
Received June 11, 2020, accepted June 22, 2020, date of publication September 22, 2020, date of current version December 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011258

Spatiotemporal Remote-Sensing Image Fusion
With Patch-Group Compressed Sensing
LEI LI 1,2, PENG LIU 1, JIE WU 1,2, LIZHE WANG3, (Member, IEEE), AND GUOJIN HE 1,2
1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3School of Computer Science, China University of Geosciences, Wuhan 430074, China

Corresponding author: Peng Liu (liupeng@radi.ac.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61731022, Grant 41971397, Grant
41701468, and Grant U1711266, and in part by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences,
Director Youth Funding under Grant Y6XS5900CX and Grant Y5ZZ08101B.

ABSTRACT Generally, it is difficult to acquire remote sensing data whose resolution is both highly
spatial and highly temporal from a single satellite. In this paper, a novel compressed sensing (CS)-based
spatiotemporal data fusion (CSBS) method is proposed to synthesize such high-spatiotemporal resolution
images.With CSBS, a low-spatial resolution remote senisng image is treated as a sampling of the high-spatial
resolution image. The down-sampling in the spatial domain of images is modeled as a CS measurement
matrix in CSBS. Moreover, continuity constraints in the temporal domain are also introduced into the
CSBS object function for CS reconstruction. To better represent the intrinsic features of the data, images
are segmented into many small patches and clustered into several groups via K-means. Dictionary training,
measurement matrix identification, and high-resolution prediction are carried out group-by-group. Based
on features learned from patch groups, the transformational relationship between spatial-temporal images
having different resolutions are easily identified. Comparedwith previous compressed sensing and dictionary
learning methods, CSBS is characterized by: (1) the patch-group stratagem in dictionary learning and
measurement matrix learning; (2) the combination of continuity in temporal domain and sparsity in spatial
domain. The proposed method is then comprehensively compared with different methods using land-surface
reflectance data. Experiment results validate the effectiveness and advancement of CSBS for spatiotemporal
data fusion.

INDEX TERMS Compressed sensing, landsat, land-surface reflectance, moderate resolution imaging
spectroradiometer (MODIS), remote sensing, spatiotemporal data fusion.

I. INTRODUCTION
With the recent developments of earth observational
remote-sensing technologies and the increasing amount of
free satellite imagery available to the public, more and
more volumes of the Earth’s land-surface data can be eas-
ily acquired. Satellite-based remote-sensing images pro-
vide valuable geospatial information for characterizing land
cover and land cover dynamics at both global and regional
scales. Many high-spatiotemporal resolution remote-sensing
imagery applications have thus been promulgated (e.g.,
land-cover discrimination [1], seasonal vegetation monitor-
ing [2], [3], carbon sequestration modeling [4], crop yield
estimation [5], human nature interactions monitoring [6] and
ecosystem climate feedback reporting [7]). However, owing

The associate editor coordinating the review of this manuscript and

approving it for publication was Gulistan Raja .

to technical and budget limitations, spatial and temporal
resolution capabilities are mutually restricted. On one hand,
satellites with high-spatial resolution sensors require long
revisit cycles, which implies low temporal resolutions. On
the other hand, satellites employing short-time revisit cycles
often acquire only low- or middle-spatial resolution images.
Therefore, it is difficult to acquire high-spatiotemporal reso-
lution data from a single satellite.

Spatiotemporal data fusion is a feasible solution for the
above-mentioned problem and has attracted much atten-
tion. This technique provides high-spatiotemporal resolution
data by fusing frequent low-spatial resolution images with
infrequent high-spatial resolution images. To perform data
fusion, fusion methods must accurately identify relationships
between images with different resolutions.

Over the past decades, a variety of spatiotemporal
data-fusion methods have been developed. The existing
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spatiotemporal data fusion methods can be categorized into
different groups: linear mixture, unmixing, bayesian, deep-
learning, and sparse approximation methods etc. The lin-
ear mixture-based method assumes that the land-surface
reflectance between Landsat Enhanced Thematic Mapper
Plus (ETM+) and Moderate Resolution Imaging Spectrora-
diometer (MODIS) are basically consistent and that predicted
pixel is the mixture of its neighborhood in temporal, spatial
or spectral domain. Among the linear mixture basedmethods,
the spatial and temporal adaptive reflectance fusion model
(STARFM) [8] developed by Gao in 2006 is the first algo-
rithm of its kind. STARFM can well handle the situation
in which pixels in coarse-resolution images are ‘‘pure’’ pix-
els. However, the empirical weight function and the ‘‘pure’’
pixels assumption make STARFM short at heterogeneous
landscapes. STARFM was later modified and applied to
other products, such as land surface temperature (LST) [9]
and vegetation indices [10]. STARFM was also be inter-
grated into an operational framework [11] which automat-
ically perform BRDF correction, co-registration, selection
of input data pairs. The enhanced STARFM (ESTARFM)
[12] introduces a coefficient to improve STARFM’s accu-
racy in heterogeneous landscapes. But ESTARFM can be
worse than STARFM for predicting abrupt changes of
land cover type [13]. The spatial-temporal adaptive algo-
rithm for mapping reflectance change (STAARCH) [14]
improve STARFM’s performance by detecting change points
from series of coarse images. But it is more suitable for
spatial-temporal fusion of vegetated surface. To increase
the performance in heterogeneous landscapes of STARFM,
ATPPK-STARFM [15] downscales the 500mMODIS images
to 250m before implementation of STARFM. To improve
the weight function in STARFM, ISKRFM [16] use image
inpainting and steering kernel regression to detect the land
cover change and decide the weight function. Among these
algorithms, only STAARCH has considered the landscape
disturbances, whereas others assume that land-cover types
remain unchanged. Unmixing-based methods assume that
the pixels of low-spatial resolution images are linear mixed
at the end members of high-spatial resolution images. Thus,
it estimates the value of fine pixels by unmixing the coarse
pixels. The multi-sensor multi-resolution technique (MMT)
[17] is probably the first unmixing-based fusion method.
Other unmixing-based methods [18]–[23] have been con-
sidered as improvements. STDFA [18] estimates reflectance
difference in a moving window using an unmixing manner.
A adaptive moving window size is applied by MSTDFA [19]
to further improve STDFA. OB-STVIUM [20] proposed a
new way to define the endmember fractions for improving
the estimation. Zurita-Mill introduces extra constrains into
the unmixing process to ensure that the solved reflectance
values are positive and within an appropriate range [21]. For
the same purpose, The Landsat-MERIS fusion method [22]
predefines the endmember reflectance and modifies the cost
function to ensure the correctness of the solved endmember
reflectance. To account for the within-class NDVI spatial

variability, locally calibrated multivariate regression mod-
els is introduced into LAC-GAS NDVI integration method
[23]. More importantly, these algorithms face the same dif-
ficulty in delineating and characterizing the disturbances
precisely when estimating the Landsat surface reflectance.
Bayesian-based methods treat spatiotemporal data fusion
as a maximum a posterior (MAP) problem. The key to
bayesian-based data fusion methods is finding the rela-
tionships between the input and target predicted images.
Bayesian-based methods predict the target images by max-
imizing its conditional probability relative to the input fine
and coarse images [24]. Xue developed a bayesian data
fusion approach predict the target image by interpolating
the coarse image [25]. A unified fusion method [26] devel-
oped by Huang uses the low-pass filtering to model the
relationship between coarse and fine images. Recently, deep-
learning methods have been developing fast. As a typical
convolutional neural network (CNN)-based fusion method,
the spatiotemporal fusion using deep convolutional neural
networks (STFDCNN) [27], comprises of two five-layer
CNNs. Deep-learning methods can better learn the feature
relationships of spatiotemporal data and have shown promis-
ing results. Sparse approximation methods retrieve the
underlying relationships from the hidden sparse coding space
of an image. Based on sparse approximation theory, an image
can be sparsely decomposed into dictionary and coeffi-
cients matrix. The sparse representation-based spatiotempo-
ral reflectance fusionmodel (SPSTFM) [28] jointly trains two
dictionaries by enforcing coefficient similarities. Following
SPSTFM, many improvements are introduced, such as using
only one pair of fine- and coarse-resolution images [29],
enhancing fusion by structural sparsity [30], enhancing fusion
by adding a perturbation on the over-complete dictionary
[31], and others. Compressed sensing for spatiotemporal
fusion (CSSF) [32] was the first to explicitly exploit the
relationships between high- and low-resolution images by
building a down-sampling mapping process. Although CSSF
provided new understandings for spatio-temporal fusion in
spatial down-sampling, it should be noted that the orig-
inal CSSF method also has limitations in exploring the
data characteristics of temporal continuity. Over all, most
of these mentioned methods have made some progresses in
spatio-temporal fusion. However, it is still an open problem
that it is hard to accurately establish the complex relation
between high- and low-resolution images due to the insuf-
ficient prior knowledge. The application of these methods
often suffers from two important limitations [33]. First, most
spatial-temporal image fusion algorithms assume that land
cover type does not change during the data observation period
[8], [12], [14]. Second, most spatial-temporal image fusion
methods require the coarse- and fine-resolution remotely
sensed data from different satellite sensors to be mutually
comparable and correlated. Meanwhile, these methods are
also challenged by three important factors [34]: (1) Diversity
of regions. Such as urban, rural, forest and mountain areas.
(2) Long timespan. Usually, in some cloudy area, it cost
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a relatively long period of time to acquire clear images.
(3) Challenging scenarios. Such as the spatial resolution
gap between fine and coarse images, the characterization
of changes in heterogeneous areas, and the prediction of
land-cover changes. In conclusion, it is necessary that develop
a more generic spatial-temporal fusion model to account for
the significant type changes that challenge current methods,
particularly in rapidly changing areas.

In this paper, to utilize more prior knowledge and introduce
a constrain in temporal continuity, we propose a new model
of compressed sensing-based spatiotemporal (CSBS) data
fusion. In the proposed CSBS, both spatial down-sampling
and temporal continuity are considered in a single object
function. To improve the robustness and stability of CSBS,
spatiotemporal images are segmented into many small
patches and clustered into several groups via K-means. Our
dictionary-learning, measurement matrix training, and CS
reconstruction technique are all applied groupwise to deal
with different land cover types. Therefore, the sparsity of
the representation is enhanced, and the intrinsic mapping
relationship of spatiotemporal data is better established.
Compared with previous compressed sensing and dictionary
learning methods, CSBS has two characteristics: (1) The
patch-group stratagem in dictionary learning and measure-
ment matrix estimation. (2) The combination of continuity
in temporal domain and sparsity in spatial domain.

The rest of this paper is organized as follows. In Section II,
we explain the compressed sensing theory and integrate it into
spatial-temporal data fusion to formulate the proposed CSBS.
After the patch group is defined, we implement training and
prediction group by group. In Section III, we present exper-
iment results based on three experiments. We also compare
CSBS with four algorithms and analyze their performances.
Our conclusions are presented in Section IV.

II. APPROACHES
In this section, we first briefly describe compressed sensing
theory, then we apply it to spatiotemporal data fusion by
considering a low resolution image as an observation sample
of a high-resolution image. To sparsely represent the data
and adaptively establish a sampling relationship in the feature
space, a dictionary and a measurement matrix are trained
using a patch-group model. To introduce a temporal con-
strain, a linear weighted strategy is applied. Finally, we pro-
vide the training and prediction algorithms.

A. COMPRESSED SENSING
Compressed sensing [35] efficiently acquires and recon-
structs a signal from a series of sample measurements. For
an original remote senisng signal x ∈ RM , the observation
y ∈ RN can be represented as

y = 8x + ε (1)

where8 is the measurement matrix mapping from RM to RN ,
N is typically much smaller thanM , and ε is the noise. Matrix
8 represents a dimensionality reduction. Restoring x from y

is very challenging. For signal x, it is sparse in some domains
and can be represented by the basis D:

x = Dα (2)

where α are the coefficients of x in the basis D. D refers to
the dictionary. Thus, observation y is expressed as

y = 8Dα + ε (3)

Finally, the objective function of a compressed sensing prob-
lem is

min
α
‖α‖0 , subject to y = 8Dα. (4)

To solve (4) means solve a `0-norm minimization problem
which is unsolvable in polynomial time. But the solutions of
`0-norm minimization can be converted to `1-norm problem
when 8 and D satisfies restricted isometry property (RIP)
[36]–[38]. The `1-norm problem is solvable in polynomial
time. By relaxing the equality constraint, imposing `2-norm
on the data-fitting term, and applying a Lagrangian form, (4)
becomes

min
α
‖α‖1 + λ ‖y−8Dα‖

2
2 (5)

For the spatiotemporal data fusion problem, the low-spatial
resolution image y is regarded as a measurement of the
corresponding high-spatial resolution image x at the same
time. The high-spatial resolution image can be reconstructed
from the low-spatial resolution image when (5) is solvable.
In the pure CS problem, RIP makes sure that (4) is equal
to (5). But here in spatial-temporal data fusion, due to the
situation that images are acquired by different sensors in dif-
ferent conditions, it is difficult to ensure RIP. Therefore, extra
conditions should be introduced to make sure the validity
of the solution to (5). In the following section, we discuss
how to achieve spatial-temporal data fusion using compressed
sensing theory.

B. SPATIOTEMPORAL FUSION WITH COMPRESSED
SENSING
Based on compressed sensing theory, spatiotemporal data
fusion can be regarded as reconstruct high-resolution image
from the down-sampled low-resolution image. As in Fig. 1(a),
our goal is to predict an image of the spatial resolution of
Landsat ETM+ at t2 with two pairs of Landsat ETM+ and
MODIS images (acquired at t1 and t3) and oneMODIS image
(acquired at t2). As shown in Fig. 1(a), the proposed CSBS
method uses five images to predict one high-spatiotemporal
image, which we call it a two-pairs model. Another method
uses three images to predict one high-spatiotemporal image
as in Fig. 1(b), which we call it a one-pair model. It is
easy to prepare data for a one-pair fusion model. However,
it is sometimes difficult for a one-pair model to improve its
accuracy, because it utilizes less information than a two-pairs
model. The object function, training, and prediction steps of
the two-pairs model fusion are all more complex than that of
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FIGURE 1. Two kinds of spatial-temporal data fusion model. (a) Two-pairs fusion model. (b) One-pair fusion model.

the one-pair fusion model. As a result, there are more possi-
bilities for improvements for the two-pairs model, because
more information is engaged in the fusion process. Thus,
we use the two-pairsmodel in the proposedCSBS framework.

For the same scene, the high-spatial resolution image at
time t is defined as yht , and the low-resolution images at
time t is defined as ylt . In our two-pairs model framework,
the unknown high-spatial resolution image at time t2 is
defined as yh2 . The unknown image yh2 is predicted using
yh1 , yl1 , yh3 , yl3 , and yl2 . For spatiotemporal data fusion,
as in Fig. 1(a), for an arbitrary t , images yht and ylt show
similar features with different resolutions, because they are
captured at similar times and for same scene. Therefore,
the observation model in spatial domain is defined as

ylt = 8tyht (6)

where the low-resolution image ylt is defined as the obser-
vation down-sampled from yht , and 8t represents the
down-sampling operation. By considering ylt as an observa-
tion of yht , we introduce compressed sensing into spatiotem-
poral data fusion.

According to compressed sensing theory, yht should be
sparse in some domains according to a dictionaryDt . Remote
sensing image yht , as a natural image, can usually be
sparsely represented according to some orthonormal basis
(e.g., wavelet, Fourier) or tight frames (e.g., curvelet, Gabor)
[35], [39], [40]. After that, the image yht is sparsely repre-
sented. To integrate compressed sensing into spatial-temporal
data fusion, a suitable measurement matrix 8t should be
derived. In this paper, to tackle the land cover type diversity,
both the dictionary Dt and measurement matrixes 8t in (6)
is trained from the different group of image patches, which is
discussed further in Section II-C.
With dictionary Dh2 and measurement matrix 8t2 for yh2 ,

we introduce compressed sensing theory into spatiotemporal
data fusion. Like (5), the object function for the unknown

image yh2 at time t2 is defined as

min
αh2

∥∥∥αh2∥∥∥
1
+

∥∥∥yl2 −8t2yh2
∥∥∥2
2
,

subject to yh2 = Dh2αh2 . (7)

The spatial down-sampling of the measurement matrix 8t2

in (7) is insufficient for spatiotemporal data fusion. In many
cases, the resolution of yh2 is far higher than yl2 . For example,
when using Landsat ETM+ and MODIS data, one MODIS
pixel represents 17×17 Landsat ETM+ pixels. The large res-
olution gap makes CS reconstruction unreliable, even when
αh2 is sparse. To ensure the validation of the solution to
(7), both the spatial and temporal relationships between the
two image sequences should be considered. In the temporal
domain, for a period of time, the relationship between yh2 and
yh1 or yh3 can limit the reconstruction of yh2 in a reasonable
range.

Therefore, to describe the continuous sequence of images
in the temporal domain, the difference between yh2 and yh1 or
yh3 , as a constraint, is introduced to the spatiotemporal data
fusion. For different time t1, t2, t3, yh is acquires by the same
sensor and the relation between yh and yl remains the same.
We assume that Dh1 ≈ Dh2 ≈ Dh3 and 8h1 ≈ 8h2 ≈ 8h3 .
The object function then becomes

min
αh2

∥∥∥αh2∥∥∥
1
+ λ1

∥∥∥yl2 −8t2Dh2αh2
∥∥∥2
2

+ λ2

∥∥∥yh1 − Dh2αh2∥∥∥2
2

+ λ3

∥∥∥yh3 − Dh2αh2∥∥∥2
2

(8)

where yh2 = Dh2αh2 . There are still no theories to ensure the
perfect reconstruction for (8). However, (8) will reconstruct
more information than (7) since the more constraint makes
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the equation steadier. Dh2 is trained by the object function

min
αh1 ,α

h
3 ,D

h2
‖αh1‖1 + ‖α

h3‖1

+ λ2‖yh1 − Dh2αh1‖22
+ λ3‖yh3 − Dh2αh3‖22 (9)

The `1-norm minimization and dictionary learning in CSBS
are optimized using the SPArseModeling Software (SPAMS)
[41], which is an open-source toolbox for solving various
sparse estimation problems. We generateDh2 by training data
from both yh1 and yh3. Similar algorithms, such as EBSCDL
[31] and CSSF [32], utilize the relationship of Dht and Dlt to
maintain the similarity of coefficients. Then, the dictionaries
are coupled. Coupled dictionaries can avoid the searching
of sampling matrix 8. Others have introduced the transfor-
mation matrix between coefficients for Dh2 and Dh1 or Dh3 .
These additional constraints have difficulty representing the
complex relationship of sparse coefficients of multi-source
data, because all coefficients are generated via a non-linear
optimization (e.g., K-SVD or OMP [42]). For the same res-
olution, the difference of representation ability between Dh2
and Dh1 or Dh3 is not obvious. Thus, a transformation matrix
for sparse coefficients derived from images having the same
resolution is unnecessary. The most important is the funda-
mental feature relationshipe in spatial domain and temporal
domain but not transformation domain.

By now, a CSBS data-fusion model has been built using (8)
and (9). To fully apply CSBS, weighting parameters λ in (8)
and (9) should be determined. Based on our prior experiment,
we found that the intensity of the change is associatedwith the
time difference. We assume that a short period of time leads
to few landscape changes. Thus, the near observation earns
more weight in the objective function in CSBS. A smaller t2−
t1 could mean fewer landscape changes between times t1 and
t2. We propose that the weights of time parameters should be
reflected in parameters λ2 and λ3 in (8) and (9). This strategy
was also applied by STARFM [8]. Finally, the regularization
parameters in (8) and (9) are determined by

λ1 =
1
2
, λ2 =

t3 − t2
t3 − t1

, λ3 =
t2 − t1
t3 − t1

(10)

Note that even λ2 and λ3 is decided in a linear manner,
Equation. (8) and Equation. (9) are still partially linear as

Dh2i is trained in patch-group way. When a large image is
segmented into many small patches, only the patches belong
to the same cluster center will be taken as a locally linear
changes. It doesn’t mean a totally linearity for all features.
Furthermore,

∥∥αh2∥∥1+ λ1 ∥∥yl2 −8t2Dh2αh2
∥∥2
2 will also pro-

vide non-linear information for fusion.
In this section, we provide the framework of the proposed

CSBSmodel. By regarding both down-sampling in the spatial
domain and the continuity of the temporal domain, we con-
struct an object function of spatial-temporal data fusion
by compressed sensing with temporal domain constraints.
However, with real-world data, the implementation of

spatial-temporal data fusion is still very difficult. To improve
the robustness and stability of CSBS, we must optimize the
process of training and predicting in spatial-temporal data
fusion. This is discussed in next section.

C. TRAINING AND PREDICTING IN THE PATCH GROUP
In this paper, both the training of the dictionary Dh2 and the
prediction of the high-spatial resolution image yh2 are based
upon the patch-group method. The high-spatial resolution
image at time t1 is defined as yh1 . For an arbitrary kth pixel
in yh1 , its

√
n ×
√
n neighborhood is defined as a patch,

denoted as yh1k . Based on the definition of the patch, image
yh1 is represented as patch set Yh1 = {yh1k }

s
k=1, where Y

h1 ∈

Rn×s. Images yh1 , yh2 , yh3 , yl1 , yl2 , and yl3 have similar patch
definitions as Yh1 . To balance feature diversity and sparsity,
each patch dataset Yht (t = 1, 2, 3), is clustered into I classes
according to the Euclidean distance, as shown in Fig. 2.
Here in CSBS, for simplicity, K-Means is used to classify
data. Then Yht = {Y hti }

I
i=1 (I ≤ s), where the subclass

or cluster Y hti = {y
ht
j }

si
j=ki . Thus, y

h1
si , · · · , y

h1
ki are patches

belonging to the ith cluster Y hti in the high-spatial resolution
dataset Yh1 of time t1. For the low-resolution image ylt , Y lti
is defined in a similar way as Y hti , where t = 1, 2, 3. For
the low-spatial resolution image ylt , we have a similar patch
set Y lt = {Y lti }

I
i=1 (I ≤ s). However, as shown in Fig. 2, each

cluster Y lti is created by allocating each patch yltk to its nearest
cluster center in Yht . For each subclass Y hti in Yht , we search
for a corresponding dictionary Dhti . The sampling matrix 8i

is trained using the cluster pair 〈Y hti ,Y
lt
i 〉. The localization

dictionary more sparsely represents the data. The localization
sampling matrix is adaptively sampled so that the condition
of reconstruction for CS is more easily satisfied.

After K-means clustering, each class Y hti is normalized
by subtracting its mean value Mht

i , and dividing its standard
deviation Shti . The normalized Ŷ hti is represented as

Ŷ hti =
Y hti −M

ht
i

Shti
(11)

The low-spatial resolution image patch set Ŷ lti , has a similar
definition as Ŷ hti . The arbitrary ith subclass from the K-means
object function is

min
α
h2
i

‖α
h2
i ‖1 + λ1‖Ŷ

l2
i −8iD

h2
i α

h2
i ‖

2
2

+ λ2‖Ŷ
h1
i − D

h2
i α

h2
i ‖

2
2

+ λ3‖Ŷ
h3
i − D

h2
i α

h2
i ‖

2
2 (12)

In (12), Dh2i is trained by

min
α
h1
i ,α

h3
i ,D

h2
i

‖α
h1
i ‖1 + ‖α

h3
i ‖1

+ λ2‖Ŷ
h1
i − D

h2
i α

h1
i ‖2

+ λ3‖Ŷ
h3
i − D

h2
i α

h3
i ‖2 (13)
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FIGURE 2. Proposed CSBS fusion consisting of two stages: training stage and predicting stage. In the training stage,
the input high-resolution image at t1 and t3 along with low-resolution image at t1 and t3 are first sliced into patches (a),
then the patches are grouped using K-means (b). The low-resolution image patche groups are created by allocating each
patch to its nearest cluster center in the corresponding high-resolution image patch groups. After K-means clustering, each
class is normalized (c) and is used to train dictionaries and measurement matrices (d). During the predicting stage,
the input low-resolution image at t2 is also sliced into patches (a). Then the patches are grouped using cluster centers
generated from the training stage (b). After the group process, each class is normalized (c) using mean values and standard
deviations derived from the training stage and is used to predict the desired image with dictionaries and measurement
matrices from the training stage (e). After the denormalization (f), the result patches are finally used to build the desired
high-resolution image (g). The dotted line in this figure demarks the data transfer. The solid line shows the fusion process.

As spatiotemporal fusion is a blind-inverse problem, we can-
not obtain the down-sampling matrix 8 by directly solving
yl1 = 8yh1. Differences of acquisition time, bandwidth, data
processing, and geolocations lead to small biases. To obtain
the intrinsic relationship between remotely sensed data from
different satellite sensors, we use principal component anal-
ysis (PCA) to calculate the measurement matrix. For the ith
cluster, the object function for 8i is

min
8i
λ2‖8iŶ

h1
i − Ŷ

l1
i ‖2 + λ3‖8iŶ

h3
i − Ŷ

l3
i ‖2 (14)

The measurement matrix need to be obtained for each class.
Decomposing the covariance matrix HiHT

i by using SVD,
where Hi = λ2Ŷ

h1
i + λ3Ŷ

h3
i . The symmetric matrix can be

expressed as

HiHT
i = Wi6W T

i (15)

where Wi is taken as a column vector matrix, and 6 is a
diagonal matrix. Normally, to reduce the dimension of data
from m to n, the first n principal components are selected
as the transition matrix. However, with CSBS, we select n
components ofWi to form W(ni) to minimize

f (W T
(ni)) =‖W

T
(ni)Hi − Li‖2 (16)

where Li = λ2Ŷ
l1
i + λ3Ŷ

l3
i , and W T

(ni)
∈ Rn×m is the desired

measurement matrix 8i

8i = W T
(ni) (17)
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The whole 8 for all clusters is composed as 8 =

{81, · · · ,8i, · · · ,8I }. The training steps are summarized in
Algorithm 1.

Algorithm 1 Train of CSBS

Require: yh1 , yl1 , yh3 , yl3 .
1: Yh1 ,Y l1 ,Yh3 ,Y l3 ← Slice (yh1 , yl1 , yh3 , yl3 )
2: C ← Cluster Yh1 use K-means
3: Cluster Y l1 ,Yh3 ,Y l3 use class centers C
4: for all Y h1i ⊂ Yh1 ,Y h3i ⊂ Yh3 ,Y l1i ⊂ Y l1 ,Y l3i ⊂ Y l3 do
5: Mi, Si, Ŷ

h1
i ← Normalize (Y h1i ) by solving (11)

6: Ŷ l1i , Ŷ
h3
i , Ŷ

l3
i ← Normalize Y l1i ,Y

h3
i ,Y

l3
i by solving

(11) useMi, Si
7: Di← Solve (13) use Ŷ h1i , Ŷ

h3
i

8: Wi← Solve (15) use Ŷ h1i , Ŷ
h3
i

9: 8i← Solve (16) use Ŷ h1i , Ŷ
h3
i , Ŷ

l1
i , Ŷ

l3
i

10: end for
Ensure: D,8,M , S,C

As mentioned above, (13) can be solved using `1-norm
minimizaiton. 8i can be found using (16). After obtain-
ing dictionary Dh2i and sampling matrix 8i, for a given
low-resolution image yl2 , by solving (12), we can obtain all
clusters Ŷ h2i . For convenience, (12) can be solved as

min
α
h2
i

λ

∥∥∥αh2i ∥∥∥1 + ‖

√
λ1Ŷ

l2
i√

λ2Ŷ
h1
i√

λ3Ŷ
h3
i

−

√
λ18iD

h2
i√

λ2D
h2
i√

λ3D
h2
i

αh2i ‖22 (18)

After that, the final clusters are obtained, CSBS denormalize
Ŷ h2i to Y h2i by

Y h2i = Ŷ h2i × S
h2
i +M

h2
i (19)

The final fusion image yh2 is obtained by resetting all the
patches in each Y h2i back to their original position in the
image. The prediction steps are summarized in Algorithm 2

Algorithm 2 Predict of CSBS

Require: yl2 , yh1 , yh3 ,8,D,M , S,C .
1: Y l2 ,Yh1 ,Yh3 ← Slice (yl2 , yh1 , yh3 )
2: Cluster Y l2 ,Yh1 ,Yh3 use class centers C
3: for all Y l2i ⊂ Y l2 ,Y h1i ⊂ Yh1 ,Y h3i ⊂ Yh3 ,8i ⊂

8,Di ⊂ D do
4: Ŷ l2i , Ŷ

h1
i , Ŷ

h3
i ← Normalize Y l2i ,Y

h1
i ,Y

h3
i by solving

(11) use Mi, Si
5: Ŷ h2i ← Solve (12) use Ŷ l2i , Ŷ

h1
i , Ŷ

h3
i ,Di,8i

6: Y h2i ← Denormalize Ŷ h2i by solving (19) useMi, Si
7: end for
8: yh2 ← Rearrange Yh2

Ensure: yh2

In conclusion, the theoretical improvement of our proposed
CSBS can be summarized as: (1) patch-group stratagem
in dictionary learning and measurement matrix estimation,

TABLE 1. Image acquisition time of three datasets. In the simulation
experiment, we predict the target Landsat image at t2 using Landsat
images and MODIS images at t1, t3 and MODIS image acquired at t2.

(2) The combination of continuity of temporal feature and
sparsity in spatial features. Other dictionary learning method
such as EBSCDL [31], its dictionary Learning is not based
on patch-group. As in Fig. 2, the patches representing similar
land-cover type can be clustered into one patch-group, so that
the dictionaries learned from patch-group are more powerful
in modeling complex land surfaces. Other compressed sens-
ing method such as CSSF [32], its measurement matrix is
global for the whole image so that it is hard to manipulate
the relationship between dictionary and measurement matrix.
However, our measurement matrix is a localization one that
only need to search within current patch-group. Furthermore,
the temporal continuity in CSSF [32] is reflected in the coeffi-
cients of sparse representation of temporal image. Their tem-
poral continuity cannot be well explored since the coefficient
relationship is far from the real temporal feature correspon-
dence. Overall, in theory, the proposed CSBS is more concise
and reasonable than EBSCDL [31] and CSSF [32].

III. EXPERIMENTS AND RESULTS
In this section, we apply the CSBS algorithm to the Landsat
ETM+/OLI and MODIS imagery. We first introduce details
about experimental datasets. Then, we briefly explain the
experimental schemes and some parameter settings. Finally,
the performance and computational cost of proposed CSBS
are evaluated on three datasets: DATA-I, DATA-II, and
DATA-III.

A. DATA COLLECTION
For this study, we use three datasets to test CSBS: DATA-I,
DATA-II, and DATA-III. DATA-I is a subset of the dataset
used in [8], and this dataset is widely used in [12], [31],
[32]. To fully test the algorithms’ performance in different
situations, dataset from [43] are used to compose DATA-II
and DATA-III. Due to their different sources, there is a
little difference between DATA-I and DATA-II, DATA-III.
Therefore, the interpolation methods of MODIS images are
different in Fig.3, 4, 5. All the dataset are composed of
Landsat ETM+/OLI and MODIS images, which with sim-
ilar orbital parameters, solar geometries and corresponding
bandwidths. The bands usage are nir, red, and green. DATA-I
is composed of Landsat 7 ETM+ data and MODIS data,
which is acquired for the Boreal Ecosystem-Atmosphere
Study (BOREAS) southern study area (54 ◦ N, 104 ◦

W). The growing season is short and phenology changes
are extreme. Trees such as spruce, pine, aspen, and birch
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FIGURE 3. Landsat surface reflectance (upper row (a)-(c)) and MODIS
composited surface reflectance (lower row (d)-(f)) images in DATA-I on
2001-08-03, 2001-08-12, 2001-10-06, accordingly. The areas with obvious
changes are marked by the yellow circle. Note that there are notable
land-cover changes between 2001-08-12 and 2001-10-06 images. The
main purpose of DATA-I is to test the accuracy of spatial-temporal date
fusion methods in the task of detecting land-cover type changes in forest
area.

FIGURE 4. Landsat surface reflectance (upper row (a)-(c)) and MODIS
composited surface reflectance (lower row (d)-(f)) images in DATA-II on
2018-01-04, 2018-02-05, 2018-03-25, separately. The areas with obvious
phenological changes are marked by the yellow circle. The main purpose
of DATA-II is to test the performance of data fusion methods in the
application of detecting phenology changes in rural area.

dominate the landscape. DATA-II and DATA-III are com-
posed by Landsat 8 OLI and MODIS data [43]. DATA-II is
collected over Ar Horqin Banner of InnerMongolia province,
and DATA-III is collected over Tianjin city. The Ar Horqin
Banner (43.3619◦N, 119.0375◦E) is located in the northeast
of China. The major industries of Ar Horqin Banner are
agriculture and animal boundary. Owing to the growth of
crops and other kinds of vegetation, this area experienced
significant phenological changes. DATA-II is mainly used to
test the performance of data fusion methods in the application

FIGURE 5. Landsat surface reflectance (upper row (a)-(c)) and MODIS
composited surface reflectance (lower row (d)-(f)) images in DATA-III on
2018-10-01, 2018-12-04, 2019-01-21, separately. Phenology changes
happened during 2018-10-01 and 2019-01-21. This dataset is mainly used
to evaluate the data fusion methods in the application of detecting
phenology changes in urban area.

of detecting phenology changes in rural area. Tianjin city
(39.8625◦ N, 117.8591◦ E) is a municipality in the north of
China with clear seasonal changes during the year. Therefore,
DATA-III is mainly used to evaluate the data fusion methods
in the application of detecting phenology changes in urban
area. In DATA-I, the 30-m land-surface reflectance data of
Landsat-7 ETM+ C1 Level-2 are taken as high-spatial but
low-temporal resolution images (yht ), and the standard 500-
m daily surface reflectance data (MOD09GA) of MODIS
are taken as low-spatial but high-temporal resolution images
(ylt ). During preprocessing for fusion, the MODIS daily
surface reflectance data are projected and resampled to the
Landsat ETM+ resolution by using MODIS Reprojection
Tools (MRT) [44]. DATA-II and DATA-III are provided
by [43]. The near-infrared (NIR), red and green bands are
used to constitute fake-color images for visual comparisons.
The image acquisition time of the three datasets are listed
in Table. 1. After identical linear stretches, DATA-I, DATA-II
and DATA-III are shown in Figs.3, 4, and 5, respectively
using aNIR-red-green as red-green-blue composite. Note that
the Landsat ETM+/OLI andMODIS land-surface reflectance
images are very similar for near-day observations. The major
land-cover type changes are from season variations. DATA-I,
DATA-II, and DATA-III are collected to test algorithms’ per-
formance in different applications. Images in DATA-I were
acquired during summer and autumn, and a sharp cooling
faded the leaves and bare soil revealed between Figs. 3(b)
and 3(c). Thus, DATA-I is mainly used to test the algorithms
in the task of detecting land-cover changes. DATA-II is col-
lected in Inner Mongolia province. Owing to the growth of
crops and other kinds of vegetation, this area experienced
significant phenological changes. Therefore, DATA-II aims
to test the algorithms in the task of detecting phenology
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changes in rural area. Meanwhile, DATA-III is collected in
Tianjin city, which aims to evaluate the data fusionmethods in
the application of detecting phenology changes in urban area.
In the next section, we will illustrate the experiment details.

B. EXPERIMENTAL SCHEMES
To validate CSBS’s performance, as well as consider-
ing the availability of the source code, we compared it
with four competitive algorithms: STARFM [8], ESTARFM
[12], EBSCDL [31], and CSSF [32]. They each take two
pairs of Landsat - MODIS images and one MODIS image
as input. All algorithms are two-pairs models as shown
in Fig. 1(a). Other algorithms that use one-pair model that
shown in Fig. 1(b) (e.g., flexible spatial-temporal data fusion
[45]) are not compared, because they use different numbers
of input images or belong to different prediction schemes.

We designed three experiments using DATA-I, DATA-II,
and DATA-III to test algorithmic performances in different
applications, such as land-cover type changes, phenology
changes in rural area and urban area. The experiment using
DATA-I is to test the accuracy of spatial-temporal date fusion
methods in the task of detecting land-cover type changes in
forest area. DATA-II is mainly used to test the accuracy of
spatial-temporal data fusion methods in the task of detecting
phenology changes in urban area. DATA-III is mainly used
to evaluate the data fusion methods in the application of
detecting phenology changes in urban area. Regarding the
features of different images from different datasets, according
our prior statistics, we set the cluster number empirically as
10. The cluster number is an important parameter, a large
cluster number may cause low fusion precision while a small
cluster numbermay cause the lost of land cover type diversity.
The patch size is all set to 7× 7.

Three indicators are used to compare the performance in
quantity: root mean-square error (RMSE), correlation coef-
ficient (CC) and ERGAS. The RMSE of the fused images
are used to measure performances by comparing the pre-
dicted images with the real images. RMSE is always non-
negative. An RMSE value of 0 indicates a perfect fit to the
data. Generally, a lower RMSE is better than a higher one.
RMSE is also related to the pixel scale. The land-surface
reflectance should be within a range of 0 to 1. Thus, we set
the scale factor equal to 10,000 as in STARFM [8]. The CC
is a measure of the linear correlation between two variables.
It has a value between+1 and−1, where+1 is total positive
linear correlation, 0 is no linear correlation, and -1 is a total
negative linear correlation. The ERGAS measure [46] is an
error index that offers a global picture of the quality of a
fused image. According to the authors, an ERGAS value
lower than 3 denotes a satisfactory quality, while an ERGAS
value greater than 3 means a poor quality. To visually vali-
date the performance, we also present the zoomed regions.
Experiments are explained in Section III-C, III-D, and III-E
separately. Besides, to evaluate the computational cost of
CSBS, we also present the running time cost comparison in
section III-F.

C. APPLICATION ON LAND-COVER TYPE CHANGES
As is listed in Table. 1. In this experiment, Landsat ETM+
and MODIS image pairs acquired from 2001-08-03 and
2001-10-06 along with MODIS image acquired from 2001-
08-12 are used as inputs to predict a high-spatiotemporal
resolution image from 2001-08-12. As is shown in Fig. 3,
there are notable land-cover type changes between 2001-08-
12 and 2001-10-06 images. In this experiment, all algorithms
are tested on DATA-I to validate their performance in the task
of detecting land-cover type changes in forest area.

The RMSE results are listed in Table. 2 and the CC results
are listed in Table. 3. According to the results, we observe that
the proposed CSBS has the smallest RMSE and the highest
CC of all bands. In Fig. 6, we know that the CSBS line
features are closer to the ground truth in Fig. 6(f) than other
methods. The EBSCDL method in Fig. 6(c) and the CSSF
method in 6(d) also show good line features in the zoom area,
but they show obvious spectral distortions. Spectral distorts
in CSBS are very slight and are consistent with good CC
performance, as shown in Table. 3.The STARFM method of
Fig. 6(a) lost many details. This can be caused by STARFM’s
strategy that use the weighted sum of the surrounding pixels’
reflectance to calculate the central pixel’s reflectance. The
ESTARFM method in Fig. 6(b) shows some fake texture
features in the zoomed region, although its RMSE is low.
ERGAS values in Table. 4 again shows that CSBS fusion
can better reconstruct high-spatial resolution images. The
experimental results reveal that CSBS is more robust than
STARFM, ESTARFM, EBSCDL, and CSSF in dealing with
land-cover type changes.

D. APPLICATION ON PHENOLOGY CHANGES
IN RURAL AREA
This experiment is tested on DATA-II. As is listed in Table 1,
in this experiment, the Landsat OLI and MODIS image
pairs acquired from 2018-01-04 and 2018-03-25 along with
MODIS image acquired from 2018-02-05 are used as inputs
to predict a high-spatiotemporal resolution from 2018-02-05.

TABLE 2. RMSE of different algorithms using DATA-I.

TABLE 3. CC of different algorithms using DATA-I.
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FIGURE 6. Result images by different algorithms using DATA-I.
Sub-figures (a)-(e) are the reconstructed image of STARFM, ESTARFM,
EBSCDL, CSSF, and CSBS accordingly. Sub-figure (f) is the actual Landsat
ETM+ land surface reflectance image at 2001-08-12. In the zoomed area,
leaves faded and bare soil revealed from 2001-08-03 to 2001-10-06. CSBS
more accurately predicted the changes compared with other algorithms.

TABLE 4. ERGAS of different algorithms using DATA-I.

DATA-II is collected over Ar Horqin Banner of Inner Mon-
golia province. Owing to the growth of crops and other kinds
of vegetation, this area experienced significant phenological
changes. Therefore, this experiment is mainly used to test
the performance of data fusion methods in the application of
detecting phenology changes in rural area.

The RMSE results are listed in Table. 5 and the CC results
are listed in Table. 6. CSBS has the smallest errors and largest
CC values for all three bands. In Table. 7, CSBS has the best

TABLE 5. RMSE of different algorithms using DATA-II.

TABLE 6. CC of different algorithms using DATA-II.

TABLE 7. ERGAS of different algorithms using DATA-II.

ERGAS value. The result images for all methods are shown
in Fig.7. The result of STARFM in 7(a) looks like a mosaic.
This may caused by that STARFM reconstruct images block
by block. The results of ESTARFM, EBSCDL and CSSF
show some spectral distortions compared to the ground truth
to some extent. Results validate that the combination of
sparsity in spatial domain and constrains in temporal domain
successfully reconstruct the target image.

E. APPLICATION ON PHENOLOGY CHANGES
IN URBAN AREA
This experiment is tested on DATA-III. As is listed in Table 1,
in this experiment, the Landsat OLI and MODIS image
pairs acquired from 2018-10-01 and 2019-01-21 along with
MODIS image acquired from 2018-12-04 are used as inputs
to predict a high-spatiotemporal resolution from 2018-12-
04. DATA-III is collected over Tianjin city, which is a
municipality in the north of China with clear seasonal
changes during the year. Therefore, this experiment is mainly
used to test the performance of data fusion methods in
the application of detecting phenology changes in urban
area.

The RMSE results are listed in Table. 8, the CC results
are listed in Table. 9, and the ERGAS values are listed
in Table. 10. From the result, CSBS has the best indicator val-
ues for all three bands. The result images for all methods are
shown in Fig.8. The result of STARFM in 8(a) shows spectral
distortion to some extent. In the zoomed region, 8(b), 8(c),
and 8(d) all show some fake textures in the high reflectance
region. In this experiment, the results again validate the per-
formance of CSBS.
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FIGURE 7. Result images by different algorithms using DATA-II.
Sub-figures (a)-(e) are the reconstructed image of STARFM, ESTARFM,
EBSCDL, CSSF, and CSBS accordingly. Sub-figure (f) is the actual Landsat
ETM+ land surface reflectance image at 2018-02-05. According to the
results, CSBS shows best result among the algorithms.

TABLE 8. RMSE of different algorithms using DATA-III.

TABLE 9. CC of different algorithms using DATA-III.

F. COMPUTATIONAL COST
When the computational cost is concerned, CSBS still has
an advantage. In the test, all the algorithms were tested on a

TABLE 10. ERGAS of different algorithms using DATA-III.

FIGURE 8. Result images by different algorithms using DATA-III.
Sub-figures (a)-(e) are the reconstructed image of STARFM, ESTARFM,
EBSCDL, CSSF, and CSBS accordingly. Sub-figure (f) is the actual Landsat
ETM+ land surface reflectance image at 2018-12-04. ESTARFM, EBSCDL,
and CSSF all show fake textures in the high reflectance region.

Windows laptop, which has one Intel Core i7-4700MQ CPU
@2.40GHz and 16.0GBRAM. In the test, STARFM is coded
in C with multithreads supported (OpenMP). ESTARFM
is coded in IDL. EBSCDL, CSSF and CSBS are coded
in MATLAB. The algorithms were tested using DATA-I,
DATA-II and DATA-III. The average running time is listed
in Table 11. The efficient programming language and the
simplicity of computational model make STARFM the fastest
algorithm. Except for STARFM, CSBS outperforms other
algorithms. The concise objective function makes CSBS
more efficient than EBSCDL and CSSF.
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TABLE 11. Programming language and running time of different
algorithms. The time in this table is the mean time of band nir, red and
green on DATA-I, DATA-II and DATA-III accordingly.

IV. CONCLUSION
We proposed a new spatiotemporal data-fusion model based
on compressed sensing. In our CSBS model, the low-spatial
resolution images were taken as observations of high-spatial
resolution images based on CS theory. Then, the temporal
continuity was reasonably introduced into the CS object
function. Training and predicting were thus implemented
using the patch-group model. Therefore, the spatial-temporal
features were well-explored by the patch-group of the CS
reconstruction. In conclusion, our proposed CSBS model
is characterized by the patch-group stratagem in dictionary
learning and measurement matrix estimation and the combi-
nation of continuity of temporal feature and sparsity in spatial
features. We compared the proposed CSBS method with
four other algorithms in terms of both quantity and quality.
In terms of quantity, the proposed CSBS showed larger CC
and smaller RMSE and ERGAS for different datasets in most
cases. From the perspective of quality, CSBS showed more
fine features of reconstructed high-spatiotemporal images
in visual methods than others. Experiments showed CSBS
can handle land-cover type changes and phenology changes
well. From the perspective of computational cost, CSBS
also showed advantages. Experimental results confirmed the
effectiveness of the spatial-temporal CS reconstruction for
fusion based on patch-group model.
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