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ABSTRACT Speaker verification (SV) has recently attracted considerable research interest due to the
growing popularity of virtual assistants. At the same time, there is an increasing requirement for an SV
system: it should be robust to short speech segments, especially in noisy and reverberant environments. In
this paper, we consider one more important requirement for practical applications: the system should be
robust to an audio stream containing long non-speech segments, where a voice activity detection (VAD)
is not applied. To meet these two requirements, we introduce feature pyramid module (FPM)-based multi-
scale aggregation (MSA) and self-adaptive soft VAD (SAS-VAD). We present the FPM-based MSA to deal
with short speech segments in noisy and reverberant environments. Also, we use the SAS-VAD to increase
the robustness to long non-speech segments. To further improve the robustness to acoustic distortions
(i.e., noise and reverberation), we apply a masking-based speech enhancement (SE) method. We combine
SV, VAD, and SE models in a unified deep learning framework and jointly train the entire network in an
end-to-end manner. To the best of our knowledge, this is the first work combining these three models in a
deep learning framework. We conduct experiments on Korean indoor (KID) and VoxCeleb datasets, which
are corrupted by noise and reverberation. The results show that the proposed method is effective for SV in the
challenging conditions and performs better than the baseline i-vector and deep speaker embedding systems.

INDEX TERMS Unified deep learning framework, speaker verification, VAD, multi-scale aggregation,
self-adaptive soft VAD, speech enhancement.

I. INTRODUCTION
Speaker verification (SV) is the task of verifying that an
input utterance is spoken by a claimed speaker. SV can be
classified into two categories: text-dependent SV (TD-SV)
and text-independent SV (TI-SV). In TD-SV, the speech con-
tent should be the same in the enrollment and verification
utterances, while in TI-SV, there are no constraints on the
contents of the utterances [1]. Even though TI-SV is more
challenging than TD-SV because of the phonetic variability,
TI-SV is more convenient from a user point of view in that
the user can speak freely to the system.

Over the past decades, the i-vector approach [2] with prob-
abilistic linear discriminant analysis (PLDA) [3] has been
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widely used for TI-SV [4]–[7]. The i-vector approach learns a
low-dimensional representation containing both speaker and
channel variability, through which a variable-length utterance
can be represented as a fixed-dimensional i-vector. PLDA
techniques are used to compensate for the speaker and chan-
nel variability of i-vectors. The i-vector/PLDA systems per-
form well on long enrollment/test utterances (usually more
than 10 s), but are prone to have performance degradation on
short enrollment/test utterances (usually less than 10 s) [8].

With the development of deep learning, a deep neural
network (DNN)-based acoustic model has been inte-
grated into the i-vector/PLDA system and used to gener-
ate senone posteriors for i-vector computation instead of
the conventional Gaussian Mixture Model-Universal Back-
ground Model (GMM-UBM) [9], [10]. This approach,
called DNN/i-vector, improves the GMM-UBM-based
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i-vector system. However, it requires well-annotated train-
ing data, and the introduction of the additional DNN-based
acoustic model significantly increases the computational
complexity.

Another deep-learning-based approach is deep speaker
embedding learning, which is the most extensively stud-
ied approach. It learns speaker embeddings using speaker
features extracted from a speaker-discriminative network
[11]–[14]. Several convolutional neural networks (CNNs)
such as time-delay neural network (TDNN) [15], VGG [16],
and ResNet [17] are mostly used in this approach. Typically,
the network is trained to classify speakers in the training
set [11], [14] or to maximize the distance between same-
speaker and different-speaker utterance pairs [12], [13]. Then,
we obtain an utterance-level speaker embedding, named deep
speaker embedding, by aggregating speaker features from the
network. The d-vector [11] and x-vector [14] methods are
examples of this approach.

Recently, SV has gained a lot of research interest with
the advancement and popularity of virtual assistants such as
Amazon Alexa, Apple Siri, Google Assistant, and Microsoft
Cortana. From application point of view, there is an increas-
ing requirement for SV systems: the systems should be robust
to short speech segments. Otherwise, the user will be asked
to speak for a long time during the enrollment and veri-
fication phases, thereby causing inconvenience to the user.
To improve performance on short speech segments, several
techniques have been proposed in previous studies [18]–[24].
At the same time, the systems are expected to be robust to
noisy and reverberant environments, where they are typically
used. Recent studies have suggested speech enhancement
(SE) algorithms to improve the robustness of the SV systems
to noise and reverberation [25]–[29].

In this study, we consider one more requirement which
has not been considered in recent SV studies, despite its
importance in real-world applications: the SV systems should
be robust to the input audio containing long non-speech
segments, especially in noisy and reverberant environments.
This assumes that voice activity detection (VAD) has not been
applied to remove non-speech frames, which may degrade
the SV performance, from the audio. Most SV studies still
rely on a traditional energy-based VAD [13], [20], [30],
and even some of them do not apply VAD [31], [32]. It is
because most SV databases are included in the follow-
ing two cases, thus minimizing the need of robust VAD:
(1) They were recorded in relatively clean conditions, where
the naive energy-based VAD performs reasonably well.
(2) They contain audio recordings which already have small
portion of non-speech. However, our previous work [33]
shows the need of the robust VAD for SV in real-world envi-
ronments, where the input audio contains long non-speech
segments in noisy and reverberant environments. In these
adverse environments, the energy-based VAD produces unre-
liable speech frames, which degrades the performance of SV
systems [34].

To satisfy these two requirements for TI-SV, which is our
ultimate goal in this paper, we present our methods: fea-
ture pyramid module (FPM)-based multi-scale aggregation
(MSA) [22] and self-adaptive soft VAD (SAS-VAD) [33].
We employ the FPM-based MSA to deal with short speech
segments. Also, we adopt the SAS-VAD to deal with long
non-speech segments. In the experiments, we show that both
algorithms are robust to acoustic distortions (i.e., noise and
reverberation). We further improve the SAS-VAD and com-
bine it with the FPM-based MSA. Finally, we integrate a
masking-based SE model into the combined model, thus
further increasing the robustness to the acoustic distortions.
We jointly train the entire network in an end-to-end manner.
Our end-to-end approach has advantages over the conven-
tional approach using separately pre-trained models. As the
VAD and SE models are optimized to minimize the SV loss,
they do not require labels for training, which are difficult to
obtain for most SV datasets. Moreover, they are guided by
the SV loss to generate outputs which are more suitable and
useful for the SV task. To the best of our knowledge, this is
the first work that combines SV, VAD, and SE models into a
unified deep learning framework.

The main contributions of this paper are: (1) We provide
a comprehensive overview of deep speaker embedding learn-
ing, including its loss functions, operation types, and pooling
methods. (2) We present a new practical consideration for
SV systems that has never been discussed before: short-
duration SV with long non-speech segments in noisy and
reverberant environments. (3) To achieve our goal, we com-
bine the three approaches: FPM-based MSA, SAS-VAD, and
masking-based SE, and the whole network is trained in an
end-to-end manner. Especially, we propose a 1D-CNN-based
synchronizer to combine FPM-based MSA with SAS-VAD.
Besides, we conduct extensive experiments using different
types of feature extractors and acoustic features.

The remainder of this paper is organized as follows.
An overview of deep speaker embedding learning is pre-
sented in Section II. FPM-based MSA and masking-based
SE are introduced in Section III and Section IV, respectively.
SAS-VAD algorithm and proposed combined model are pre-
sented in Section V and Section VI, respectively. The exper-
imental setup is described in Section VII. The experimental
results on different datasets are given in Section VIII. Finally,
we summarize our work and draw conclusions in Section IX.

II. DEEP SPEAKER EMBEDDING LEARNING
In this section, we provide an extensive overview of the
deep speaker embedding learning. As mentioned in Section I,
deep-learning-based SV approaches can be divided into two
types: DNN/i-vector and deep speaker embedding learning.
Wang et al. [20] denote the former as cascade embedding
learning and the latter as direct embedding learning. In this
work, we focus on the deep speaker embedding learning
due to the limitations of DNN/i-vector and the increasing
popularity of deep speaker embedding learning.
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FIGURE 1. Two types of operations in deep speaker embedding learning:
(a) frame-level operation and (b) segment-level operation.

We can categorize deep speaker embedding learning
according to the loss function. The first approach is based
on the softmax loss, which is defined in [35] as the com-
bination of a cross-entropy loss, a softmax function, and
the last fully-connected layer [11], [14]. In this approach,
a network is trained to classify speakers in the training
set. The second one is based on the metric learning based
loss, such as triplet loss. This loss encourages the intra-class
compactness and inter-class separability, thereby improving
generalization performance [12], [13]. A disadvantage is that
we have to select triplets from the training set carefully,
which is both performance-sensitive and time-consuming.
To overcome this problem and learn more discriminative
embeddings, advanced classification-based losses, such as
center loss [36] and angular softmax (A-Softmax) loss [37],
are applied to SV [18], [19]. The center loss minimizes
the Euclidean distance between embeddings and their cor-
responding class centers. The A-Softmax loss introduces an
angular margin into the softmax loss, enhancing the dis-
criminability of embeddings. More advanced angular margin
losses have been proposed, such as additive margin soft-
max [38] and additive angular margin softmax [39] losses,
achieving state-of-the-art performance on the SV task [40].

In training, a fixed-length segment is randomly selected
from the input utterance and the segment is fed into the net-
work. The first reason is that the length of the input utterance
can be extremely long with limited GPUmemory. The second
one is that, to form a mini-batch, the size of all samples in the
mini-batch must be the same. After training, we feed an entire
utterance into the network to extract a speaker embedding
and the embedding is stored for each enrollment speaker.
Finally, scoring between enrollment and test embeddings is
performed using either the cosine similarity or PLDA. Based
on how the network operates on input speech segments,
the deep speaker embedding learning can be classified into
two types: frame-level and segment-level operations, which
are illustrated in Fig. 1(a) and (b), respectively.

In frame-level operation, each acoustic feature vector
xt ∈ Rd in the input segment is augmented with neighboring
frames within a context window of sizew and fed into a CNN-
based feature extractor. Here, t is the frame index. Then,
a frame-level speaker feature vector ht ∈ Rc is extracted from
the feature extractor for each frame to form a 2D feature map
H = [h1 h2 · · · hT ] ∈ Rc×T . Here, T is the total number of
frames in the input segment. Note that the number of xt and
ht are the same. After extracting the feature map, we apply
feature pooling to map the variable-length feature mapH to a
fixed-dimensional speaker embedding z. For feature pooling,
we first aggregate the feature vectors across time by using
global pooling and then obtain a pooled feature vector. The
pooled vector is passed to one or few fully-connected (FC)
layers to generate the deep speaker embedding z. The works
in [14], [19], [20], [33] are examples of this approach.

In segment-level operation, all xt ∈ Rd (t = 1, . . . ,T )
in each segment are combined to form a feature matrix
X ∈ Rd×T and then fed into the feature extractor at once.
We denote the resulting 3D feature map as H ∈ Rd ′×T ′×c,
where c is the channel dimension of the last convolutional
layer. Note that d ′ and T ′ are smaller than d and T , respec-
tively, due to the repeated local pooling operations. Here,
there are two ways to aggregate speaker feature vectors
hk ∈ Rc (k = 1, . . . , d ′T ′) into a single feature vector. The
first one is to aggregate feature vectors across both time and
frequency. The studies in [18], [22], [32], [41] are examples
of this approach. The second one is to reduce the frequency
dimension d ′ to 1 by additional global pooling [30] or FC
layers [31] before applying the global pooling. After reducing
the dimension, the global pooling aggregates feature vectors
across time, which is the same as in the frame-level operation.
In this work, we use the former approach.

Meanwhile, we can divide pooling operations into two
types in terms of receptive field: local pooling and global
pooling [42]. In local pooling, the pooling block is smaller
than the input feature map and the time-frequency scale
is reduced with increasing robustness against temporal and
spectral variations in input speech. Different from local pool-
ing, global pooling covers the entire input feature map and
compresses the feature map into a feature vector of size c.
Therefore, in deep speaker embedding learning, local pooling
is commonly used in a feature extractor to extract useful
speaker features, and global pooling is used in a feature pool-
ing layer to aggregate speaker feature vectors into a pooled
feature vector.

The global average pooling (GAP) is the most naive
method for global pooling [31], [43]. Recently, many
researchers have proposed advanced pooling methods for
deep speaker embedding learning. Snyder et al. [44] intro-
duce the statistics pooling (SP) where the standard devia-
tion of the feature vectors is used as well as the average
of them. Okabe et al. [45] present the attentive statistics
pooling (ASP), which integrates attention mechanism into
the statistics pooling. Zhang et al. [13] propose to use the
spatial pyramid pooling (SPP) [46], which divides the last
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FIGURE 2. Three types of deep speaker embedding learning. (a) Using
only single-scale feature maps. (b) Using multi-scale feature maps
without a feature pyramid module (FPM). (c) Using multi-scale feature
maps with an FPM. In this paper, input feature matrix X is represented by
grey rectangles and CNN feature maps are marked by blue outlines.
Thicker outlines correspond to more speaker-discriminative information
in feature maps. ⊗ : concatenation, ⊕ : element-wise addition, 2× up :
upsampling operation by a factor of 2.

feature map into several bins and applies GAP to each bin.
Cai et al. [30] apply the learnable dictionary encoding (LDE),
which imitates the process of encoding GMM supervec-
tors [47] within a deep learning framework. Jung et al. [32]
propose the spatial pyramid encoding (SPE), which improves
both LDE and SPP methods by combining them.

For all the pooling methods mentioned above, we use only
single-scale feature map from the last layer of the feature
extractor. Recently, multi-scale aggregation (MSA) methods
have been proposed to exploit speaker information at multiple
time scales [22], [23], [48], [49], showing the effectiveness
in dealing with variable-duration test utterances.

III. MULTI-SCALE AGGREGATION
As mentioned in Section I, deep CNNs are commonly used
as a feature extractor for deep speaker embedding. Deep
CNNs are generally bottom-up and feed-forward architec-
tures, consisting of alternating layers of convolution and local
pooling to learn discriminative features, which operates at the
segment-level (Fig. 1(b)). By doing so, deep CNNs compute
a feature hierarchy layer by layer, which is inherently multi-
scale of pyramidal shape due to repeated local pooling layers.
This in-network feature hierarchy produces feature maps
of different time-frequency scales and resolutions, but it
also produces large semantic gaps between different layers.
In deep speaker embedding learning, as the feature extractor
is trained to discriminate speakers, the features from higher
layers contain higher-level speaker information (i.e., more
speaker-discriminative) [50] but have smaller scales
(i.e., lower resolutions) than those from lower layers.

Thanks to the local pooling operations, deep CNNs are
robust to scale variation, thus making it possible to use
feature maps computed on a single input scale (Fig. 2(a)).
Even with this robustness, using multi-scale features from
multiple layers (Fig. 2(b)), called multi-scale aggregation
(MSA), has shown better performance than using single-
scale feature maps [22], [23], [48], [49]. Note that, between
the frame- and segment-level operations, we should choose

FIGURE 3. Two types of multi-scale aggregation (MSA). (a) Multi-scale
feature aggregation (MSFA). (b) Multi-scale embedding aggregation
(MSEA). ‘‘2× down’’ denotes the downsampling operation by a factor
of 2. In all figures, ‘‘pooling’’ denotes global pooling operation.

the segment-level operation for the MSA because all the
feature maps from different layers have the same time scale
in the frame-level operation. To improve the MSA, we pro-
pose to use a feature pyramid module (FPM) which is
illustrated in Fig. 2(c). In the following, we review related
works and discuss the relation between our approach and
previous ones.

A. RELATED WORKS
Gao et al. [48] proposed multi-stage aggregation for deep
speaker embedding learning. They used ResNet as a feature
extractor, where the feature maps of stage 2, 3, and 4 (see
Table 2) were concatenated along the channel axis. Before
concatenation, they downsampled and upsampled the feature
maps of different sizes (i.e., different time-frequency scales)
to make them have the same size. Concretely, the feature map
of stage 2 was downsampled by convolution with stride 2,
and the feature map of stage 4 was upsampled by bilinear
interpolation or transposed convolution. After concatenation,
statistics pooling was applied to generate speaker embed-
dings. In this approach, speaker embeddings were obtained
using feature maps at multiple time-frequency scales, achiev-
ing state-of-the-art performance on VoxCeleb [31].

Seo et al. [49] also utilized features from different stages
of ResNet to combine information at different time-frequency
scales. Different from the approach of Gao et al., GAP was
applied to the feature maps respectively and the resulting
pooled feature vectors were concatenated into a long vector.
The concatenated vector was fed into fully-connected lay-
ers to generate the speaker embedding. Hajavi et al. [23]
proposed a similar approach using UtterIdNet to deal with
short speech segments. They showed that the MSA is useful
for short-duration speaker verification by extracting as much
information as possible from short speech segments.

For convenience, we denote the first approach as multi-
scale feature aggregation (MSFA) and the second one
as multi-scale embedding aggregation (MSEA), which are
shown in Fig. 3. In [22], we showed that the MSEA per-
forms slightly better than the MSFA with fewer parameters.
Furthermore, the MSEA can flexibly use various number of
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FIGURE 4. Illustration of multi-scale aggregation (MSA) using a feature
pyramid module (FPM). The black dotted box indicates the FPM.

feature maps from different stages, while the MSFA does not.
Therefore, we only consider the MSEA in this paper.

B. FEATURE PYRAMID MODULE
As explained above, in the deep CNN-based feature extrac-
tor, feature maps of lower layers contain less speaker-
discriminative information than those of higher layers.
Intuitively, if we can enhance speaker discriminability of the
lower-layer feature maps, the performance of the MSA will
improve accordingly. Motivated by this, we propose to use an
FPM to extract multi-scale feature maps containing sufficient
speaker-discriminative information at all layers. In this paper,
we use the FPM-based MSA to deal with short speech seg-
ments, especially in noisy and reverberation environments.
Besides, we conduct extensive experiments using different
types of networks, acoustic features, and datasets.

The detailed architecture is presented in Fig. 4, which
consists of three main components: a bottom-up pathway,
a top-down pathway, and lateral connections. The bottom-up
pathway is a typical feed-forward computation of the feature
extractor, which produces feature maps of different scales.
In each ResNet stage, there are several layers generating
feature maps of the same time-frequency scale (see Table 2).
Since the deepest layer is expected to learn the strongest
features, we only choose the output features of the last layer
as the output of each stage. We denote the output of stage i
as Ci+1 for i = 1, 2, 3, 4, since the stage 1 corresponds to
conv2.

The black dotted box in Fig. 4 shows the FPM which
includes the top-down pathway and the lateral connection.
The procedure is as follows: (1) At the beginning, a 1 × 1
convolutional layer reduces the channel dimension of C5 to
32 which is the channel dimension of the stage 1. (2) In the
top-down pathway, we upsample C5 from stage 4 by a factor

of 2 by using transposed convolution. In other words, the
top-down pathway creates a 3D feature map consisting of 2D
‘‘time-frequency (TF)’’ feature maps which are larger than
those of C5 (note that C5 also consists of several TF feature
maps). These TF feature maps have the same size as those
of C4, but contain more speaker-discriminative information.
(3) The upsampled feature map is then enhanced by C4
from the bottom-up pathway via lateral connections. More
concretely, the top-down feature map is merged with the cor-
responding bottom-up feature map by element-wise addition.
Before merging, a 1 × 1 convolution reduces the channel
dimension of C4 to 32. These lateral connections play the
same role as the skip connections in U-Net [51]. (4) The
process from step (1) to step (3) is repeated from the top
stage to the bottom stage. (5) Finally, convolutional layers
are added to each merged feature map to reduce the aliasing
effect of upsampling. Specifically, we first apply a 1 × 1
convolution with 32 filters, and then increase the channel
dimension to that of the corresponding bottom-up feature
map by using a 3 × 3 convolution. This final feature map
is called Pi corresponding to Ci for i = 2, 3, 4, 5, where Pi
and Ci have the same time-frequency resolution.

The FPM enhances higher-resolution feature maps con-
taining lower-level speaker information by providing higher-
level speaker information from lower-resolution feature
maps. The resulting feature pyramid has abundant speaker-
discriminative information at all stages. Furthermore,
the FPM reduces the total number of parameters in the
network because the channel dimensions of stage 2, 3, and 4
are reduced to 32, which is the minimum number of filters.

According to a recent study [52], the collection of variable-
length paths through ResNet shows ensemble-like behavior,
in that the paths do not heavily depend on each other. Like-
wise, we can say that multiple paths generated by the MSA
use an ensemble of multi-scale features that are extracted
from different paths. As the variable-length feature maps are
used to generate speaker embeddings, we expect that the
performance of deep speaker embedding learning will be
improved for variable-length test utterances. In our previous
study [22], we showed that using the MSA improves the
performance for both short and long utterances, and the FPM
further enhances the performance of the MSA.

IV. SPEECH ENHANCEMENT
The FPM-based MSA has the robustness to acoustic distor-
tions, as will be shown in the experiment section. To further
increase the robustness, we apply speech enhancement using
a masking network which consists of 11 dilated convolution
layers. The first 10 layers have 16 filters with kernel size 3×3
and dilation size 2×2. After each convolution, batch normal-
ization followed by ReLU is applied. The last convolutional
layer has one filter with kernel size 1 × 1 and dilation size
1 × 1. To obtain a ratio mask, we use a sigmoid function
in the last layer that gives values between 0 and 1. Employ-
ing dilated convolutions increases the receptive field of the
network exponentially, resulting in large temporal context.
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FIGURE 5. Speech enhancement network for robust speaker verification.
In this paper, � denotes element-wise multiplication.

The network estimates the ratio mask M ∈ Rd×T and the
resulting mask is multiplied with the corrupted feature matrix
X ∈ Rd×T element-wise to produce the enhanced feature
matrix X̂ = X �M ∈ Rd×T .
In [26], the speaker verification network is pre-trained and

fixed before the masking network is trained. Instead, in this
work, we jointly train the masking and speaker verification
networks. The masking network is trained in an end-to-end
manner without an explicit loss function. The detailed struc-
ture is shown in Fig. 5. After enhancement, the enhanced fea-
ture matrix X̂ is fed into a speaker verification network. Here,
speaker feature vectors are extracted by a feature extractor
and converted into a speaker embedding z by a feature pooling
layer. Finally, the combined network is jointly trained to
classify speakers in the training set using cross-entropy loss.
When the SAS-VAD is combined with the FPM-based MSA,
X̂ is fed into both speaker verification and VAD networks to
improve the robustness of both networks. This will be further
explained in Section VI.

V. SELF-ADAPTIVE SOFT VOICE ACTIVITY DETECTION
To improve the robustness of the SV model to long
non-speech segments, we proposed self-adaptive soft VAD
(SAS-VAD) [33], which is the combination of soft VAD and
self-adaptive VAD. Here, we introduce the advanced version
of SAS-VAD which shows better performance than the orig-
inal one and can be combined with the MSA to achieve our
ultimate goal.

A. SOFT VAD
In this subsection, we explain our previous soft VAD [33]
first and its advanced version later. Unlike typical VADs that
make a hard decision on acoustic features with a predefined
threshold, the soft VAD makes a soft decision on speaker
feature vectors when the self-attentive pooling (SAP) [30] is
applied. By removing the need to find the optimal threshold
to make a speech/non-speech decision, this approach helps
to improve the generalization ability of VAD [53]. This is
because the optimal threshold may differ with test conditions.

With the soft VAD, each speaker feature vector is weighted
by its corresponding speech posterior, which is a confidence
measure for speech. That is, the soft VAD is applied not to
acoustic feature vectors xt ∈ Rd , but to speaker feature vec-
tors ht ∈ Rc for t = 1, . . . ,T . Specifically, after extracting a
speaker feature map H ∈ Rc×T which consists of T feature

TABLE 1. The architecture of 1D-CNN-based synchronizer.

vectors ht , we multiply each ht by its attention weight αt and
speech posterior qt together for all T frames. The attention
weight is calculated by an attention module and the speech
posterior is generated by a VAD network. In our previous soft
VAD, we use the frame-level operation in Fig. 1(a), and thus
the number of ht is the same as the number of xt as discussed
in Section II. Therefore, we can also obtain T speech pos-
teriors from the VAD network since the VAD operates in a
frame-wise manner. Concretely, the VAD network is fed by
xt with neighboring frames and outputs the corresponding
speech posterior qt . Obviously, a speech posterior vector q =
[q1, . . . , qT ] ∈ RT from VAD and a speaker feature map H
from the feature extractor have the same length T , thus we can
apply the soft VAD. However, since all the feature maps from
different layers have the same time scale, we cannot apply the
MSA in the frame-level operation. Hence, to combine soft
VAD and MSA, we need to modify our soft VAD framework
to enable the segment-level operation in Fig. 1(b). When we
use the segment-level operation, feature maps from different
layers have different time scales. Specifically, as the ResNet
stage increases, the length of feature map is halved due to
local pooling operations.

Here, another problem arises: a length mismatch occurs
between q and H . To synchronize the VAD output and
reduced speaker feature maps, we propose a 1D-CNN-based
synchronizer where the local pooling operations are syn-
chronized with the speaker feature extractor along the time
axis. The detailed architecture is presented in Table 1. The
synchronizer consists of 3 convolutional (conv.) blocks and
each block consists of 3 conv. layers, where 1D convolution
is applied along the time axis. The first conv. layer increases
the number of channels by a factor of 2, and the second conv.
layer performs the local pooling operation with stride 2. Both
layers are followed by batch normalization and ReLU activa-
tion, respectively. The final conv. layer reduces the number
of channels to 1 with kernel size of 1. Then, the sigmoid
activation function is applied to produce a speech posterior
vector which is the reduced version of q.

To be specific, the synchronizer is fed by the speech pos-
terior vector q ∈ RT and outputs three reduced versions
of q from conv`_3 for ` = 1, 2, 3. We denote the output
from conv`_3 as q(`), of which the length is b T

2`
c. Here, q(0)

is equal to q. To integrate soft VAD into FPM-based MSA,
we expand q(i) into a 3D tensor Qi+2 with the same size of
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FIGURE 6. The combination of SAS-VAD and FPM-based MSA.

Pi+2 for i = 0, 1, 2, 3 (see Fig. 6, where the synchronizer is
denoted as Sync). Qi+2 is constructed by repeating q(i) along
the frequency and channel axes. Then, we multiply Qi+2 and
Pi+2 element-wise to perform soft VAD. By this operation,
each feature vector in Pi+2 is weighted by its corresponding
speech posterior which is a confidence measure for speech.
We denote the resulting feature map as Hi+2. In summary,
we obtain speech posterior vectors of reduced length from
the synchronizer, which have the same length as their corre-
sponding speaker feature maps. After that, we expand each
posterior vector to a 3D tensor and multiply it to its cor-
responding speaker feature map element-wise. In this way,
we can apply soft VAD to multi-scale speaker feature maps
obtained by FPM-based MSA.

Next, we perform self-attentive pooling (SAP) to obtain
a pooled feature vector from the weighted feature map Hj
for j = 2, 3, 4, 5. Unlike GAP, where all feature vec-
tors are assumed to be equally important, the SAP layer
learns a weight for each feature vector and assigns larger
weights to useful feature vectors. The SAP layer itself per-
forms soft VAD implicitly because it gives more weights
to feature vectors from speech frames than those from
non-speech frames [54]. Nevertheless, integrating explicit
VAD information is found to be helpful for the attention
mechanism [33], [55].

We denote the size ofHj as d (j)×T (j)
×c(j).Hj corresponds

to the stage j − 1 and consists of feature vectors h(j)k for
k = 1, . . . , d (j)T (j), which have the length of c(j). Henceforth,
we omit the superscript j for notational simplicity. An atten-
tion mechanism computes a scalar score ek for hk :

ek = vT tanh(Whk + b) , (1)

where v ∈ Rc and W ∈ Rc×c are learnable parameters, and
tanh(·) is a tanh activation function. Each ResNet stage has its
own parameters v, W , and b in a SAP layer. Then, we apply
a softmax function to normalize the score ek :

αk =
exp(ek )∑dT

k ′=1 exp(ek ′ )
. (2)

After that, the normalized score αk is used as the weight of
hk in global pooling. Finally, the weighted mean vector µ̃ is

calculated as below:

µ̃ =

dT∑
k=1

αkhk . (3)

In this way, we obtain the pooled vector from each ResNet
stage and the following steps are the same as in FPM-based
MSA. All the pooled vectors are concatenated and fed into an
FC layer to generate a speaker embedding vector.

In our previous work [33], we use a simple fully-connected
DNN-based VAD, but in this work, we also use more
advanced neural networks for VAD: long short-term memory
(LSTM) and convolutional, long short-term memory, fully
connected deep neural network (CLDNN) [56].

B. SELF-ADAPTIVE VAD
In general, we train SV and VAD networks on different
datasets. This domain mismatch causes performance degra-
dation of VAD when we apply the VAD for SV. To reduce the
domain mismatch, especially in the soft VAD, we propose
to use two unsupervised domain adaptation (DA) techniques,
which are speech-posterior-based DA (SP-DA) and joint-
learning-based DA (JL-DA).

In SP-DA, a pre-trained VAD network is fine-tuned on SV
data, thereby requiring VAD labels for the SV data. However,
obtaining VAD labels for the SV data is costly and time-
consuming in general. The reason is as follows. There are
mainly three ways to generate VAD labels. The first way
is to use human labeling that produces labels by a human
expert manually. The second one is to use forced-alignment
automatic speech recognition (ASR) [57]. The third one is
to apply unsupervised VAD to the clean data and use the
results as the labels of the corresponding noisy data [58]–[60].
Note that the last method requires parallel clean and noisy
data. In general, it is difficult to apply all three methods to
the SV data. Since most SV datasets are large-scale, it is
difficult to use the first method. Moreover, it is difficult to
use the second and third methods because most SV datasets
do not consist of clean data with which ASR or unsupervised
VAD performs almost perfectly. Therefore, we assume that
there are no VAD labels for the SV data and propose to use an
unsupervised domain adaptation method where the VAD net-
work itself generates ‘‘reliable’’ VAD labels for the unlabeled
SV data. We achieve this by repeating the following steps:
(1) We threshold speech posteriors, which are the outputs of
the VAD network, to generate ‘‘reliable’’ labels. (2) We fine-
tune the VAD network with the labeled data generated by the
VAD network itself. This is why we call this approach self-
adaptive VAD.

In JL-DA, we integrate the VAD network into the SV
network using the soft VAD. Then, the gradient of the loss of
the SV network is backpropagated through the VAD network.
Since the VAD network is partly guided by the SV loss,
it would be able to assign higher posterior probabilities for
frames which are more useful for the SV task. The self-
adaptive VAD is conducted by combining SP-DA and JL-DA.
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Algorithm 1 Self-Adaptive Soft Voice Activity Detection

Input: Training set D = {X v
i ,X

s
i , y

s
i }
U
i=1, pre-trained VAD

network VAD0, posterior threshold δ, loss weight λ
Output: Fine-tuned VAD networkVADwith parameters θv,

speaker verification network SV with parameters θs
1: VAD← VAD0
2: repeat
3: for i := 1 to U do
4: // Speech-posterior-based domain adaptation
5: qi← ∅
6: for t := 1 to Ti do
7: qi,t ← VAD(xvi,t ; θv)
8: qi← qi ∪ {qi,t }
9: end for

10: X̄
v
i , Ȳ

v
i ← F(qi, δ)

11: LSP← L(VAD(X̄
v
i ; θv), Ȳ

v
i )

12: // Joint-learning-based domain adaptation
13: LJL ← L(SV(X s

i ; θs), y
s
i )

14: // Calculate losses Lv and Ls
15: Lv← LJL + λLSP
16: Ls← LJL
17: // Update parameters θv and θs
18: θv← θv − ηv∇θvLv
19: θs← θs − ηs∇θsLs
20: end for
21: until convergence of SV

The overall procedure of SAS-VAD is given in
Algorithm 1. Suppose D is a SV dataset, which has U utter-
ances in total. X v

i and X s
i are a set of acoustic feature vectors

of the i-th utterance, which are extracted for VAD and SV,
respectively:

X v
i = {x

v
i,1, · · · , x

v
i,Ti} , (4)

X s
i = {x

s
i,1, · · · , x

s
i,Ti} , (5)

where xvi,t and x
s
i,t are the feature vectors of the t-th frame

in X v
i and X s

i , respectively. Here, Ti is the total number of
frames in the i-th utterance and the superscripts v and s denote
VAD and SV, respectively. Both acoustic features can be
different types, but for simplicity, we use the same features
for both tasks. ysi is the speaker label for the i-th utterance.
We assume that we do not have VAD labels as it is usually
difficult to obtain them for SV data, as mentioned above.

In SP-DA, we generate a speech posterior vector qi in
the i-th utterance using the pre-trained VAD. Each speech
posterior qi,t is compared with the predefined threshold δ
of 0.7, where qi,t corresponds to the t-th frame. If qi,t is larger
than δ, we assume that the t-th frame can be reliably-labeled
as a speech frame. On the other hand, if 1 − qi,t , the non-
speech posterior of the t-th frame, is larger than δ, the frame
is regarded as a non-speech frame. This operation is denoted
by F(qi, δ) and generates a set of feature vectors X̄

v
i and

corresponding VAD labels Ȳ
v
i . After that, the VAD network

is fine-tuned using the obtained labeled data {X̄
v
i , Ȳ

v
i } by

minimizing the loss function LSP. In [33], the cross-entropy
loss function is used as LSP.

In this work, instead of the cross-entropy loss, we apply
focal loss [61] to handle speech/non-speech class imbalance
in SP-DA. The class imbalance is a common problem in
training the VAD network because, in many cases, there is a
significant mismatch between the number of speech and non-
speech frames in an utterance (usually the former is larger
than the latter). It has been shown that this class imbalance
in training can degrade the performance of deep learning-
based classifiers in various domains [62]. To address the
problem, many VAD studies insert silence at the beginning
and end of each utterance to increase the ratio of non-
speech frames [58]–[60], [63]. Unlike this heuristic approach,
in [64], we proposed to use the focal loss, which was orig-
inally designed to address class imbalance in object detec-
tion task. We demonstrated that the focal loss is useful for
dealing with class imbalance in the VAD and improves the
performance in various class imbalance cases. The focal loss
is defined as below:

FL(pt ) = −(1− pt )γ log(pt ) , (6)

where (1− pt )γ is a modulating factor to focus training on a
rare class, which is multiplied to the cross entropy loss, and γ
is a tunable focusing parameter. Here, pt is defined as below:

pt =

{
p, if y = 1
1− p, otherwise ,

(7)

where y ∈ {±1} is the ground-truth class and p ∈ [0, 1] is the
VAD’s estimated probability for the speech class (i.e., the
class with label y = 1). In the SP-DA, there is also the class
imbalance problem as in the typical VAD training. Therefore,
we decide to apply the focal loss to the SP-DA.

In JL-DA, the loss LJL , which is the loss of the SV
model SV , is calculated using X s

i (a fixed-length segment
of 200 frames) and the corresponding label ysi for the i-th
utterance. The gradients of LJL are backpropagated through
theVAD andSV , respectively. The self-adaptiveVAD is then
conducted by combining the two losses as follows:

Lv = LJL + λLSP , (8)

where Lv is the total loss and λ is the loss weight for LSP.
We indicate the combination of the soft VAD and the self-
adaptive VAD as self-adaptive soft VAD.

VI. PROPOSED INTEGRATED MODEL
Fig. 7 illustrates the proposed integrated model which con-
sists of three models: (1) speech enhancement (SE) model
using a masking network, (2) speaker verification (SV)
model using FPM-based MSA, and (3) voice activity detec-
tion (VAD) model using modified self-adaptive soft VAD
(SAS-VAD). The overall procedure of the proposed approach
is described in the following paragraph.

The masking network in the SE model estimates the
ratio mask M and the resulting mask is multiplied with
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FIGURE 7. Illustration of the proposed integrated model combining speech enhancement (SE), speaker verification, and VAD.

the corrupted feature matrix X element-wise to produce
the enhanced feature matrix X̂ , as explained in Section IV.
Then, X̂ is fed into both SV and VAD models. In the SV
model, multi-scale feature maps are extracted by a speaker
feature extractor and enhanced by the FPM, as explained in
Section III-B. In the VAD model, a speech posterior vec-
tor q is produced and fed into the synchronizer (denoted
as Sync in the figure). After that, we obtain four reduced
versions of q and perform the soft VAD by multiplying
the enhanced feature maps by their corresponding speech
posterior vectors, as explained in Section V-A. The result-
ing feature maps are colored in yellow. Then, the feature
maps are converted into the speaker embedding z by a fea-
ture pooling layer, which consists of SAP and FC layers.
Finally, z is fed into a speaker classifier. All the networks are
jointly trained in an end-to-end manner to classify training
speakers using softmax loss. Furthermore, the VAD model is
adapted to the SV data by using self-adaptive VADwith focal
loss.

Our end-to-end approach has two advantages over the con-
ventional approach using separately pre-trainedmodels. First,
since the VAD and SE models are optimized to minimize
the SV loss, they do not require labels for training, which
are difficult to obtain for most SV datasets. In Section V-B,
we explained why it is difficult to obtain VAD labels. In the
case of the SE, it is also difficult to obtain labels for the
same reason. The SE model is usually optimized by mini-
mizing the mean square error (MSE) between the enhanced
and clean speech features [65]. That is, we use the clean
features as the label of its corresponding input noisy features.
As already explained, obtaining parallel clean and noisy data
is difficult for the SV data. The second advantage is that
both VAD and SE models are guided by the SV loss to
generate outputs which are more suitable and useful for the
SV task. In the case of the VAD, this approach is called
joint-learning-based domain adaptation (see Section V-B).
In the experiments, we will show that our approach per-
forms better than using a pre-trained VAD model without
adaptation.

VII. EXPERIMENTAL SETUP
A. DATASETS
For speaker verification, we used two datasets: Korean indoor
(KID) [66] and VoxCeleb [31]. The KID dataset is a text-
independent dataset consisting of reverberated speech and
noise. It was collected at a distance of 3 m from the source
in an indoor environment, which is a simulated living room
with the reverberation time (RT60) of 0.23 s. Compared to
the corrupted data generated by simply adding prerecorded
noise to clean speech collected independently of each other,
the corrupted data from the KID dataset is much closer to
natural data since both speech and noise were collected in the
same room with the same microphone.

We used the same data setup as [33]. There are a total
of 550 speakers for training and validation. For each utter-
ance, the noise was randomly selected from three types of
noise, i.e., air conditioner, smartphone ringtone, and TV,
and added to the reverberated speech at randomly selected
signal-to-noise ratios (SNRs) between 0 and 10 dB, resulting
in 200 utterances per speaker. Here, utterances of randomly
selected 20 speakers were used for validation and the rest
of them were used for training. The utterances of other
105 speakers were used for testing. We inserted silence at the
beginning and end of the utterance to simulate more realistic
conditions where the need for robust VAD is higher, which
will be explained later. After inserting silences, the noise was
randomly selected from three types of noise, i.e., refrigerator,
babble, and music, and added to the reverberated speech
at randomly selected SNRs of 0, 5, and 10 dB, resulting
in 24 utterances per speaker. 12 utterances were sampled as
the enrollment data for each speaker. Other than 12 enrolled
utterances, we sampled 12 utterances each from the same and
different speakers. A total of 30 k trials were generated for
testing.

VoxCeleb is a dataset for large scale text-independent
speaker verification containing 1,250 speakers, and the
dataset is split into development (dev) and test sets. There
are no overlapping speakers between them. The utterances
were extracted from YouTube videos, which are corrupted by
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real-world noise. For training and testing, we used the similar
data augmentation strategy as in [26]. That is, we augmented
the dev set with additive noises from MUSAN dataset [67]
and reverberation from RIR dataset [68]. For simplicity,
we denote the combination of both datasets as noise dataset,
which consists of four types of acoustic distortions: babble,
music, noise, and reverberation.We split the noise dataset into
two disjoint subsets and used each of them to augment the
dev and test set, respectively. In both the dev and test sets,
we used the same noise types, but different noise samples.
The dev set contains 148,642 utterances from 1,211 speakers.
We corrupted each utterance at SNR levels varying from 0 to
20 dB. The resulting augmented set has the same amount of
data as the original dev set. The test set contains 4,715 utter-
ances from 40 speakers and has 37,720 verification trials in
total, including 18,860 trials for each positive and negative
trial. As in the case of the KID dataset, we inserted silence
at the beginning and end of the test utterance to simulate the
environments where the need for robust VAD is higher. After
inserting silences, we added the four types of noise at three
levels of SNRs: 0, 5, and 10 dB, respectively. Thus, we totally
generated 12 corrupted test sets. Each corrupted test set has
the same amount of data as the original test set.

To evaluate the performance on short speech segments,
we modified the original test set to construct test sets of four
different short durations (1, 2, 3, and 4 s) before inserting
silence. For the KID dataset, if the length of the utterance was
less than the given duration, we concatenated two or more
utterances until the total length reached the given duration.
For the VoxCeleb dataset, if the length of the utterance
was less than the given duration, the entire utterance was
used. To sum up, we first constructed the test sets of dif-
ferent short durations. Then, silence was appended at the
beginning and end of each utterance. Finally, we added
noise or reverberation to the utterance. Note that the gener-
ated test data contains short speech segments and long non-
speech segments degraded by noise and reverberation. In this
paper, we use the notation ‘Sx-Ny’ to denote a condition in
which x corresponds to the length of the speech segment
and y corresponds to the length of the non-speech segments
(i.e., padded silence). For example, ‘S4-N2’ means that the
length of the speech segment is 4 s and 1 s of silence is padded
at the beginning and end of the utterance (i.e., in total 2 s of
non-speech segments).

For VAD, we used the same data setup as in [60], where
noisy data are generated by corrupting the clean utterances
of the Aurora4 [69] with noise. For training, we inserted
2 s of silence at the beginning and end of the utterance
to address the speech/non-speech class imbalance. Then,
we added 100 types of noise1 [70] to the clean data at

1web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html.
100 types of noise (the total number of files is indicated in parentheses) :
Crowd (17), Alarm and siren (14), Water sound (14), Machine (12), Animal
sound (9), Wind (9), Bell (4), Cough (3), Laugh (3), Traffic and car (3), Door
moving (2), Yawn (2), Clap (1), Click (1), Cry (1), Footsteps (1), Phone
dialing (1), Shower (1), Snore (1), Tooth brushing (1).

TABLE 2. ResNet architectures for deep speaker embedding. The shape
of a residual block is shown inside the brackets and the number of
stacked blocks on a stage is shown outside the brackets. d : dimension of
acoustic features.

TABLE 3. Detailed network configurations of the DNN, LSTM, and
CLDNN-based VADs.

randomly selected SNRs of -5, 0, 5, 10, 15, and 20 dB.
For testing, all the 330 utterances of the Aurora4 clean test
set were used. We added five unseen noises (babble, car,
street, factory, and F16 cockpit) in the NOISEX-92 noise
database [71] at three low SNR levels: −5, 0, and 5 dB.
We applied Sohn VAD [72] to the clean data and used the
results as VAD labels of the corresponding noisy data as
in [58], [60].

B. MODEL ARCHITECTURES
We built the baseline i-vector/PLDA system using the Kaldi
toolkit [73]. We extracted 20-dimensional Mel-frequency
cepstral coefficients (MFCC) features from the utterances
with a 25 ms Hamming window. Delta and acceleration were
appended to generate 60 dimensional features. An energy-
based VAD was used to select features corresponding to
speech frames. The UBM contains 2048 Gaussian mixtures
and the dimension of i-vector is set to 600. Prior to PLDA
scoring, i-vectors were centered and length normalized.

For deep speaker embedding learning, we built three differ-
ent architectures (TDNN, 1D-ResNet34, and 2D-ResNet34)
using PyTorch [74]. We followed the same TDNN archi-
tecture as in [45]. The detailed architectures of 1D-ResNet
and 2D-ResNet are described in Table 2, where both net-
works have 34 layers. The 1D-ResNet is based on the feature
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TABLE 4. EERs (%) of three feature extractors (TDNN, 1D-Res34, and 2D-Res34) using two acoustic features (Fbank64 and Spec160), on KID and original
VoxCeleb datasets. Four test sets of different durations are evaluated on 4 s enrollment set. In all tables, we highlight the enrollment condition in bold.

extractor of [75]. The first conv. layer utilizes a 3 × d filter,
where d is the dimension of the acoustic features. Other conv.
layers perform 1-dimensional convolution operations along
the time axis with filter size 3. The 2D-ResNet is based on
the feature extractor of [22]. For both networks, conv. layers
constitute a speaker feature extractor, and the following fea-
ture pooling layer (i.e., global pooling and FC1) converts the
output feature maps to a fixed-dimensional speaker embed-
ding. When we do not use MSA, k is set to 256 which is the
number of filters of the last conv. layer. When we use MSA,
k is the sum of the number of filters of all selected conv.
layers. The final FC layer (i.e., FC2) is fed to a softmax
function to produce a probability distribution over all speak-
ers in the training set. We extracted 128-dimensional speaker
embeddings from FC1 after training.

We used three types of deep architectures for VAD: DNN,
LSTM, and CLDNN [56], as shown in Table 3. The DNN
model is a fully-connected neural network with 2 hidden
layers and 64 hidden units per layer. A ReLU function is used
for each hidden layer. The LSTMmodel uses 3 unidirectional
LSTM layers with 42 hidden units per layer. The LSTM is
unrolled for 50 time steps for training with truncated back-
propagation through time (BPTT). The CLDNN model uses
DNN, CNN, and LSTM layers in a unified framework. The
first layer consists of a conv. layer with kernel size 1 × 8
in time × frequency. After the conv. operation, we apply
non-overlapping max pooling along the frequency axis, with
pooling size 3. The output of the conv. layer is passed to
one LSTM layer, and then to one fully-connected layer. The
output layer of all three models uses a sigmoid activation
function to predict speech. Note that, we established a fair
comparison among three models with a comparable number
of total parameters (≈ 5 k).

C. IMPLEMENTATION DETAILS
We extracted two types of acoustic features: 64-dimensional
log Mel-filterbank features (Fbank64) and 160-dimensional
log spectrogram (Spec160) with a 25 ms Hamming window
and 50% overlap using a 512-point FFT. In the case of
Spec160, we reserve 0-5 k range to make the spectrogram
with a dimension of 160. As we mentioned in Section V-B,
we used the same features for both SV and VAD.When using
Spec160, we modified the ResNet-based feature extractor

TABLE 5. Hyperparameters of self-adaptive soft VAD.

slightly to reduce the frequency dimension of the feature
because the frequency dimension of Spec160 is much larger
than Fbank64. To do so, we changed the stride of conv1 layer
to 1 × 2 and added an additional 2 × 2 max-pooling
layer with stride 1×2, thus reducing the frequency dimension
by a factor of four in the lowest layer.

For SV, we applied mean normalization over an input
segment. In training, the input size is d×200 for 2 s segment,
where d is 64 for Fbank64 or 160 for Spec160. In testing,
the entire utterance was evaluated at once. We report the
equal error rate (EER) in %. Verification trials were scored
using cosine distance. In the case of the VoxCeleb, we have
totally 12 test sets for each ‘Sx-Ny’. Therefore, we report
the average EER across all 12 test sets for each ‘Sx-Ny’. All
models were optimized using stochastic gradient descent with
momentum 0.9. The weight decay parameter is 0.0001, and
the batch size is 64. We used the same learning rate schedule
as in [22] with the initial learning rate of 0.1. When applying
MSA, the parameters of the SAP layers are not shared by all
ResNet stages.

For VAD, the acoustic features were normalized based on
the global mean and standard deviation of the whole training
set. For the DNN-based VAD, all acoustic feature vectors
were augmented with neighboring frames within a context
window of size 11 (i.e., total 11 frames) and fed into the net-
work. We used the Adam optimizer with the initial learning
rate of 10−5 and a batch size of 512. For self-adaptive soft
VAD, we used the same learning rate schedule as in the SV
with the initial learning rate of 10−7. The hyperparameters λ
in (8) and γ in (6) are given in Table 5.

VIII. EXPERIMENTAL RESULTS
A. IMPACT OF MULTI-SCALE AGGREGATION
To verify the effectiveness of MSA, we compare the EERs
between the deep speaker embedding systems without MSA
(w/o MSA) and with MSA (w/ MSA) for the two datasets:
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FIGURE 8. t-SNE visualization of speaker embeddings extracted from the KID dataset, where each color corresponds to a
different speaker.

KID and original VoxCeleb. Here, w/o and w/ MSA are
correspond to the approaches of Fig. 2(a) and (b), respec-
tively. In this experiment, we only used the original VoxCeleb
dataset without augmentation for both training and testing.
To evaulate the performance on short speech segments,
we performed experiments on four test sets of different dura-
tions: 1, 2, 3, and 4 s. We set the duration of enrollment
data to 4 s.

Table 4 presents the experimental results of three fea-
ture extractors (TDNN, 1D-Res34, and 2D-Res34) using two
acoustic features (Fbank64 and Spec160). In all cases, we use
the softmax loss for training and the GAP for feature pooling.
There are five layers in the TDNN, and we extract feature
maps from the highest four layers when applying the MSA.
The EERs of the baseline i-vector/PLDA system are also
reported. When we compare the i-vector/PLDA system with
other deep speaker embedding systems, we can obviously
see that the latter outperforms the former in all the cases.
As the test duration decreases, the performance gap becomes
larger. This implies that the deep speaker embedding is more
effective than the i-vector/PLDA baseline to deal with short
speech segments. Especially, for the KID dataset, 2D-Res34-
Spec160 w/MSA achieves a relative improvement of 46.24%
over i-vector/PLDA on the 1 s condition. In the case of the
TDNN-based feature extractor, we can observe that the MSA
does not bring a significant improvement, while the MSA is
clearly beneficial for both ResNet-based feature extractors on
all test conditions. Even in some cases, the MSA degrades
the performance of the TDNN-based system. That is, even
though we extract feature maps from four different layers,
using these features is only useful for the ResNet-based fea-
ture extractors. This is because the TDNN does not have any
local pooling layers, thus all the feature maps from different
layers have the same scale (i.e., operating at the frame-level).
Strictly speaking, the use of the term ‘‘MSA’’ is not appropri-
ate for the TDNN case because multi-scale features are not
generated in the TDNN, even though they are extracted from
different layers. These results suggest that using multi-scale
features improves the deep speaker embedding learning on
various short-duration conditions.

TABLE 6. Ablation results of FPM on the KID dataset (EER %).

TABLE 7. Ablation results of FPM on the VoxCeleb dataset (EER %).

B. IMPACT OF FEATURE PYRAMID MODULE
To identify the contribution of the individual components in
the feature pyramid module (FPM), we performed ablation
studies. Table 6 and 7 show the results of the ablation studies
on the KID and VoxCeleb datasets, respectively. From this
section, we denote the combination of the original VoxCeleb
and the augmented VoxCeleb as VoxCeleb, where each test
was performed on 12 augmented test sets. For both ablation
studies, we used 2D-Res34-Fbank64 as a feature extractor
with softmax loss for training and GAP for feature pooling.
In the tables, ‘‘FM’’ denotes the selected feature maps in the
feature extractor. As explained in Section III-B, Ck denotes
the feature map from the bottom-up pathway (i.e., without the
top-down pathway) and Pk denotes the feature map from
the FPM. Here, {Ck} and {Pk} mean that a system uses
all Ck and Pk , respectively, for k = 2, 3, 4, 5. ‘‘LAT’’
and ‘‘TD’’ stand for the lateral connections and top-down
pathway, respectively, which are the components of the FPM.

In the 1st row of the tables, w/o MSA corresponds to the
system using only the last feature mapC5, i.e., without apply-
ing multi-scale aggregation (MSA). In the 2nd row, MSAw/o
FPM corresponds to the system using the MSA without the
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TABLE 8. EERs (%) of systems with and without speech enhancement.
FPM-based MSA, softmax loss, and self-attentive pooling are used.

FPM. In the 3rd row,MSAw/ FPM corresponds to the system
using the FPM-based MSA, which has all the components of
the FPM. This system shows the best performance on all test
cases for both datasets. We use t-SNE [76] to visualize the
learned speaker embeddings in Fig. 8(a), (b), and (c), using
4 s utterances. Here, (a), (b), and (c) correspond to the first
three rows of the table, respectively. These figures show the
distribution of speaker embeddings from 10 speakers ran-
domly chosen from the test set of the KID dataset. When
comparing (a) and (b), we can see that using the MSA
enhances intra-class compactness in that the embeddings of
the same speaker are closer to each other. Likewise, when
comparing (b) and (c), we can observe that using the FPM
further enhances the intra-class compactness.

The 4th, 5th, and 6th rows show the results of the ablation
experiments. The 4th row presents the result of the FPM
without the top-down pathway (w/o TD). To validate the
effectiveness of the top-down pathway, we remove the top-
down pathway from the FPM. In this architecture, the 1 × 1
lateral connections followed by 3×3 convolutions are directly
attached to the bottom-up pathway. Note that this architecture
is different from w/ MSA in Table 4, in that the w/ MSA does
not have the lateral connections and 3 × 3 convolutions. For
all test cases, w/o TD gives higher EERs compared to the
w/ FPM.We conjecture that this is because there are large dif-
ferences in the amount of speaker-discriminative information
between different layers of the feature extractor. The FPM
enhances the speaker-discriminative information of lower-
layer feature maps, so that it can improve the performance of
the MSA. The 5th row shows the ablation results of the FPM
without the lateral connections. From the results, we can say
that the lateral connections improve the FPM by transferring
the information from the bottom-up pathway to the top-down
pathway. The last row reveals the results of the FPM-based
MSA only using P2, which is the highest-resolution feature
maps with the highest speaker-discriminative information.
We can observe that ‘‘only P2’’ has much lower performance
than the proposed method. This reveals that using multi-scale
feature maps is important even when the FPM is used.

C. IMPACT OF SPEECH ENHANCEMENT
In this subsection, we investigate the impact of the masking-
based speech enhancement (SE) for speaker verification
(SV). Table 8 compares the results with and without the
masking-based SE on theKID andVoxCeleb datasets, respec-
tively. We used 2D-Res34-Fbank64 as a feature extractor
with the softmax loss for training and the SAP for feature

FIGURE 9. Visualization of example spectrograms of the VoxCeleb dataset.

pooling. For both datasets, we observe that the FPM-based
MSA improves the performance by using the SE model.
This indicates that we can increase the robustness to acoustic
distortions by jointly training the SV and SE models.

In Fig. 9, we visualize example spectrograms extracted
from the VoxCeleb test set, where higher amplitudes are
represented by brighter colors (yellow) while lower ampli-
tudes are represented by darker colors (blue). To do so,
we used 2D-Res34-Spec160 as a feature extractor with the
softmax loss for training and the SAP for feature pooling.
Spec160 covers a frequency range of 0-5 kHz as explained
in Section VII-C, and a 4 s segment within an utterance
is used. Fig. 9(a) shows the spectrogram extracted from a
test file with the name ‘‘id10300/8Sz2-IYJ2GA/00005.wav.’’
The enhanced spectrogram of the sample is presented in (b).
In (c), we visualize a spectrogram of the corrupted sample
with music noise at SNR = 0 dB. Comparing (a) and (c),
we can see that there are more horizontal and vertical lines
in the noisy spectrogram (marked in yellow), which are gen-
erated by the music noise. Fig. 9(d) shows the enhanced spec-
trogram of the corrupted sample. Compared to (c), the lines
generated by the noise become darker (i.e., noise components
become weaker) while the harmonic structures of speech
remain bright. This means that the SE model preserves
the speech components while suppressing the noise compo-
nents. We can see that, as expected, the SE model produces
enhanced features even though it is jointly trained with the
SV model without an explicit loss function.

D. IMPACT OF SELF-ADAPTIVE SOFT VAD
In Table 9, we present the results of three types of VAD
models: DNN, LSTM, and CLDNN-based VADs (see Table 3
for detailed architectures). For all models, Fbank64 features
were used. We report the VAD performance in terms of the
area under the ROC curve (AUC) and EER. For each SNR,
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TABLE 9. Performance of three VAD models, averaged by five noise types,
on the Aurora4 dataset.

we obtained the results for the five noise types, and averaged
them as the final result. The column ‘‘Average’’ denotes the
overall average values over three SNRs. We find that the
CLDNN-based model performs best in all cases in terms of
both metrics. The LSTM-based VAD is better than the DNN-
based VAD, but worse than the CLDNN-based VAD. Note
that all the models have similar number of parameters for a
fair comparison. This result is the same as that of [56].

When we combine FPM-based MSA and SAS-VAD,
speech posteriors from VAD are multiplied to feature maps
from FPM, as shown in Fig. 6. As there are four feature
maps extracted from the FPM (i.e., P2, P3, P4, and P5),
we can select at most four feature maps where soft VAD
is applied. We performed experiments to investigate the
impact of the selection of feature maps for the soft VAD.
Table 10 shows the results on the KID dataset. For SV,
we use 2D-Res34-Fbank64 as a feature extractor with soft-
max loss and SAP. In the table, we report the results of
four different test conditions: S1-N6, S2-N6, S3-N6, and
S4-N6, which contain long non-speech regions (6 s) in noisy
and reverberant environments. For enrollment, we used the
test set of S4-N6. The column ‘‘Feature map’’ indicates the
selected feature maps for the soft VAD, where the mark
‘‘×’’ indicates that all feature maps are not selected, that
is, the soft VAD is not applied. The column ‘‘FPM’’ and
‘‘VAD’’ denote the FPM-based MSA and the type of VAD,
respectively. In ‘‘VAD,’’ Hard stands for hard VAD which is
a typical VAD making a hard decision based on a predefined
threshold. Soft and SAS indicate soft VAD and self-adaptive
soft VAD (SAS-VAD), respectively. E, D, L, and C in the
parentheses stand for energy-, DNN-, LSTM-, and CLDNN-
based VADs, respectively.

The first three rows show the results without the
FPM-based MSA, where only C5 is used. Hard (E) is not
useful at all because the energy-based VAD is severely
degraded by noise and reverberation. On the other hand,
the third system achieves lower EERs on all test conditions
by applying the LSTM-based hard VAD. From the 4th to the
9th row, we can see the impact of the selection of feature
maps for the LSTM-based soft VAD. Note that we used
all feature maps, i.e., {P2,P3,P4,P5}, for the FPM-based
MSA, and changed the feature maps where soft VAD is
applied. The 4th row provides the result when the VAD is
not applied. By comparing the 1st and 4th rows, we can
observe that the FPM-based MSA itself deals with long non-
speech intervals even without using VAD. From the 6th to

TABLE 10. Impact of the selection of feature maps, where soft VAD is
applied, on the KID dataset. The evaluation metric is the EER (%).

the 9th row, we gradually increase the number of feature
maps where the soft VAD is applied. When we apply the soft
VAD to only P2 or {P2,P3}, it degrades the SV performance.
When we use all feature maps, i.e., {P2,P3,P4,P5}, the soft
VAD improves the SV performance on S1-N6 and S2-N6,
but slightly degrades the performance on S3-N6 and S4-N6.
These results indicate that the soft VAD performs best when it
is applied to all featuremaps.We can also see that the effect of
the soft VAD gradually increases as the duration of the speech
segment decreases. This suggests that the FPM-based MSA
needs the soft VAD when the speech segment is too short
(i.e., 1 s or 2 s), but it is somewhat robust to long non-
speech segments when the speech segment is relatively long
(i.e., 3 s or 4 s).

The 13th row shows the results when we apply the
SAS-VAD to all feature maps using LSTM-based VAD. This
gives better results than the FPM-based MSA without VAD
(in the 4th row) on all test conditions. Comparing the 5th and
13th rows, we can see that the SAS-VAD outperforms the
hard VAD. From this result, we can conclude that our unified
framework performs better than the conventional approach
using separately pre-trained SV and VAD models. Besides,
we can achieve improved performance on all test conditions
compared to the system using only the soft VAD (in the
9th row). As the VAD network is adapted to the speaker
verification data, it is sufficiently robust to long non-speech
segments in noisy and reverberant environments. Therefore,
we can increase the robustness of the SV system to long non-
speech segments by using the SAS-VAD.

To compare the SV performance with different VAD mod-
els, we performed experiments for soft VAD and SAS-VAD,
respectively. In the case of the soft VAD (9th, 10th, and
11th rows), the SV performance is directly proportional to
the VAD performance (see Table 9). That is, the CLDNN-
based model performs best and the LSTM-based model per-
forms second best. However, in the case of the SAS-VAD
(12th, 13th, and 14th rows), both models show similar results.
Even on S1-N6, S2-N6, and S3-N6, the LSTM-based model
performs slightly better than the CLDNN-based model.
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TABLE 11. Ablation results on the KID dataset (EER %).

Therefore, in the following experiments, we only consider the
LSTM-based VAD.

E. IMPACT OF THE INTEGRATED MODEL
In this section, we evaluate the performance of the integrated
model consisting of all three models: 1) the SV model using
the FPM-based MSA, 2) the VAD model using the advanced
SAS-VAD, and 3) the SE model using the masking network.
As demonstrated above, the FPM-based MSA improves the
robustness to short speech segments. The VAD and SE mod-
els improve the robustness to long non-speech segments
and acoustic distortions, respectively. To achieve our goal,
we combined all models in a unified framework and jointly
trained them. We conducted ablation studies to demonstrate
the effectiveness of each model in the integrated model.

Table 11 shows the results (EER %) on the KID dataset
using two acoustic features, Fbank64 and Spec160, which are
abbreviated as FB and Spec, respectively. We used 2D-Res34
as a feature extractor with softmax loss and SAP. The column
‘‘VAD’’ and ‘‘FL’’ stand for SAS-VAD and focal loss, respec-
tively. The 1st row to the 6th row are the results with Fbank64.
Comparing the 4th and the 5th rows, we can see that the focal
loss enhances the SAS-VAD, especially when the speech
segment is short. We believe that this is because the focal loss
helps address the speech/non-speech class imbalance in the
SAS-VAD. By reducing the relative loss for well-classified
examples (i.e., with a frequent class), the focal loss focuses
training on misclassified examples (i.e., with a rare class),
thus dealing with class imbalance. The 6th row gives the
results of the final integrated model, which achieves the best
performance among them. Compared to the baseline model
in the 1st row, the integrated model shows a relative improve-
ment of 22.89% in EER on S1-N6. We can conclude that
all components help each other to improve SV performance
on the challenging scenario, where the input utterance con-
tains short speech segments and long non-speech segments
degraded by noise and reverberation. The last five rows are
the results with Spec160. We can observe the same trend
as in the results with Fbank64. Compared to the case of
Fbank64, the baselinemodel achieves similar performance on
S2-N6, S3-N6, and S4-N6, but it shows worse performance
on S1-N6. However, when the FPM-based MSA is applied,

FIGURE 10. The DET curves of the proposed systems with FPM-based
MSA, VAD, and SE, on S1-N6 of the KID dataset.

the model using Spec160 shows a larger improvement than
the model using Fbank64, thereby achieving higher perfor-
mance on all test conditions. The last row shows the results
of the final integrated model using Spec160, which are the
best among all models. Fig. 10 shows detection error trade-off
(DET) plots of the five models: the baseline (in the 7th row),
the model with FPM-based MSA (in the 8th row), the model
with SE (in the 9th row), the model with SAS-VAD (in the
10th row), and the final integrated model (in the 11th row).
The figure shows the same trend as Table 11.
Table 12 lists the EERs of five models using Spec160 on

the VoxCeleb dataset. All models used the attentive statistics
pooling (ASP) [45] layer for feature pooling, which uses not
only the weighted mean but also the weighted standard devi-
ation of feature vectors. The column ‘‘VAD+FL’’ stands for
SAS-VAD with focal loss. Different from Table 11, we per-
formed ablation studies of the integrated model using more
test conditions. In the left five conditions, denoted as ‘‘Fixed
S & Variable N,’’ we fixed the length of speech segments (S)
as 4 s and changed the length of non-speech segments (N).
The test set of S4-N2 was used for enrollment. As in the case
of the KID dataset, each model improves SV performance
and the integrated model using all models performs best.
We can see that the results on S4-N2 are better than those
on S4-N0 when VAD or SE is applied, which is not consistent
with our intuition.We speculate that this is because the length
difference between enrollment and verification utterances
affects SV performance to some extent, and both utterances
have the same length in S4-N2 (i.e., the total length of 6 s).
In the right four conditions, denoted as ‘‘Variable S &
Fixed N,’’ we fixed the length of non-speech segments (N)
as 6 s and changed the length of speech segments (S). The
test set of S4-N6 was used for enrollment. It can be observed
that the final integrated model achieves the best performance
on all test conditions, which is the same as in the KID dataset.
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TABLE 12. Ablation results of the integrated model on the VoxCeleb dataset (EER %).

TABLE 13. EER (%) comparison with the i-vector/PLDA and state-of-the-art systems on the KID dataset.

In Table 13, we compare the proposed system with
the i-vector/PLDA system and state-of-the-art deep speaker
embedding systems including d-vector and x-vector-based
systems. All results were obtained by our own implementa-
tion. The table shows the average EERs for both ‘‘Fixed S &
Variable N’’ and ‘‘Variable S & Fixed N,’’ respectively. In the
column ‘‘System,’’ the first and second terms in the paren-
theses indicate the loss function and global pooling layer,
respectively. Here, SM and ASM stand for softmax and angu-
lar softmax (A-Softmax) loss functions, respectively. Specif-
ically, for ASM, we used the combination of A-Softmax
loss and ring loss with the same settings as in [32]. SP and
SPE stand for statistics pooling and spatial pyramid encod-
ing, respectively. In the case of i-vector/PLDA and TDNN
(i.e., x-vector-based system), we used the same architectures
as in Table 4. Different from the original x-vector-based
system, we did not use data augmentation for a fair com-
parison. In the case of the 4th system (i.e., d-vector-based
system), we followed the same approach as in our previous
work [32]. The proposed system is the system of 11th row
in Table 11, which includes all components (FPM, VAD+FL,
and SE). We obtained the best results by applying the ASM
to the proposed system, which is given in the last row. Our
best system outperforms the i-vector/PLDA system with a
relative improvement of 68.02% and 66.47% in terms of the
average EER for ‘‘Fixed S & Variable N’’ and ‘‘Variable S &
Fixed N,’’ respectively.

In the case of the TDNN-based system, the ASP layer
performs better than the SP layer on S4-N0, S4-N2, and
S4-N4. However, when the length of non-speech segments is
too long (i.e., S4-N6 and S4-N8), the ASP layer degrades the
SV performance. According to the results in ‘‘Variable S &
FixedN,’’ we can observe that the ASP layer degrades the per-
formance of TDNN-based systemwhen the speech segment is
very short (i.e., S1-N6). From these results, we can conclude

that the attention-based pooling does not work well when
the speech segments are too short or non-speech segments
are too long. Compared to the TDNN-based system using
the ASP layer, our best system shows a relative improve-
ment of 55.62% and 53.86% for ‘‘Fixed S & Variable N’’
and ‘‘Variable S & Fixed N,’’ respectively. Even though the
attention-based pooling is used in the proposed system, there
is no performance degradation when the speech segments are
too short or non-speech segments are too long. We argue that
this is because FPM-based MSA, SAS-VAD, and masking-
based SE improve the robustness of the proposed system to
short speech segments and long non-speech segments in noisy
and reverberant environments.

IX. CONCLUSION
In this study, we set two goals for speaker verification (SV):
an SV model should be robust to short speech segments and
long non-speech segments, especially in noisy and rever-
berant environments. The FPM-based MSA was applied to
the SV model to deal with short speech segments, and the
SAS-VAD algorithm was used to deal with long non-speech
segments. For the SAS-VAD, the focal loss was adopted to
address the class imbalance problem, and the 1D-CNN-based
synchronizer was proposed to combine the SAS-VAD and the
FPM-based MSA. The masking-based speech enhancement
(SE) was applied to further increase the robustness to acoustic
distortions, especially noise and reverberation. To achieve the
goals simultaneously, we proposed a novel unified deep learn-
ing framework that integrates SV, VAD, and SE models into
a single model and jointly trains the integrated model. Exten-
sive experiments were conducted on two datasets: Korean
indoor (KID) and VoxCeleb datasets, which are corrupted by
noise and reverberation. The effectiveness of the MSA was
demonstrated using three types of feature extractors and two
types of acoustic features. Also, several ablation studies were
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conducted to investigate the impact of each component in
the integrated model. The proposed system obtained the best
results on various test conditions, including those with short
speech segments and long non-speech segments, degraded by
noise and reverberation. Especially, it outperformed the con-
ventional i-vector/PLDA system with a relative improvement
of approximately 67% on the KID dataset. By jointly training
the entire network in an end-to-end manner, we obtained
better results than the conventional approach using separately
pre-trained models. We also provided a detailed overview of
deep speaker embedding learning, in addition to the exper-
iments. In the future, we plan to develop a sophisticated
approach to automatically find the optimal speech thresh-
old in the SAS-VAD, instead of just using a fixed value.
Also, we will figure out how to improve the computational
efficiency of the SAS-VAD, since it does not discard non-
speech frames. Besides, in this paper, we mainly focused on
how to deal with short speech segments and long non-speech
segments. Thus, we plan to extend our work by using more
advanced SE models and compare with other state-of-the-art
SE approaches.
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