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ABSTRACT The space vector modulation (SVM) method using only rotating vectors is very effective to
suppress the common-mode voltage (CMV) for matrix converters (MCs). However, the effect of the input
filter on the input power factor (IPF) has not been fully investigated when using this method. This study
investigated the effect of the input filter on the displacement angle and proposes an IPF compensation strategy
for the zero CMV-SVM method in MCs. The proposed strategy analyzes the duty cycles of rotating vectors
under the IPF-compensation condition. Through this analysis, the proposed strategy adjusts the zero vector
by using a set of three counterclockwise-rotating vectors or three clockwise-rotating vectors to make all the
duty cycles non-negative, ensuring that the zero CMV-SVM method can be applied to compensate the IPF
for the MCs. This study also determines the condition to achieve unity IPF for the main power source and
the maximum allowable IPF if the above condition is not met. Finally, experimental results are provided to
validate the theoretical study.

INDEX TERMS Matrix converter, space vector modulation, zero common-mode voltage, rotating vector,
input power factor.

I. INTRODUCTION
In recent years, matrix converters (MCs) with bidirectional
power flow capabilities have received considerable atten-
tion. In comparison to traditional back-to-back converters,
MCs offer more compact and reliable operation owing to
the absence of bulky electrolytic capacitors [1], as shown in
Figure 1. Therefore, MCs have garnered significant research
interest in industry, particularly the aircraft, electric-vehicle,
and wind-generation industries [2]–[4]. However, MCs have
not been widely applied in practice owing to several issues
affecting input-filter design, bidirectional-switch technology,
commutation techniques, and the common-mode voltage
(CMV) [5]. Among these problems, the CMV between the
motor neutral point and power supply ground is the main
source of motor winding failure and bearing damage [6]–[8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Snehal Gawande.

Furthermore, it also causes noise and electromagnetic
interference problems, affecting surrounding electronic
equipment [9].

Several modulation methods have been presented to effec-
tively reduce the CMV for MCs. Among them, space vector
modulation (SVM) is currently the most widely used tech-
nique owing to its advantageous features such as harmonic
performance, flexibility to optimize the switching pattern,
and achieving the highest modulation ratio [5], [10]. Two
types of SVM methods are based on replacing the MC zero
vectors with active vectors [11] or rotating the vectors [12] to
reduce the CMV peak value to 42%. In [13], two lower-input
line-to-line voltages are used to synthesize the desired output-
voltage vector to mitigate the CMV peak value with a lower
total harmonic distortion of the output voltage and a reduction
in switching loss. However, the proposed method has the
disadvantage of a low voltage-transfer ratio (VTR) of less
than 0.5. Guan et al. presented a modulation SVM method to
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reduce not only the peak value but also the RMS of the CM
by using all valid switching states, including rotating-vector
states [14]. Nguyen and Lee proposed an effective modula-
tion scheme, including an SVM method using only rotating
vectors and a modified four-step commutation technique, to
achieve zero CMV for MCs [15]. More recently, Lei et al.
suggested a simpler SVM method to accomplish zero CMV
by adopting only three clockwise rotating vectors or counter-
clockwise rotating vectors [16]. However, the performance
of the MC when using this method is reduced significantly
because the rotating vectors used are very far from the refer-
ence output-voltage vector. Among the aforementioned tech-
niques, the modulation scheme in [15] is the most effective
solution for eliminating CMV in MCs, from the perspective
of the output voltage quality.

Although zero CMV-SVM methods have been realized,
there are still some issues to be resolved. Compensating
the input power factor (IPF), affected by the input filter,
is one of the most important issues to be handled. In practice,
an LC filter is connected at the input of the MC to eliminate
high-frequency harmonics of the input current and smooth it
to satisfy EMI requirements [17]. However, the input filter
produces a displacement angle between the source phase
voltage and current [18]. This displacement angle will signif-
icantly degrade the IPF of the power source, especially at low
VTRs, which may lead to severe power-factor penalties [19].
Therefore, it is important to consider the IPF compensation
problem along with CMV reduction.

Fortunately, a previous study [19] briefly presented a
method to compensate IPF for MCs in the zero CMV-SVM
method. However, it did not fully investigate all the duty-
cycle cases. In addition, the method has not been experimen-
tally verified. To address these issues, this article analyzes all
duty cycles under IPF compensation. In the case of negative
duty cycles, they will be adjusted to be zero duty cycles so
that all duty cycles are positive. This article also determines
the maximum IPF that the main power source can achieve
according to the VTR. Finally, experiments are carried out to
validate the proposed strategy.

NOMENCLATURE
vs Three-phase source voltage vector, [vsa vsb vsc]T

vsj Instantaneous source phase voltages, j ∈ {a, b, c}
Vs Source voltage amplitude
ωs Angular frequency of source voltage
φ Initial phase angle of source voltage
Evs Space vector of three-phase source voltage
vij Instantaneous input phase voltages of MC, j ∈

{a, b, c}
vK Instantaneous output phase voltages of MC, K ∈

{A,B,C}
Vi, Vo Amplitudes of MC input and output voltages
αi, αo Phase angles of MC input and output voltages
Evi, Evo Space vectors of MC input and output voltages
iij Instantaneous input line currents of MC, j ∈

{a, b, c}

iK Instantaneous output line currents of MC, K ∈
{A,B,C}

Ii, Io Amplitudes of MC input and output currents
βi, βo Phase angles of MC input and output currents
Eii, Eio Space vectors of MC input and output currents
dn Duty cycles of zero and active vectors, n ∈

{0, 1, 2, 3, 4}
q Voltage transfer ratio of MC, q = Vo/Vi
δi Compensated angle, δi = 6 Evi − 6 Eii
α̃o Output voltage phase angle referred to the bisect-

ing line of the corresponding sector
β̃i Input current phase angle referred to the bisect-

ing line of the corresponding sector
dm(0) Duty cycle of rotating vector Erm as the zero vec-

tor, m ∈ {1, 2, 3, 4, 5, 6}
dM Total duty cycle of rotating vector ErM , M ∈

{I , II , III , IV ,V ,VI } without compensation
d
′

M Total duty cycle of rotating vector ErM , M ∈

{I , II , III , IV ,V ,VI } under compensation case.
Lf , Cf Inductance and capacitance of input filter
Rd Damping resistance of input filter
δf Displacement angle caused by input filter, δf =

6 Eis − 6 Eii
δs Displacement angle at main power supply, δs =∣∣∣ 6 Evs − 6 Eis∣∣∣
δo Load displacement angle at output frequency,

δo =

∣∣∣ 6 Evo − 6 Eio∣∣∣
R,L,Z Load resistance, inductance and impedance
fo Output frequency
ωo Output angular frequency

II. CONVENTIONAL ZERO CMV-SVM METHOD
Using the symbols defined in Figure 1, let the three-phase
source voltage be

vs =

 vsavsb
vsc

 = Vs

 cos(ωst + φ)
cos(ωst + φ − 2π/3)
cos(ωst + φ + 2π/3)

 . (1)

According to the space vector theory, three instantaneous
source voltages can be represented by one vector Evs, defined
as follows:

Evs = 2(vsa + vsbej2π/3 + vscej4π/3)/3 = Vsej(ωst+φ) (2)

Similarly, space vectors—representing input voltages, out-
put voltages, input currents, and output currents—are respec-
tively defined as follows:

Evi = 2(via + vibej2π/3 + vicej4π/3)/3 = Viejαi (3)

Evo = 2(vA + vBej2π/3 + vCej4π/3)/3 = Voejαo (4)
Eii = 2(iia + iibej2π/3 + iicej4π/3)/3 = Iiejβi (5)
Eio = 2(iA + iBej2π/3 + iCej4π/3)/3 = Ioejβo . (6)

Because the MC is supplied by a source voltage and the
output load is inductive, the input phases should not be
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FIGURE 1. A common matrix converter configuration.

TABLE 1. Valid switching states in an MC.

short-circuited, and the output phases should not be open-
circuited [10]. To satisfy these two constraints, there are
only 27 valid switching states, corresponding to 27 space
vectors, which are listed in Table 1. These switching states
are classified into three groups, as follows:

a) Eighteen switching states in Group I produce active
vectors, with fixed directions and time-varying amplitudes of
the output-voltage and input-current vectors.

FIGURE 2. (a) Rotating voltage vectors. (b) Rotating current vectors in
an MC.

b) Three switching states in Group II produce zero vectors,
including zero output-voltage and input-current vectors.

c) Six switching states in Group III produce rotating vec-
tors, with fixed amplitudes and time-varying directions of the
output-voltage and input-current vectors.

Among them, the six rotating vectors in group III pro-
duce zero CMV [14]–[16]. However, their angular positions
always change along with the input voltage, so using these
vectors is not simple. Nguyen and Lee, in [1] and [15], pro-
posed a switching pattern using five rotating vectors within a
sampling period to control MCs to have zero CMV. Among
these five rotating vectors, four vectors act as active vectors
to generate the desired output-voltage and input-current vec-
tors, and one rotating vector acts as a zero vector to com-
plete the sampling period. The four selected rotating vectors,
which acts as active vectors, and their duty cycles are shown
in Table 2 and equations (7)–(10):

d1 =
q
√
3
×

sin(2π/3− α̃o + β̃i)
cos δi

(7)

d2 =
q
√
3
×

sin(2π/3− α̃o − β̃i)
cos δi

(8)

d3 =
q
√
3
×

sin(α̃o − β̃i)
cos δi

(9)

d4 =
q
√
3
×

sin(α̃o + β̃i)
cos δi

(10)

where αo and βi are determined from the complex plane,
as shown in Figures 2(a) and (b), respectively. The patterns
of α̃o and β̃i in the conventional zero CMV-SVM method are
shown in Figures 3(a) and (/b), respectively. From Figure 3,
the limit of α̃o and β̃i in the conventional zero CMV-SVM
method can be obtained as follows:

0 ≤ α̃o < π/3 (11)

0 ≤ β̃i < π/3. (12)

The duty cycle of the zero vector can be calculated as
follows:

do = 1− (d1 + d2 + d3 + d4)

= 1− 2q
cos(π/3− αo) cosβi

cos δi
. (13)
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TABLE 2. Four main rotating vectors selected for the zero CMV-SVM method.

TABLE 3. Rotating vectors selected for the conventional zero CMV-SVM method.

FIGURE 3. (a) Relationship between α̃o and αo. (b) Relationship between
β̃i and βi in the zero CMV-SVM method.

The zero vector can be executed using a set of
three counterclockwise-rotating vectors (i.e., Er1, Er3, Er5) or
clockwise-rotating (i.e., Er2, Er4, Er6) vectors with the same duty
cycle:

E0 =
Er1 + Er3 + Er5

3
=
Er2 + Er4 + Er6

3
. (14)

In the case of no compensation (δi = 0), with the limits of
α̃o and β̃i in (11) and (12), respectively, only duty cycle d3 can
be negative. To ensure that the duty cycle d3 of rotating vector
Er3 is non-negative, the zero vector should be implemented
using a set of three counterclockwise-rotating vectors, i.e.,
E0 = (Er1+ Er3+ Er5)/3. This means that, in addition to creating
a main active vector as shown in (7)–(10), the rotating vectors
Er1, Er3, and Er5 must execute an extra interval to create the zero

vector, as follows:

d1(0) =
d0
3

(15)

d3(0) =
d0
3

(16)

d5(0) =
d0
3
. (17)

Therefore, in the conventional method, rotating vectors are
finally selected as shown in Table 3, and their duty cycles are
determined as follows:

dI = d1 + d1(0) (18)

dII = d2 (19)

dIII = d3 + d3(0) (20)

dIV = d4 (21)

dV = d5(0). (22)

Substituting (7)–(10), (13), and (15)–(17) into (18)–(22),
we obtain (23)–(27):

dI =
1
3

[
1− 2q cos(2π/3− α̃o) cos(π/3+ β̃i)

]
(23)

dII =
q
√
3
sin(2π/3− α̃o − β̃i) (24)

dIII =
1
3

[
1− 2q cos α̃o cos(π/3− β̃i)

]
(25)

dIV =
q
√
3
sin(α̃o + β̃i) (26)

dV =
1
3

[
1− 2q cos(π/3− α̃o) cos β̃i

]
. (27)
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FIGURE 4. Equivalent circuit of input filter.

FIGURE 5. Vector diagram of input voltages and currents at the input
filter with no compensation.

With the limits of α̃o and β̃i in (11) and (12), it is possible
to prove that all duty cycles—dI , dII , dIII , dIV , and dV—in
(23)–(27) are non-negative.

All of these duty cycles must be less than 1, so the VTR
in the conventional zero CMV-SVM method is limited as
follows:

q ≤
1
2

(28)

III. PROPOSED IPF STRATEGY FOR ZERO
CMV-SVM METHOD
A. INPUT FILTER ANALYSIS
The input filter is a crucial component in a practical MC
system, which is used to smooth the source current. However,
it creates a displacement angle between current and voltage,
leading to a low IPF. Therefore, it is important to study
this displacement angle to improve the IPF. In MC systems,
a second-order LC filter with a damping resistor is commonly
used, as shown in Figure 4. From Figure 4, in the condition of
Rd � ωsLf , the relationship between (Evi, Eii) and (Evs, Eis)can
be written as follows:

Eii = Eis − jωsCf Evs (29)

Evi = Evs − jωsLfEis. (30)

Because the voltage drop at the input filter is very small in
comparison to the source voltage, the input voltage of theMC
and the source voltage are considered to be equal [19]:

Evi = Evs. (31)

From (29) and (31), we can draw the vector diagram
of input voltages and currents at the input filter, as shown
in Figure 5. From Figure 5, it is possible to determine the

displacement angle caused by the input filter as follows:

sin δf =
ωsCf Vs
Is

. (32)

In addition, based on the law of conservation of energy,
we have the following:

VsIs cos δs = VoIo cos δo (33)

where Vo = qVi = qVs; Io =
Vo
Z =

qVs
Z ; cos δo = R

Z .
Therefore, equation (33) is rewritten as follows:

Is =
q2VsR
Z2 cos δs

(34)

Combining (32) and (34), the displacement angle caused
by the input filter can be determined by the MC parameters
as follows:

tan δf =
ωsCf Z2

q2R
(35)

The following strategy will attempt to compensate the
angle δf in (35) as much as possible to achieve the maximum
IPF of the power source.

FIGURE 6. Vector diagram of input voltages and currents at the input
filter with compensated angle δi .

FIGURE 7. Relationship between β̃i and βi in the zero CMV-SVM method
with the proposed IPF strategy.

B. PROPOSED IPF COMPENSATION STRATEGY
Since the vector Evi is definite (Evi = Evs) and uncontrollable, the
angle δf in (35) can only be compensated by controlling the

vector Eii. Based on Figure 5, to compensate the angle δf ,
the vector Eii must be delayed by an angle δi in comparison
to Evi, as shown in Figure 6. Therefore, the phase angle of the
input current vector is determined as βi = αi−δi. The patterns
of β̃i are depicted in Figure 7 using the following limit:

−π/3 ≤ β̃i < π/3 (36)
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TABLE 4. Rotating vectors selected for the zero CMV-SVM method with the proposed IPF strategy.

Under this condition, from (7) to (10), duty cycles d3 and
d4 may be negative:

i) d3 is negative when β̃i > α̃o ≥ 0
ii) d4 is negative when β̃i < −α̃o ≤ 0
Therefore, it is clear that d3 and d4 cannot be negative at

the same time. In light of this, the present paper proposes a
strategy as follows:

i) When d4 > 0, the selected vectors and their duty cycles
are the same as those in the conventional case.

ii) When d4 < 0, to ensure that the duty cycle d4 of the
rotating vector Er4 is non-negative, the zero vector should be
implemented by a set of three clockwise-rotating vectors,
i.e., E0 = (Er2+Er4+Er6)/3. Therefore, in addition to creating the
main active vector as shown in (7)–(10), the rotating vectors
Er2, Er4, and Er6 must execute an extra interval to create the zero
vector, as follows:

d2(0) =
d0
3

(37)

d4(0) =
d0
3

(38)

d6(0) =
d0
3
. (39)

The selected rotating vectors are shown in Table 4 and their
duty cycles are calculated as follows:

d ′I = d1 (40)

d ′II = d2 + d2(0) (41)

d ′III = d3 (42)

d ′IV = d4 + d4(0) (43)

d ′V = d6(0). (44)

Substituting (7)–(10), (13), and (37)–(39) into (40)–(44),
it is possible to obtain the following results:

d ′I =
q
√
3
×

sin(2π/3− α̃o + β̃i)
cos δi

(45)

d ′II =
1
3

[
1− 2q

cos(2π/3− α̃o) cos(π/3− β̃i)
cos δi

]
(46)

d ′III =
q
√
3
×

sin(α̃o − β̃i)
cos δi

(47)

d ′IV =
1
3

[
1− 2q

cos α̃o cos(π/3+ β̃i)
cos δi

]
(48)

d ′V =
1
3

[
1− 2q

cos(π/3− α̃o) cos β̃i
cos δi

]
(49)

In the case of d4 < 0, which implies that β̃i < 0, it is
possible to prove that all duty cycles in (45)–(49) are positive,
so the zero CMV-SVM method can be implemented in this
case.

The limit of VTR in the zero CMV-SVM method with the
compensated angle δi is:

q ≤
1
2
cos δi (50)

C. MAXIMUM COMPENSABLE ANGLE AND MAXIMUM IPF
Even though the proposed IPF compensation strategy
attempts to compensate the angle δf in (35) as much as
possible to achieve the maximum IPF of the power source,
it is not always possible to compensate all values of δf to
achieve unity IPF. This section covers the conditions for the
MC to achieve unity IPF, and the maximum allowable IPF
value when unity cannot be reached.

1) CONDITION TO ACHIEVE UNITY IPF
According to [20], the relationship between δs, δi and δf is:

tan δs + tan δi = tan δf . (51)

To obtain the unity IPF (δs = 0), from (35) and (51), the
compensated angle δimust be:

tan δi = tan δf =
ωsCf Z2

q2R
. (52)

Let the quality factor Q be defined as

Q2
=
ωsCf Z2

R
. (53)

From (50), (52), and (53), the condition for MC to achieve
unity IPF using the zero CM-SVM method is:tan δi =

Q2

q2

cos δi ≥ 2q
(54)

where Q2
=

ωsCf Z2

R .
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TABLE 5. System parameters.

FIGURE 8. Source phase voltage/source line current and output line
current at q = 0.4 in the zero CMV-SVM method without compensation.

FIGURE 9. Output line-to-line voltage at q = 0.4 in the zero CMV-SVM
method without compensation.

FIGURE 10. CMV waveform and its FFT at q = 0.4 in the zero CMV-SVM
method without compensation.

From (54), it is possible to derive the following condition:

tan2 δi + 1 =
1

cos2 δi

⇒

(
Q2

q2

)2

+ 1 =
1

cos2 δi
≤

1
(2q)2

⇒ q4 −
1
4
q2 + Q4

≤ 0. (55)

FIGURE 11. Source phase voltage/source line current and output line
current at q = 0.4 in the zero CMV-SVM method with the proposed IPF
compensation strategy.

FIGURE 12. Output line-to-line voltage at q = 0.4 in the zero CMV-SVM
method with the proposed IPF compensation strategy.

FIGURE 13. CMV waveform and its FFT at q = 0.4 in the zero CMV-SVM
method with the proposed IPF compensation strategy.

From (55), we can finally determine the condition to
achieve unity IPF for MCs as follows:

√√√√1
8
−

√(
1
8

)2

− Q4 ≤ q ≤

√√√√1
8
+

√(
1
8

)2

− Q4

Q2
=
ωsCf Z2

R
≤

1
8

(56)

2) MAXIMUM ALLOWABLE IPF
When the condition in (56) is not satisfied, the MC cannot
achieve unity IPF, and it is necessary to determine the maxi-
mum allowable IPF. In this case, from (50) and (51), we have
the following relationship:tan δs + tan δi = tan δf =

Q2

q2

cos δi ≥ 2q
(57)
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FIGURE 14. Source phase voltage/source line current and output line
current at q = 0.2 in the zero CMV-SVM method without compensation.

FIGURE 15. Output line-to-line voltage at q = 0.2 in the zero CMV-SVM
method without compensation.

FIGURE 16. CMV waveform and its FFT at q = 0.2 in the zero CMV-SVM
method without compensation.

To achieve the maximum allowable IPF, the compensated
angle must be maximized, thus: cos δi = 2q. Therefore, it is
possible to calculate:

tan δi =

√
1− 4q2

2q
=

√
1
4q2
− 1 (58)

From (57) and (58), it is possible to calculate:

tan δs =
Q2

q2
−

√
1
4q2
− 1 (59)

Finally, the maximum allowable IPF can be determined as
follows:

IPF2 = cos2 δs =
q4

Q4 − 2Q2q2
√

1
4q2
− 1+ q2

4

(60)

FIGURE 17. Source phase voltage/source line current and output line
current at q = 0.2 in the zero CMV-SVM method with the proposed IPF
compensation strategy.

FIGURE 18. Output line-to-line voltage at q = 0.2 in the zero CMV-SVM
method with the proposed IPF compensation strategy.

FIGURE 19. CMV waveform and its FFT at q = 0.2 in the zero CMV-SVM
method with the proposed IPF compensation strategy.

IV. EXPERIMENTAL RESULTS
To verify the proposed theoretical study, experiments for
the proposed IPF strategy are carried out using a three-
phase power supply, LC filter, and a three-phase symmetri-
cal passive RL load with the parameters shown in Table 5.
The switching frequency is 10 kHz. The MC was built
using 18 insulated-gate bipolar transistors (IRG4PF50WD).
Main control was implemented using fixed-point digital sig-
nal processors (TMS320F2812). A complex programmable
logic device (EPM7128SLC84-15) was used for four-step
commutation.

With the parameters in Table 5, condition (56) to achieve
unity IPF for MCs, in this case, will be:0.238 ≤ q ≤ 0.445

Q2
= 0.1 ≤

1
8
= 0.125

⇒ 0.238 ≤ q ≤ 0.445 (61)
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FIGURE 20. Theoretical and experimental results of IPF in the zero
CMV-SVM method without compensation.

FIGURE 21. Theoretical and experimental results of IPF in the zero
CMV-SVM method with the proposed IPF compensation strategy.

Figures 8 and 9 show the MC input and output waveforms
when using the zero CMV-SVM method without compen-
sation at q = 0.4. In this case, the IPF achieved is 0.84.
The CMV is almost zero, other than a small amount of noise
owing to the commutation process [1], as shown in Figure 10.

Subsequently, the maximum compensated angle is applied
to the zero CMV-SVM method; the MC input and output
waveforms are shown in Figures 11 and 12, respectively.
As can be seen, q = 0.4 meets the condition in (61),
so the MC can achieve unity IPF in this case. The proposed
IPF compensation strategy does not affect the results of
the CMV, and it can be seen that the CMV is nearly zero
in Figure 13.

When the MC operates at a low voltage transfer ratio, i.e.,
q = 0.2, the IPF is only 0.37, as shown in Figures 14 and 15.
Since q = 0.2 does not satisfy the condition in (61),
the MC cannot achieve unity IPF. Therefore, after applying
the maximum compensated angle, the MC only achieves a
maximum IPF of 0.97, as shown in Figures 17 and 18. It is
clear that this value is in good agreement with the theoret-
ical predictions in (60). Because the zero CMV modulation
method is used, the CMV is always almost zero, as shown
in Figures 16 and 19, for both uncompensated and compen-
sated cases.

The IPF results in other cases of VTR, within the range of
0 to 0.5, are shown in Figures 20 and 21 without compen-
sation and the proposed IPF compensation strategy, respec-
tively. It can be seen from Figures 20 and 21 that experimental
results are in good agreement with the proposed theoretical
results.

V. CONCLUSION
This article has presented an IPF compensation strategy
for the zero CMV-SVM method. The proposed strategy
investigated the displacement angle caused by the input filter
and its effect on the value of duty cycles upon compensation.
The proposed strategy decides which rotating vectors are
synthesized into zero vectors, thereby making all duty cycles
non-negative, allowing the zero CMV-SVM method to be
applied. This article also specifies when the main power
source can achieve unity IPF and the maximum allowable
IPF according to the VTR. Experimental results confirmed
that the MC’s IPF is in good agreement with the proposed
theoretical results.
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