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ABSTRACT Smart grid is a modern electric power grid designed to improve efficiency and reliability of the
production and distribution of electric power. In a smart grid, smart meters continuously generate electric
power consumption data and send it to the server. These data have two important purposes: (1) The sum of
the data generated by each meter in a certain period of time will be used for billing; (2) The sum of the data
generated by all meters in a specific area at a given time will be used to predict the electric power required
in that area for electric power distribution. These data are considered to be sensitive and should be properly
protected. There have been many studies on the confidentiality and privacy protection of these data. Some
schemes require trusted servers, some schemes require heavy computation, and some schemes need to send
two sets of data, one for billing and the other for electric power distribution. In this article, we propose an
efficient and privacy-preserving communication scheme for the transmission of meter data in a smart grid.
No trusted authorities are required in the scheme. By sending only one set of data, the new communication
scheme can ensure that both sums for billing and sums for electric power distribution can be computed
accurately. The scheme uses only simple operations, such as addition and hashes. It is computationally
lightweight and suitable for devices with limited computing resources.

INDEX TERMS Smart grid, privacy protection, secret sharing, differential privacy.

I. INTRODUCTION
A smart grid is a modernized electric power grid designed
to improve efficiency and reliability of the production
and distribution of electricity. Smart grids usually include
smart meters, smart appliances, renewable energy and other
resources. These components are integrated into an advanced
metering infrastructure for remote meter configuration,
dynamic tariffs, electric power quality monitoring and load
control.

Smart meters that measure electric power consumption
of customers are essential devices in a smart grid. A smart
meter can be considered as an electronic meter with a com-
munication link. Smart meters must constantly send their
measuring data to nearby server. The time to send these
data is usually every 15 minutes, an hour, or a day [1].
The customer’s electricity bill is based on these data. This
information can also be used to predict the electrical energy
required in a particular area to better distribute electricity

The associate editor coordinating the review of this manuscript and

approving it for publication was Firooz B. Saghezchi .

to that area. Therefore, protecting the data generated and
sent by each meter is essential to the security of a smart
grid.

For confidentiality, encryption and authentication can be
used to prevent an adversary from learning or changing the
information sent through public networks. In a smart grid,
in which the electric power usage of customers are constantly
being sent, confidentiality may not be sufficient to protect
the privacy of the customers. There is a crucial concern of
the privacy related to the collection and use of customers’
energy consumption data. Smart meters can be used by oth-
ers either maliciously or inadvertently in an unauthorized
fashion to infer types of activities or occupancy of a home
for specific periods of time. It is also possible that such
information can be sought for legal proceedings as evidence
to prove or disprove certain propositions. To protect the pri-
vacy of the customers, NIST recommends using anonymous
techniques to avoid traces of meter readings [2]. Unless the
servers to which the data are sent and stored are fully trusted,
additional steps must be taken to protect the privacy of the
customers.
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Both confidentiality and privacy protection are very impor-
tant in the information security of a smart grid. They
are different problems and require different technologies
to solve these two problems. In confidentiality, the sender
and the receiver are usually trusted. Encryption can be
used to avoid disclosure of sensitive or confidential infor-
mation to third-party adversaries. For privacy protection,
in addition to the third-party adversaries, some information
sent by the sender should also be kept confidential to the
receiver.

There have been many studies on the encryption and
authentication of data sent by smart meters. For example,
Liu et al. proposed a lightweight authentication scheme [3];
Wu et al. presented an improved version of Liu’s scheme [4];
Mahmood et al. proposed another lightweight authentication
scheme for smart meters [5]. However, privacy protection has
not been integrated in these schemes.

In this article, we propose an efficient and lightweight
privacy-preserving communication scheme for the transmis-
sion of data in a smart grid. The main techniques used in the
design of the communication scheme are secret sharing and
differential privacy.

For security, we must ensure that the data sent by smart
meters are encrypted. Our privacy protection communication
scheme adds carefully calibrated noises to the data measured
by smart meters before sending them to the server. The addi-
tion of the noises to the data plays the role of one-time pad
encryption. Note that the noise in our scheme is a random
number generated from a distribution with mean 0 and care-
fully chosen variance. It is not the noise from the environment
in the communication channel.

For the authentication of the data sent by the meters
to the server, a lightweight authentication method, such as
Liu et al.’s method [3], can be used. In our scheme, the data
to be authenticated is the one-time encrypted data, not the
original meter readings, which need to be kept secret to the
server. The authentication part of the scheme will not be
described in detail in this article.

We assume that the servers are semi-honest. They follow
the protocol, but may want to know the customers’ timely
electric power consumption information. We also assume
that nearby smart meters can communicate with each other.
By sending only one set of data, our communication scheme
ensures that both sums for billing and sums for electric
power distribution can be computed accurately. No trusted
authorities are required in our scheme, and the scheme uses
only simple operations, such as addition and hashes. It is a
lightweight scheme suitable for devices with limited comput-
ing resources.

II. DESCRIPTION OF THE PROBLEM
A smart grid may contain many components. Figure 1 shows
a simplified diagram of the smart grid, which contains only
the components related to our communication scheme. Each
smart meter constantly generates electric power consumption
data and sends to the nearby server. The electricity company

FIGURE 1. Simplified diagram of smart grid, which contains only the
components related to our communication scheme.

uses these data for two purposes: billing and electricity
distribution.

Our goal is to protect the data sent by smart meters, from
the malicious third party for secrecy, and from the electrical
company for customer privacy. For simplicity, assume that
each customer has a smart meter at home. Assumed that
each smart meter transmits electric consumption data to the
server every τ time units. According to the guidelines of
European Regulators Group for Electricity and Gas, the value
of τ is usually 15 minutes, an hour, or a day [1]. This data
represents the amount of electric power consumption during
time interval [t − τ, t].

Table 1 shows the data generated by m = 6 meters in
n = 8 time intervals. In Table 1, di,j is the electric power con-
sumption measured by smart meter i during the time interval
[tj−1, tj]. Our privacy protection communication scheme will
add carefully calibrated noise to the data before sending them
to the servers.

TABLE 1. An example of data generated by smart meters for m = 6
meters and n = 8 time intervals.

In general, the data generated by smart meters are used for
three purposes. (1) billing, (2) electric power distribution, and
(3) value-added services. These three types of uses of the data
differs significantly in terms of their requirement on metering
frequency and accuracy.

The primary use of the data generated by the meters is
consumer billing. Since billing typically happens on monthly
basis, the electric power consumption data needs not be pro-
cessed in real-time, but the correctness of billing requires
accurate measurement data.
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Another important use of data generated by smart meters
is to increase the efficiency and reliability of electric power
distribution of the smart grid. The inclusions of renewable
energy to smart grid makes electric power distribution even
more important. The data generated by smart meters at spe-
cific time are mainly used for the prediction of electric power
required in each area for the next time period. This type of
data usage requires real-time or near real-time processing and
fine-grained time intervals, but may accept lower accuracy.

The measuring data can also be used by customers, oper-
ators, and third-party service providers for providing various
value-added services, such asmanaging and arranging the use
of household appliances to reduce electricity bills.

In this article, we focus on the first two uses of metering
data, namely billing and electric power distribution. Assume
that the power company summarize the data in every n time
intervals. For the description of the privacy protection com-
munication scheme, the table will be shown in m rows and
n columns. The sum of the i-th row is the electric power
used by customer i from time t0 to tn. This sum is also
called temporal aggregation. Each of the sum will be used
by the power company to calculate the electricity bill for the
customer.

The sum of the j-th column is the electric power used by all
customers in this area at time tj. This sum is also called spatial
aggregation. The power company will use this sum to predict
the amount of electricity needed in the area and allocate
enough electricity for the area to meet customer needs.

Suppose the electricity company calculates the electricity
usage for each customer every n time intervals, and customers
receive their electricity bill in every N = kn time intervals for
some integer k . For example, assume that each meter sends
out its electric power consumption data every 15 minutes,
the electricity company calculates the electricity usage for
each customer every day, and the electricity bill will be
computed monthly, then τ = 15, n = 96, k = 30, the number
of data sent to the server will be N = 30 × 96 = 2880 for
each meter in 30 days.

We assume that these data are stored in a server operated
by electricity company. Our goal is to design a robust and
efficient communication scheme to transfer these data from
smart meters to the server to ensure the security of data, and
most importantly, to protect the privacy of customers. There
may be different values of τ , k , or N for different countries,
our communication scheme works correctly, as long as N is
a multiple of n.

III. RELATED WORKS
In this article, we focus on the privacy protection of customer
power consumption data. There are other situations where
the privacy of customers needs to be protected. For exam-
ple, Zhang et al. studied the privacy-preserving communica-
tion and power injection scheme over vehicle networks and
5G smart grid slice [6].

Many techniques have been studied for the protection
of the privacy of customers in smart grids. Rechargeable

batteries can be installed to hide the energy consumption of
customers [7]. This type of technique require the installation
of hardware. In this article, we focus on software technologies
that can be applied to protect customer privacy.

Anonymous technology can also be used to protect cus-
tomers’ privacy in smart grid. Petrlic proposed a privacy
protection scheme using a trusted intermediate gateway as a
pseudonym server for billing applications [8]. This technique
can hide the real identity of customers, but it requires a trusted
pseudonym server.

Homomorphic encryption can do arithmetic operations
directly on ciphertext without decryption. This technique can
be used to protect customer privacy. Jawurek et al. proposed
a secure computation of billing using homomorphic com-
mitment [9]. Metering data are committed and aggregated
first. Only the final sum will be opened to electricity com-
pany, and the correctness of the data can be proved by using
zero-knowledge proof. Kong et al. proposed a group blind
signature scheme in smart grid to accomplish conditional
anonymity [10]. The integrity of electricity consumption data
can be verified by homomorphic encryption. The problem
with this type of scheme is that homomorphic encryption is
usually computationally inefficient, especially for homomor-
phic encryption with addition and multiplication operations.

Lin et al. proposed a smart metering system supporting
both privacy preserving billing and load monitoring with one
set of data [11]. In their system, meter readings are stored
in a semi-trusted storage system. The electricity company
can only query for the sum of meter readings over a time
period. The load monitoring unit can only query the sum of
meter readings from meters in the area at a specific time.
In this scheme, the storage system stores all the original
data generated by smart meters. The correct operation of this
method depends on the trusted storage system. Due to the
intentional or unintentional behavior of the storage system,
or the intrusion of attackers, sensitive data may be leaked to
a malicious party.

Differential privacy was originally designed for statistical
data set to limit the disclosure of private information. It is
also useful in protecting customers’ privacy in smart grid.
Hale et al. applied differential privacy to the metering data
both for billings and electric power distribution [12]. They
showed that, with proper selection of parameters, both the
billing and the electric power distribution aggregations may
have some errors, but these data are still useful. Eibl and
Engel studied the effect of differential privacy on real smart
metering data, and showed that as long as the number of smart
meters is large enough, the data are useful [13].

In summary, many technologies have been used to solve
the confidentiality and privacy protection of customers in the
smart grid. Some schemes require heavy computation, such
as homomorphic encryption. Some schemes require the use of
trusted servers. Some schemes require two sets of data, one
set for spatial sums and the other for temporal sums. Some
schemes can only provide a good approximation of the spatial
sums and the temporal sums.
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In this article, we propose a novel communication scheme
for smart grids to achieve secrecy and, at the same time,
to preserve the privacy of customers. In our scheme, carefully
calibrated noise are added to the data before sending the data
to the server. No measuring data from any smart meter are
directly transmitted and stored in a storage system that the
electricity company can access. Thus, the privacy protection
of customers can be achieve perfectly. Our communication
scheme can always ensure that the sum of eachmeter readings
during a given period of timewill be exact. Therefore, billings
for the customers will always be accurate. Furthermore, in our
scheme, the same set of data can be used for both billing and
electric power distribution.

IV. PRELIMINARIES
In this section, we briefly introduce secret sharing scheme
and differential privacy. The modified versions of the two
schemes will be used in our privacy protection communica-
tion scheme.

A. SECRET SHARING
Let t and n be two positive integers, t ≤ n. A (t, n)-threshold
secret sharing scheme is a method for the n users to share a
secret K . Each user i has a share si about the secret K . The
goal of a secret sharing scheme is that the secret K can be
computed correctly by using the shares of any subset of t
users, while any t − 1 or fewer users cannot compute any
information about the secret K .
Shamir showed that a (t, n)-threshold secret sharing

scheme can be implemented by polynomial interpola-
tion [14]. The secret K , as well as each share, is represented
by a point in a polynomial of degree t − 1. Any t shares can
uniquely determine the polynomial, but any subset of t−1 or
fewer shares cannot.

Our privacy protection communication scheme uses a spe-
cial case of (t, n)-threshold secret sharing scheme, namely the
(n, n)-threshold secret sharing scheme. It can be implemented
much more efficiently without polynomial interpolation.

Let p be an integer greater than the secret K . The first n−1
shares si, i = 1, 2, . . . , n−1, can be randomly and uniformly
selected from the set {0, 1, . . . , p− 1}. Then the last share sn
is computed by

sn = [K − (s1 + s2 + · · · + sn−1)] mod p.

It can be verified that

1) The sum of all shares
(

n∑
i=1

si

)
mod p is equal to K .

2) Any sum of the proper subset of the shares
{s1, s2, . . . sn}, is a random number.

This implementation of the (n, n)-threshold secret sharing
scheme is perfect, which means that no subset of n − 1 or
fewer users can compute any information about the secret K
even if they have infinite computing power. This implementa-
tion of the (n, n)-threshold secret sharing scheme is also ideal,
because the size of each share si is no more than the size of
the secret K , that is, |si| = |K |. We will modify the above

perfect and ideal secret sharing scheme to provide secrecy
and protect the privacy of the customers.

B. DIFFERENTIAL PRIVACY
Differential privacy was originally design for statistical data
set. It has been shown that an attacker can understand the
confidential content of a statistical data set by creating a series
of target queries. In 2003, Nissim and Dinur demonstrated
that ‘‘it is impossible to publish arbitrary queries on a private
statistical data set without revealing some amount of private
information.’’ This is also called fundamental law of infor-
mation retrieval.
Noise can be added to each query to limit the leakage of

privacy in the data set. In 2006, Dwork et al. presented a
method called ε-differential privacy, to formalize the amount
of noise that needed to be added and proposed a generalized
mechanism for adding the noise [15].
The intuition of ε-differential privacy is that a person’s

privacy cannot be compromised by releasing statistical infor-
mation if their data are not in the data set. Therefore, with
differential privacy, the goal is to give each individual roughly
the same privacy that would result from having their data
removed.
Dwork and Roth formally defined ε-differential privacy

as follows [15]. Let ε be a positive real number. Let A be
a randomized algorithm that takes a data set as input and
compute an output representing the actions of the trusted
party holding the data in response to a query. The algorithmA
is said to provide ε-differential privacy if, for all data sets D1
and D2 that differ on a single element (i. e., the data of one
person), and all subsets S of all possible responses of A:

Pr[A(D1) ∈ S] ≤ eε Pr[A(D2) ∈ S].

In other words, a data set query response algorithm A is
ε-differential if for all data setD1 andD2 differing on a single
record, the probability of obtaining response t ∈ S when
the data set is D1 is within (1 + ε) times the probability
of obtaining response t ′ ∈ S when the data set is D2. This
also implies that the ratio of the two probabilities lies in
[e−ε, eε] ≈ [1− ε, 1+ ε] when ε is small.
In our communication scheme for privacy protection,

the data to be protected are the electric power consumption
data for each smart meter in the grid. This is a sequence of di,j,
j = 1, 2, . . . , n. To ensure that the eavesdropper cannot learn
any useful information about di,j, certain amount of noise
must be added to it before it is transmitted to the server. The
proper amount of noise can be determined by the principle of
differential privacy.
In differential privacy, the amount of noise to be added to

the real data is a trade-off between privacy protection and data
usefulness. The smaller ε, the better protection of customer
privacy. On the other hand, the larger the ε, the more accurate
the data.
According to the principle of differential privacy,

the amount of noise to be added to the data should be propor-
tional to the sensitivity of the query function. To estimate the
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sensitivity of our query function, let d be a positive integer,
D be a collection of data sets, and f : D → Rd be a
query function. The sensitivity of the function f , denoted1f ,
is defined by

1f = max ||f (D1)− f (D2)||1,

where the maximum is over all pairs of data sets D1 and D2
in D differing in at most one element, and || · ||1 denotes the
`1-norm. In our scheme, the query function is the row sum or
the column sum of the data di,j. Therefore, the sensitivity of
our query function is max{di,j}.

There are many mechanisms which can provide
ε-differential privacy, such as Laplace mechanism, expo-
nential mechanism, and posterior sampling. The Laplace
mechanism adds noise from the Laplace distribution, which
can be expressed by the probability density function

noise(y) ∝ exp(−|y|/λ)

which has mean 0 and standard deviation
√
2λ. It can

be shown that this method satisfies the definition of
ε-differential privacy. We use this mechanism in our privacy
protection communication scheme.

Note that our privacy protection communication scheme
is not a direct application of differential privacy. We also
integrate (n, n)-threshold secret sharing scheme to ensure that
both the temporal and the spatial aggregation of the data can
be computed accurately. Only in the case that certain meter
cannot communicate with any other meters, the method of
differential privacy is used to protect the privacy of the data
generated by that meter. Even if all meters cannot communi-
cate with other meters, the temporal sum for billing can still
be accurately computed in our scheme.

V. THE PRIVACY PROTECTION SCHEME
In this section, we propose a communication scheme for
the transmission of data generated by each smart meter that
meets our goal: both temporal aggregation for billing and
spatial aggregation for electric power distribution can be com-
puted accurately by using only one set of data. Furthermore,
the confidentiality and the privacy of customers are properly
protected. We assume that smart meters in a specific area can
communicate with some other smart meters.

A. MODIFICATION OF THE SECRET SHARING SCHEME
The main technique used in the design of the communication
scheme is a modification of the (n, n)-threshold secret sharing
scheme. For eachmeter i, the data that should be protected are
di,j, j = 1, 2, . . . , n. Our communication scheme adds certain
amount of noise to di,j before sending it to the server.

We first show that direct application of the (n, n)-threshold
scheme to our communication scheme may have difficulty.
Suppose that the (n, n)-threshold secret sharing scheme is
modified to share a sequence of numbers instead of only one

key. Let p be an integer greater than
n∑
j=1

di,j. Each meter i first

selects n − 1 random numbers si,j, j = 1, 2, . . . , n − 1 from

{0, 1, . . . , p − 1}. The last random number sn can then be
computed by

sn = −

n−1∑
j=1

si,j

 mod p.

Then, the j-th data to be sent to the server for meter i is

wi,j = di,j + si,j, j = 1, 2, . . . , n.

It is easy to verify that n∑
j=1

wi,j

 mod p =

 n∑
j=1

di,j +
n∑
t=1

si,j

 mod p

=

n∑
j=1

di,j.

The above method allows the electricity company to com-
pute the correct sum of the data sent from each meter in a
fixed time period from t0 to tn without knowing each di,j.
However, in order to correctly compute the sum, the value

of p must be greater than
n∑
j=1

di,j. If the value of p is too

small, i. e. p <
n∑
j=1

di,j, then the sum
n∑
j=1

di,j would not be

correctly computed. To avoid having to estimate the correct
value of p, the (n, n)-threshold secret sharing scheme must be
further adapted so that it can be applied to the communication
of smart meters.

We observed that the random value si,j added to the data
in secret sharing plays the same role as the random noise
added to the data in differential privacy. Therefore, we can
randomly select n−1 noises si,j to be added to di,j. To ensure
that the sum of each row is correct, the last noise si,n must be
computed from the first n− 1 noises:

si,n = −
n−1∑
j=1

si,j.

According to the principle of differential privacy, the
noise si,j to be added to the data di,j should be randomly
selected from a probability distribution with mean 0, and
variance proportional to the sensitivity of the query function.
In our privacy protection communication scheme the query

function is the sum
n∑
j=1

di,j. Thus, the sensitivity is

Di =
n

max
j=1
{di,j}.

The value of Di for each meter i also require to be deter-
mined ahead of the time. However, a good estimation of Di
is sufficient to make the scheme works correctly. It can be
verified that, even if some of the values of di,j exceeds Di,

the desired sum
n∑
j=1

di,j can still be computed correctly.

n∑
j=1

wi,j =
n∑
j=1

(di,j + si,j) =
n∑
j=1

di,j +
n∑
j=1

si,j =
n∑
j=1

di,j.
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In other words, the sum
n∑
j=1

di,j can be computed correctly as

long as
n∑
j=1

si,j = 0. This equation holds due to the application

of the (n, n)-threshold scheme.
Our ultimate goal is to compute both temporal sum and

spatial sum correctly. Unlike differential privacy, usability
is no longer a problem in our scheme because the sum can
always be computed accurately in our scheme. The value
of each si,j, except si,n, can be chosen randomly and uni-
formly in the interval [−Di/2,Di/2]. In fact, choosing si,j
randomly and uniformly in [−Di/2,Di/2] increase the uncer-
tainty (information entropy) of the data sent to the server. For
example, the entropy of di,j given wi,j = di,j + si,j is log(Di),
if si,j is randomly and uniformly chosen from [−Di/2,Di/2].
If si,j is chosen from Laplace distribution with mean 0 and
variance Di, the entropy of di,j is only log(2be), where the
variance 2b2 = Di. The entropy log(2be) = log

(√
2Di e

)
<

log(Di) whenever Di > 2e2.
The security of the above method is the same as one-time

pad. Since the noises si,j, j = 1, 2, . . . , n, are ran-
domly chosen, it is impossible to compute the value of
individual di,j from the cipher text wi,j, unless the values of
these random noises si,j are known.
By using the above method, it is straightforward to encrypt

the data di,j for temporal aggregation for billing. Note that,
for each meter, only the first n − 1 random noises can be
randomly chosen. The last noise must be computed from
the first n − 1 noises. Therefore, if the above method is
applied to the column sum or spatial sum, smart meter needs
to communicate with each other to synchronize their random
noises.

B. DESCRIPTION OF THE PRIVACY PRESERVING SCHEME
In our communication scheme, every smart meter in a spe-
cific area should be able to communicate with some other
smart meters in that area. Smart meters can communicate
by power-line network or any other network. If power-line
network is used, then data are sent and received on a con-
ductor that is also used simultaneously for electric power
transmission. The privacy protection communication scheme
is summarized in Figure 2.

The amount of noise si,j to be added to the data di,j is
synchronized in the communication between meters. In the
time interval [t0, tn], n random noises si,j are required for each
meter i. They can set up their first n−1 random noises by the
method described in step 1 of scheme, and compute the last
one based on the first n− 1 random noises.

To reduce the number of communications, they can also
set up their first random noise, and compute the other n − 2
noises by the following method. Suppose that meter i sends
a request to meter k for setting up a random noise ski,1 = σir
in step 1(c) of the scheme as shown in Figure 2. The random
noises ski,j, j = 2, 3, . . . , n− 1, can be computed by

ski,j = (−1)j−1σih(r, j),

FIGURE 2. Description of the privacy protection communication scheme.

for meter i. Summarily, meter k can compute

sik,j = (−1)j−1σjh(r, j).

In the above equations, h is a secure one-way hash
function. The output of h is the range [−D,D], where
D = max{Di,Dj}.

The actual electricity consumption data of the customers
are not directly stored in the server. Therefore, our com-
munication scheme is secure and privacy-preserving, even if
sensitive data may be leaked to a malicious party due to the
intentional or unintentional behavior of the storage system or
the intrusion of an attacker.

VI. ANALYSIS OF PRIVACY PROTECTION SCHEME
In this section, we show that our communication scheme is
secure and privacy-preserving. We first give a formal security
model of the security and privacy protection communication
scheme.

Let di,j be the electric power consumption data measured
by smart meter i during time period [ti−1, ti]. For the security
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of these di,j’s, we adopt the normal definition that the unau-
thorized parties cannot learn any information about the value
of di,j. No trusted servers are required in our scheme. There-
fore, we assume that the servers are semi-honest and define
privacy-preserving as follows.
definition 1: The communication between smart meters

and servers in a smart grid is privacy-preserving if the
semi-honest servers can only compute the temporal sums
m∑
j=1

di,j and the spatial sums
n∑
i=1

di,j, but the servers do not

know the value of each di,j.
We now show that the privacy protection communication

scheme shown in Figure 2 can always accurately compute the
temporal sum for billing.
Theorem 1: The temporal aggregation for billing of each

meter i can be computed accurately by computing
n∑
j=1

wi,j.

Proof:
n∑
j=1

wi,j =
n∑
j=1

di,j +
n∑
j=1

si,j =
n∑
j=1

di,j.

This is because the term,
n∑
j=1

si,j = 0 for the (n, n)-threshold

scheme.
Next, we show that the spatial aggregation for electric

power distribution at time t can also be computed accurately.
Theorem 2: Assume that each meter is communicated with

some other meters in the same area for setting up ran-
dom noises to be added to its data. The spatial aggregation
for electric power distribution can be computed accurately

by
m∑
i=1

wi,j.

Proof:
m∑
i=1

wi,j =
m∑
i=1

di,j +
m∑
i=1

si,j =
m∑
i=1

di,j.

In the above equation, the term
m∑
i=1

si,j = 0, because it

includes both ski,j and sik,j, one is positive and the one is
negative, for every pair of meters i and k in that area.

To show that the privacy of all customers can be protected,
we model the communication pattern of smart meters by a
graph G = (V ,E). The vertex set V is the set of the mmeters
in that area, Let V = {1, 2, . . . ,m}. There is an edge between
i and k if, and only if, meter i and meter k communicate with
each other to establish randomnoises to be added to their data.
The graph G = (V ,E) is called the connection graph for
smart meters in the area.

Let G be the connection graph for some area in a smart
grid, and S be a subset of vertices in G. Let [S, S̄] denote the
set of edges with one endpoint in S and the other endpoint
not in S. Define D(S, j) to be the sum of measuring data sent
from all meters in area S at time j = 1, 2, . . . , n, that is,

D(S, j) =
∑
i∈S

wi,j.

For the proof of the privacy protection property of our
smart grid communication scheme, we first prove the follow-
ing theorem.
Theorem 3: Let G = (V ,E) be the connection graph for

some area in a smart grid, and S be a subset of V . The value
of D(S, j) can be computed accurately by the server, if and
only if [S, S̄] = ∅.

Proof: Consider the spatial sum with respect to S at
time j. ∑

i∈S

wi,j =
∑
i∈S

di,j +
∑
i∈S

si,j.

The last term,
∑

i∈S si,j = 0 if and only if [S, S̄] = ∅.
In other words, if [S, S̄] 6= ∅, then its value is the
sum of random numbers which are totally unknown to the
server. This implies that the server cannot compute the value
of D(S, t).
Based on the above theorem, we have the following corol-

lary, which gives another proof that, as long as each meter is
connected with some other meters in this area, the spatial sum
for electric power distribution can be computed accurately,
Corollary 3.1: The spatial sum for an area can be com-

puted accurately by the server if and and only if no meters in
this area is connected with meters in another areas.

Finally, we show that our privacy protection communica-
tion scheme preserves the privacy of all customers if every
meter can communicate with some other meters in the same
area.
Corollary 3.2: The value of di,j, j = 1, 2, . . . , n, cannot be

computed by the server, if and only if, meter i is connected to
some other meters.

According to Corollary 3.2, to protect the privacy of a
customer, every meter should be connected to some other
meters in the same area to set up random noise to be added
to its data before sending it to the server. In theory, this
is sufficient to protect the measuring data for every meter.
For example, if the connected component contains only two
meters, then the sum of the electric power usages of the
two meters can be computed, but the meter reading for each
meter remains secret. In practice, we may want to avoid small
connected component in the connection graph.

There are many ways to make sure that every meter is
connected in the connection graph. For example, the con-
nection graph can be an l-circulent graph, where l is a
small integer. In this graph, a pair of meters i and k
are connected if i − k ≡ β (mod m) for some β ∈
{α1, α2, . . . , αl}, where α1, α2, . . . , αl are l positive integers,
with gcd(m, α1, α2, . . . , αl) = 1. In particular, when l = 2,
the graph is also called a double-loop network. In this net-
work, eachmeter connects to 4 other vertices i±α1 and i±α2.

The connection graph can also be a random graph. In this
case, every meter i first sets a probability p. Then it tries to
send a request to set up random noise with other meter k
with probability p. The following theorem shows that, with
proper value of p, the graphGwill almost sure be a connected
graph [16].
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Theorem 4 Alon and Spencer: Let ε be a positive number,
and p be the probability that meters i and k establish random
noises to be added to their data. If p > ((1+ ε) ln n)/n,
then the connection graph G(V ,E) will almost surely be
connected.

In the case that some meter i cannot set up any random
number with other meters to generate noise to protect its data,
each such meter i can choose a number form the Laplace
distribution with mean 0 and variance Di. Even in this case,
our scheme can still ensure that the temporal sum for billing
is accurate, only the spatial sum may induce some errors.
In the extreme case, every meter cannot communicate with
other meters. This is equivalent to the case p = 0. When
this happened, for only the temporal sum, our communication
scheme degraded to Hale et al.’s scheme [12]. They showed
that the spatial sum is still useful for electric power distri-
bution, as long as the number of meters n in that area is
large. Note that, in our communication scheme, even in this
extreme case, the temporal aggregation for billing can still be
accurately computed.

VII. CONCLUSION AND DISCUSSION
We have presented a communication scheme for smart meters
in a smart grid to send their measuring data to the server in a
secure and privacy-preserving way. In our scheme, only one
set of measuring data is required to be sent to and stored in
the server. The same set of data can be used for computing the
temporal sum which is used for billing, and the spatial sum
which is used for electric power distribution. Smart meters
need to communicate with other meters to generate proper
amounts of noise to be added to the measuring data. When
a meter cannot communicate with other meters, it needs
to generate a random noise from a probability distribution
with mean 0. We have shown that, even if all meters cannot
communicate with each other, the temporal sum for billing
can still be computed accurately. The spatial sum used for
electric power distribution may have some errors, but still
useful for electric power distribution.

The main techniques used in our communication scheme
are secret sharing and differential privacy. Both these tech-
niques require only simple computations. The (n, n)-secret
sharing scheme used in our communication scheme is similar
to one-time pad encryption. Only addition is required to
do encryption, no modular exponentiation or other heavy
computations. Hashes may be required to compute some
random noises to reduce communications between smart
meters. Thus, addition and hashes are the only computa-
tions required by our scheme. Therefore, our scheme is a
lightweight scheme. It is more suitable for devices with low
computing resources.
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