC. Therefore, our method improves the
clustering accuracy while further reducing the running time.

E. PARAMETER SENSITIVITY
To further explore the performance of our method, here
we also give a parameter study. Our method AAPMC only
has one parameter k to be fine-tuned. We set PDR from
0% to 90% as aforementioned, and explore the clustering
performance of AAPMC by ranging k within {4,6,. . . ,18}.
As shown in Fig 8 and Fig 9, our method is insensitive to k in
a relatively wide range.
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FIGURE 9. Influence of the number of nearest anchors k with different PDR settings on NMI.

V. CONCLUSION
In recent years, the partial multiview clustering problem has
been widely studied, and many clustering algorithms have
been proposed. However, the existing methods still have the
following shortcomings, such as high time complexity, or too
many parameters involved, or cannot be extended to more
than two views.

In this paper, a partial multiview clustering method
AAPMC based on adaptive anchor strategy is proposed,
which can solve the shortcomings of previous methods. The
experimental results fully validate its superiority.

As for future work, it will be interesting to extend
the adaptive anchor-based method to partial multi-view
clustering problemwhere there are no sample amongmultiple
views contains all the view features. In addition, most
of the existing incomplete multi-view clustering methods
(including our method) require prior of the number of
clusters. We plan to refer to COMIC [36] and adjust our
method so that clustering can be performed without prior of
cluster size.
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