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ABSTRACT This paper studies the application of compact polarimetric (CP) SAR in the detection and
identification of ocean internal solitary waves (ISWs). First, based on full-polarimetric ALOS PALSAR
images, we construct CP SAR images and extract 26 CP features. Then, the ISWS-sea surface differentiation
capability for the different polarization features is analyzed by using the Jeffries and Euclidean distances.
The results show that λ1, Entropy (H ), Lambda, the polarimetric total power (Span) and the Stokes
parameters (Stokesg0, and Stokesg3) improve the ISWs detection results. On this basis, a k-means clustering
algorithm based on CP features is introduced, and the results show that the ISWs detection and identification
performance of the algorithm are superior to that of the traditionalWishart polarization clustering algorithm,
which suggests that CP SARhas good application prospects in the detection and identification of ocean ISWs.

INDEX TERMS Internal solitary waves, compact polarimetric SAR, detection, polarization features.

I. INTRODUCTION
Internal solitary waves (ISWs) in the ocean refer to waves
generated in a stable density stratification, and the maximum
amplitude appears within the ocean [1]. Its crest length can
reach several hundred kilometers, and the period is generally
several minutes to dozens of hours. At present, the measured
maximum amplitude of ISWs is approximately 240 m [2].
ISWs play an important role in energy transfer and material
transport in the ocean and pose a great threat to marine
engineering structures and military operations [1]. Therefore,
it is very important to study the detection and identification
of ISWs to reduce or avoid the loss of resources, impacts on
fishing and commercial shipping and other issues caused by
ISWs.

ISWs detection has always been of great concern to marine
scientists. In situ direct observation is the best way to study
ISWs, but this approach is expensive, and large-scale infor-
mation is difficult to obtain. With the development of remote
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sensing technology, visible spectral, altimeter and synthetic
aperture radar (SAR) sensors have gradually become themain
tools used in the observation of ISWs. In particular, SAR in
the microwave band has the advantages of all-weather use
and high-resolution imaging [3], and has thus accelerated
studies of ISWs. For example, in [4], Liu et al used European
Remote Sensing (ERS) -1 SAR images to study the evolution
of ISWs in the East China Sea and the South China Sea.
In [5], Zhao et al based on ERS-2 SAR images of ISWs with
large amplitudes, proposed that ISWs with large amplitudes
are not generated by the Lee mechanism but by the nonlinear
steepening principle of baroclinic tides. In [6], Azevedo et
al studied the generation and propagation of ISWs in the
Bay of Biscay using ERS SAR and Envisat SAR images
and identified the local generation mechanism of ISWs in
combination with ray theory and body forces. In [7], Zheng et
al used SAR images from 1995 to 2001 to analyze the spatial
and temporal distribution characteristics of ISWs in the South
China Sea. In [8], using ERS-1/2, Envisat-1, and Sentinel-
1A/B SAR images, Wang et al obtained over 500 sets of
internal wave packets, discussed the spatial and temporal
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distribution characteristics of ISWs in the Georgia Strait, and
analyzed the relationships between ISWs and tidal and wind
fields. In [9], Pisoni et al used Advanced Land Observing
Satellite (ALOS) Phase Array type L-band SAR (PALSAR)
images to study ISWs on the Argentine inner Patagonian shelf
and evaluated their generation mechanism and propagation
speed. In [10], Nadimpalli et al used Envisat and TerraSAR-
X images to study the potential generation locations of ISWs
in the Andaman Sea.

The SAR imaging mechanisms of ISWs mainly consist of
three complex physical processes [11]. These physical pro-
cesses cause ISWs to produce special electromagnetic scatter-
ing characteristics at the ocean surface, which in turn cause
peaks and troughs to appear as alternating bright and dark
bands in SAR images [12]. However, polarimetric SAR has
sensitive electromagnetic wave response characteristics [13],
so it can be used to detect and characterize targets with
abundant polarimetric information, such as ISWs.

SAR systems have developed from single-polarization to
dual-polarization (DP) and even full-polarization (FP) obser-
vation modes. Compared with single-polarization SAR, FP
SAR can completely describe the vector relationship between
an incident wave and the scattered wave of the target,
and the acquired target information is abundant. In [14],
Schuler et al first applied FP SAR for ISWs detection, and
studied the influence of ISWs fronts on the polarization ori-
entation angle, thus providing a new way to identify these
marine features. In [15], based on FP SAR images, Li et al
comparatively analyzed the visibility of ISWs in 11 polariza-
tion feature images. However, due to the narrow width of FP
SAR images (for example, the width of an FP RADARSAT-2
SAR image is only 25-50 km), such images cannot meet the
requirements of large-scale ISWs survey applications.

To solve the problem of FP SAR systems, Souyris and
Mingot proposed the concept of compact polarimetric (CP)
SAR [16]. Compared with FP SAR, CP SAR can not only
reduce the design complexity and improve the coveragewidth
of the image but also maintain the polarization capability
of an FP SAR system to a certain extent [17]. Preliminary
studies, such as that of Shirvany et al, who detected ships
on the sea surface based on the polarization degree extracted
from CP SAR, have been conducted in the field of target
detection [18]. In [19], Cao et al constructed CP SAR data
based on FP RADARSAT-2 data and compared the ship
detection capabilities of FP, CP and DP SAR systems. In [20],
Salberg et al introduced some CP features for the detection of
oil spills; additionally, the polarization degree and ellipticity,
which were obtained from λ − m decomposition, were used
for oil spill detection. However, in the field of ISWs, research
using CP SAR technology for detection is still lacking.

Considering the above problems, this paper uses FP ALOS
PALSAR images to construct CP images. Then, we extract
some features through polarization decomposition and other
processing steps and analyze the ISWs detection and iden-
tification characteristics of these features in detail. We dis-
cuss the feasibility of using CP SAR technology for ISWs

TABLE 1. The specific information of the 5 SAR images.

detection and identification and for the selection of polariza-
tion features that can be effectively used for ISWs detection.
This work improves the general scientific understanding of
ISWs and provides a reference for follow-up work on the
detection and automatic extraction of SAR ISWs.

II. DATA
A. DATA INTRODUCTION
In this paper, FP ALOS PALSAR SAR images are used.
PALSAR is an L-band SAR sensor carried by the Japanese
ALOS-1 satellite. The Level 1.1 products provided by PAL-
SAR are all complex single-look data sets. The images have
undergone azimuth and range compression, with an azimuth
resolution of approximately 24 m and a range resolution of
approximately 10 m. In total, 145 scenes of ALOS PAL-
SAR Level 1.1 images are selected to perform the research
presented in this paper. Five scenes were selected to screen
the features for compact polarization. These images were
acquired in the Andaman Sea and the Sulu Sea because the
ISWs in these two areas have obvious characteristics, with
large amplitude and spatial scale. Another 140 scenes were
used for subsequent ISWs classification and identification
analysis, and they were obtained from different ocean regions
of the world, such as the South China Sea and the waters near
Colón Island.

Figure 1 shows the Pauli-based pseudocolor composite
images (PauliRGB) of the above 5 scenes. The ISWs in
images #1-3 propagate in the range direction, and the ISWs
in images #4-5 propagate in the azimuth direction.

B. DATA PROCESSING
The CP SAR system considered in this paper is essentially
a special DP SAR system. Due to the lack of real CP data,
most studies use FP images reconstruction to generate CP
images. In this paper, CP SAR images are also constructed
based on ALOS PALSAR images. Since the original FP
images include single-look complex data and the images are
narrow and long, ISWs information is difficult to obtain.
Therefore, during data processing, the original SAR data
are first processed with a multilook method in the azimuth
direction, and the number of looks is 6. Then, the FP images
are filtered after multilook processing because the single-
frequency electromagnetic wave emitted by the SAR system
is scattered by distributed ground objects, the echoes of differ-
ent scattering surface elements contain wave path differences,
and the coherent superposition of echoes generates coherent
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FIGURE 1. 5 ALOS PALSAR PauliRGB images.

speckles, which increase the difficulty in interpreting polar-
ized SAR images and affect the detection, identification and
classification of targets [21]. In scientific research, a specific
filtering algorithm is often used to remove speckle noise in
original SAR images, and the Refined Lee filtering algorithm
is used in this paper [21]. Finally, based on the filtered FP
SAR images, CP SAR images are constructed. Then, polar-
ization decomposition and other processing methods are used
to extract CP features, and these feature images are used for
the detection and identification of ocean ISWs.

III. COMPACT POLARIZATION FEATURES
A. FEATURE EXTRACTION
Compared with the FP SAR system, the CP SAR system
emits electromagnetic waves only in one direction, and the
waves are generally linear polarization waves or circular
polarization waves of 45◦. However, the echo signals from
both directions are received at the same time, namely, as hor-
izontal and vertical echoes or circularly polarized waves.
At present, there are three main modes of CP SAR: π/4,
circular-to-circular (CC) and hybrid-polarity (HP) modes.
In this paper, we choose the HP mode. This mode uses right-
hand circular polarization transmission and horizontal and
vertical linear polarization reception methods to reconstruct

fully polarimetric information [22]. The polarization scatter-
ing vector is expressed as follows:

Ek =
[
EHC
EVC

]
=

1
√
2

[
SHH SHV
SVH SVV

] [
1
±i

]
=

1
√
2

[
SHH ± SHV
SVH ± SVV

]
(1)

In the above formula, the subscript ‘C ′ indicates circular
polarization, and ‘+’ and ‘-’ represent right-hand and left-
hand circular polarization, respectively. ‘H ′ and ‘V ′ indicate
horizontal and vertical polarization, respectively. From (1),
the covariance matrix of CP SAR is expressed as:

C2=

〈
EkEk∗T

〉
=

[
C11 C12
C21 C22

]
=

[ 〈
|SRH |2

〉 〈
SRHS∗RV

〉〈
SRV S∗RH

〉 〈
|SRV |2

〉 ] ,
(2)

where ‘R′ denotes right circular polarization, ‘T ′ is a matrix
transpose operation, ‘∗’ denotes the complex conjugate, and
<> is the spatial average.

The polarization features commonly used for target detec-
tion in SAR images can generally be divided into two cat-
egories: one category is based on the information obtained
from the original SAR data, such as the elements of the polar-
ization coherence matrix or their linear combinations, and
the other category is the information obtained through var-
ious polarization decompositions. Such information includes
polarization entropy and average scattering angle informa-
tion. Table 2 lists all the polarization features used in this
article, which includes 26 CP features and σ0 images of 4
different polarization channels. Among these features, f1 and
f2 correspond to the amplitudes of C11 and C22, respectively,
in (2) [23], and f3 represents the total polarization power
(Span) [24], which is expressed as:

Span = |SRH |2 + |SRV |2 (3)

Similar to the theory of fully polarized HAα decompo-
sition, in 2012, Cloude et al proposed a compact polar-
ized HAα decomposition method based on the covariance
matrix C2 [23]. This decomposition can obtain the eigenval-
ues λi of the covariance matrix, and the eigenvalues satisfy
λ1 ≥ λ2 (f4 − f5). Using λi, a series of features can
be obtained, such as the compact polarization entropy
(H , f6), anisotropy (A, f7) and average scattering angle (α, f8)
[23], [24]. In addition, feature f9 is the Lambda value, which
characterizes the ability of the sea surface to reflect electro-
magnetic waves [13].

In addition to the scattering vector kp, CP SAR can also be
expressed by Stokes vectors [24]:

gHP =


g0
g1
g2
g3

 =

〈
|SRH |2 + |SRV |2

〉〈
|SRH |2 − |SRV |2

〉
2Im

〈
SRHS∗RV

〉
−2Re

〈
SRHS∗RV

〉
 (4)

The features Stokesgi are Stokes vectors (f10 − f13) [25],
where g0 represents the total power of an electromagnetic
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TABLE 2. The compact polarimetric features used in this paper.

wave, g1 represents the horizontal or vertical linear polar-
ization component power, g2 represents the value of linear
polarization component power at 45◦ or 135◦, and g3 is
the circularly polarized component power. Based on Stokes
vectors, we further obtain the features f14 − f20, which
are the linear polarization ratio and circular polarization
ratio (LPR, f14;CPR, f15), the degree of linear polarization
and degree of circular polarization (DoLP, f16;DoCP, f17),
the ellipticity Angle (tau, f18), the orientation angle (phi, f19)
and the contrast (Con, f20) [25].

Features f21 − f23 are the roundness (χ, f21), the degree of
polarization (m, f22) and the relative phase (δ, f23) extracted
from Raney’ decomposition, respectively [25]. The corre-
sponding formulas are:

m=

√
g21+g

2
2+g

2
3

g0
, δ=− tan

(
g3
g2

)
, sin 2χ=

−g3
mg0

(5)

The polarization features f24 − f26 characterize the ability
to of the SAR system to detect surface scattering (Odd, f24),
double scattering (Dbl, f25) and volume scattering (Vol, f26)
of objects.

Finally, f27− f30 represent σ0 images of the copolarization
and cross-polarization, respectively.

B. FEATURE SELECTION
The features extracted above have a certain ocean back-
ground and ISWs target discrimination ability, but because of
their different physical characteristics, their ‘‘sensitivity’’ to
ISWs varies. In this paper, based on the differences between
the scattering characteristics of ISWs areas and clear sea
surface areas, ISWs and sea clutter samples are selected.
Then, two detection indexes, the Jeffries distance [26] and
Euclidean distance [19], are constructed to evaluate the ISW-
sea surface discrimination ability of SAR images for different

FIGURE 2. Flowchart of the data processing step.

polarization features. Finally, the CP features that yield the
best detection performance for ISWs are selected. To ensure
the accuracy of the samples and avoid misjudgments as much
as possible, we choose the pixels with the most obvious ISWs
characteristics as ISWs samples and clear uniform seawater
pixels as sea surface samples. It should be noted that when
select ISWs samples, we mainly choose the pixels of the
leading wave in the wave packet. The pixels that are spatially
scattered and from different regions are selected at the largest
possible distances to make the results representative. The
5 images shown in Fig. 1 were used for feature selection, and
each image yielded an average of approximately 93,000 ISWs
and sea surface pixels. The statistical ISWs and sea surface
pixels are marked with red and blue boxes, respectively,
in Fig. 6a.

The Jeffries distance and the Euclidean distance between
ISWs and the sea surface are defined as:

J =
1
8
(MIW −Msea)

2 2

σ 2
IW+σ

2
sea
+
1
2
ln
σ 2
IW + σ

2
sea

2σIWσsea
(6)

D =
|MIW −Msea|√
σ 2
IW + σ

2
sea

(7)

In the above formulas, MIW and Msea represent the
mean value of the ISWs and sea surface statistical samples,
respectively;σ 2

IW and σ 2
sea represent the variance of the ISWs

and sea surface statistical samples, respectively. In the for-
mulas, the two detection indexes are dimensionless because
the means and variances of the samples are considered. When
J and D are large, ISWs are generally easily distinguishable
from the sea surface.

Figure 3 shows the calculation results for the ISWs-sea
surface Jeffries distances of the 5 images used in this paper.
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FIGURE 3. Internal solitary waves - sea surface Jeffries distance for compact polarization features.

FIGURE 4. Internal solitary waves - sea surface Euclidean distance for compact polarization features.

TABLE 3. Internal solitary wave detection capability of compact
polarization Features.

The solid black line represents the average value. According
to the statistical results, the evaluation index J has the same
trend for the 5 images, and the only difference is related to the
size of the relative value. From the average result, we can see
that the Jeffries distances of Stokesg0, Stokesg3, λ1, Lambda,
Entropy (H ), and Stokesg1 are high, and the ISWs discrimina-
tion effect in these images is better than the original images.
The Jeffries distances of other features are all less than 2, and
their ISWs detection performance is relatively poor.

Similar to the Jeffries distance, the Euclidean distance can
reflect the difference between ISWs and the uniform sea
surface scattering intensity, and can be used as a measure
of the detectability of ISWs. Figure 4 shows the ISWs-sea
surface Euclidean distances. In general, the detection results
are consistent with those of the Jeffries distance, but unlike in
the previous case, the Span feature also displays good ISWs-
sea surface background discrimination ability.

A comprehensive analysis of the Euclidean distance and
Jeffries distance results was performed. Table 3 summarizes
the ISWs detection capabilities of the features used in this
paper. Notably, the average value of features in Level I is
greater than 2 ((J+D)/2>2), meaning that these features yield

FIGURE 5. Influence of the incident angle on the polarization features.

excellent performance in ISWs detection and identification.
The average value of features in Level II is between 1 and 2,
and the ISWs recognition ability based on these features is
relatively poor. The features in Level III represent unrec-
ognizable ISWs, and the average values of the Euclidean
distance and Jeffries distance are less than 1. In addition,
we should note that the original copolarization σ0 images and
cross-polarization σ0 images are in Level II and Level III,
respectively.

In Table 1, we have listed the specific information of 5
scene images, and we can find that images #1 and #3 have
relatively close incident angles of 23.93◦, while images #2,
#4 and #5 have the same incident angle, that is, 25.72◦.
To analyze the influence of the radar incidence angle on the
selection of polarization features, this paper displays 7 fea-
tures in Level I. As shown in Fig. 5, the ordinate represents the
average Jeffries distance and Euclidean distance. The dashed
lines represent the result values of the 5 scene images, and
the solid green line represents the average value of images
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#1 and #3, whose incident angles are small; the solid red
line represents the average of 3 scenes with larger incident
angles. It can be seen from the figure that the incidence
angle increases, the distance value increases in the differ-
ent polarization feature images, that is, the distinguishability
between ISWs and the sea surface increases. This finding
is consistent with the ship detection results by CP features
indicated in [27]. However, for images with the same inci-
dence angle, the distance value does not change much, and
the overall trend is relatively stable, as shown by the solid
line in the figure. The above analysis shows that the incident
angle has a reference role in the selection of the polarization
features but does not play a decisive role, because for each
scene image, the incident angle is fixed. Under this condition,
the CP features selected in this paper are better than the ISWs
detection performance of the original σ0 images.
Figure 6 shows seven features in image #3, all of which

are categorized as Level I. Compared with the results based
on the original PauliRGB images, the visual interpretation
results for the ISWs of most of the features in the images
are improved, and the features of the ISWs region are high-
lighted. However, in the Stokesg1 image, the ISWs features
are fuzzy and cannot be effectively recognized, as will be
verified and explained in the following section. In addition,
it should be mentioned that in the feature images shown
in Fig. 6, λ1, Entropy(H) and Lambda have no units, because
they are linear indexes. The remaining 4 features are all
displayed in dB, and the pixel values in the Stokesg1 and
Stokesg3 images need to be logarithmically converted to
achieve dB as the unit.

IV. CLASSIFICATION
To identify ISWs in remote sensing images, ISWs and the
sea background are classified. Based on this principle, the CP
features selected above are used as the basis for establishing
a simple unsupervised classification method to further study
the potential of using such features to detect and identify
ISWs at the sea surface.Wemainly use the k-means clustering
algorithm based on the features selected above and the tradi-
tional Wishart clustering algorithm. The Wishart clustering
algorithm based on the polarimetric covariance matrix C2 is
regarded as the standard clustering method for processing
polarimetric data [28], [29]. When using CP features for
k-means classification, the features are first logarithmically
transformed to enhance the contrast of the data and thus
improve the performance of the k-means clustering algo-
rithm [29]. Additionally, in k-means classification, the num-
ber of classes (k) must be determined in advance. In the two
cases used in this section, we set the number of classes to 2;
that is, only the target type and the sea background type are
considered.

A. PERFORMANCE ANALYSIS
To analyze the ISWs identification performance of the above
two clustering algorithms, the ISWs identification accuracy
of each approach is analyzed, and the results are compared.

FIGURE 6. Compact polarimetric features of image #3.

However, there is no accurate and feasible standard for eval-
uating the accuracy of ISWs detection in remote sensing
images. Therefore, when we evaluate the accuracy of ISWs
identification, the standard this paper used is the number of
ISWs detected. First, the ISWs were manually identified in
the original PauliRGB images and the leading waves were
marked with a solid red line in the figure (seen in Fig. 7).
Then, the k-means clustering algorithm and theWishart algo-
rithm are used to classify the polarization feature images and
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FIGURE 7. For internal solitary wave images, the image name is ‘ALPSRP-’.
The visual interpretation results of the internal solitary waves in the
figure are marked with solid red lines.

the C2 matrix, respectively, and the classification result is
obtained (the ISWs pixels are equal to 1, and the sea pixels
are equal to 0). Finally, the artificially marked ISWs areas
in the original image were compared pixel by pixel with the
corresponding ISWs areas in the classification results. If the
pixel coincidence rate reaches 70%, that is, at least 70% of
the pixels in the artificially marked area are consistent with
the ISWs area detected in the feature images, then the ISWs
detection is considered successful.

In this paper, 140 fully polarized ALOS PALSAR images
were selected, and 250 ISWswere identified from the images.
It should be noted that because ISWs are large-scale marine
features, they appear as light and dark bands in the form of
wave packets in remote sensing images. Therefore, in this
paper, when the ISWs are calibrated, the large connected area
at the front of waves is the main area selected.

Table 4 shows that the Wishart clustering method is able
to identify 194 ISWs with a recognition accuracy of 77.6%.
However, the k-means clustering algorithm based on compact
polarization features yields an excellent ISWs identification
performance. λ1, Lambda, Entropy(H ) and Span of ISWs
identification are greater than 80%. The ISWs identification
accuracies for the Stokesg0 and Stokesg3 features are close to

TABLE 4. Internal solitary wave identification accuracy.

FIGURE 8. Comparison of internal solitary wave clustering results.
(a) PauliRGB image (b) Wishart clustering results (c) k-means clustering
results of λ1(d) k-means clustering results of Lambda (e) k-means
clustering results of Stokesg0.

those obtained with the Wishart algorithm at 77% and 79%,
respectively. However, only 142 ISWs can be identified in the
image of Stokesg1 feature, with a detection accuracy of 57%,
suggesting that the ISWs identification ability is poor; there-
fore, this feature is not suitable for the detection of ocean
ISWs. In summary, the partial CP features selected based
on the Euclidean distance and Jeffries distance in this paper
can be effectively used for the detection and identification of
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ocean ISWs, and such features include λ1, Lambda, Entropy
(H ), Stokesg0, Stokesg3 and Span.

B. SAMPLE FINDINGS
Figure 8 shows the results of the two clustering algorithms
on the ISWs in image #1. This section mainly analyzes
three features, namely, λ1, Lambda, and Stokesg0 in Level I.
In both images, the targets (ISWs) are shown in black, and
the sea background is shown in white. Figure 8 indicates
that with both classification methods, the ISWs can be easily
distinguished from the background environment, but there
is a certain difference between the results of the Wishart
clustering algorithm and those of the feature-based clustering
algorithm. Notably, the k-means clustering algorithm based
on CP features can highlight the characteristics of the ISWs
regions, has a significant denoising effect and effectively
maintains the edge features of the ISWs. Thus, the ISWs
detection and recognition effects are more accurate than those
of the standardWishart classification algorithm. This finding
supports the conclusion that the CP features selected in this
paper can be used to effectively distinguish ISWs and the
ocean background. Although these features do not contain
complete polarization information, they contain sufficient
information for the purpose of this study.

V. CONCLUSION
CP SAR is an emerging polarization mode that can not only
achieve wide swath observations but also fully retain the
polarization information of a detected target; therefore, this
approach has great potential in the observation and analysis
of large-scale marine phenomena. However, in the field of CP
SAR, current research on the detection of ocean ISWs is still
lacking, and the use of CP SAR technology for the detection
and identification of ocean ISWs has become an increasingly
popular issue. Therefore, this paper focuses on the detection
and identification of marine ISWs with spaceborne CP SAR.

In this paper, based on the reconstruction of FP ALOS
PALSAR images, CP SAR data in HP mode are obtained.
On the basis of the proposed extraction method for CP fea-
tures, the ISWs and sea background discrimination abilities
obtained with different polarization features are systemati-
cally analyzed based on the Jeffries distance and Euclidean
distance. The results show that some CP features can be effec-
tively used for ISWs detection and identification research,
such as λ1, Lambda, Entropy (H ), Stokesg0, Stokesg3 and
Span, and their ISWs detection capabilities exceed the origi-
nal copolarization and cross-polarization σ0 images.
By using the selected features as the basis of simple

unsupervised classification, the k-means clustering algorithm
proposed in this paper outperforms the traditional Wishart
polarization clustering algorithm and has advantages in the
identification of ISWs and the determination of the charac-
teristics of ISWs regions. Combined with an accuracy evalu-
ation based on expert interpretation, the results show that the
accuracy of the Wishart clustering algorithm in ISWs iden-
tification is 77.6%, and λ1, Lambda, Entropy (H ) and Span

yield accuracies greater than 80% in ISWs identification. The
identification accuracies of Stokesg0 and Stokesg3 are close
to those achieved by the Wishart algorithm at 77% and 79%
respectively. In other words, these features contain sufficient
information to detect and identify ISWs.

This paper explores the potential of ISWs detection using
CP SAR technology. The polarization scattering characteris-
tics of ISWs are beyond the scope of this article and require
further research to improve the overall understanding of ISWs
and promote the automatic detection and extraction of ISWs
in SAR images.

ACKNOWLEDGMENT
The authors thank the Japan Aerospace Exploration
Agency (JAXA) for providing the ALOS PALSAR data
and the European Space Agency (ESA) for providing the
Polarimetric SAR data Processing and Education Toolbox
(PolSARpro).

REFERENCES
[1] S. Z. S. Feng, F. Q. Li, and S. J. Li, An Introduction to Marine Science.

Beijing, China: Higher Education Press, 1999, pp. 190–195.
[2] A. N. Rutenko, ‘‘The effect of internal waves on the sound propagation

in the shelf zone of the Sea of Japan in different seasons,’’ Acoust. Phys.,
vol. 51, no. 4, pp. 449–456, Aug. 2005, doi: 10.1134/1.1983608.

[3] H. Lin, K. G. Fan, H. Shen, W. G. Huang, and M. X. He, ‘‘Review
on remote sensing of oceanic internal wave by space-borne SAR,’’
Prog. Geophys., vol. 25, no. 3, pp. 1081–1091, Jun. 2010, doi:
10.3788/HPLPB20102209.2186.

[4] A. K. Liu, Y. S. Chang, M.-K. Hsu, and N. K. Liang, ‘‘Evolution of
nonlinear internal waves in the east and south China seas,’’ J. Geo-
phys. Res., Oceans, vol. 103, no. C4, pp. 7995–8008, Apr. 1998, doi:
10.1029/97JC01918.

[5] Z. X. Zhao, V. Klemas, Q. A. Zheng, and X. H. Yan, ‘‘Remote sensing
evidence for baroclinic tide origin of internal solitary waves in the north-
eastern South China Sea,’’Geophys. Res. Lett., vol. 31, no. 6, pp. 302–306,
Mar. 2004, doi: 10.1029/2003GL019077.

[6] A. Azevedo, J. C. B. da Silva, and A. L. New, ‘‘On the generation and
propagation of internal solitary waves in the southern bay of biscay,’’
Deep Sea Res. I, Oceanographic Res. Papers, vol. 53, no. 6, pp. 927–941,
Jun. 2006, doi: 10.1016/j.dsr.2006.01.013.

[7] Q. Zheng, R. D. Susanto, C.-R. Ho, Y. T. Song, and Q. Xu, ‘‘Statistical and
dynamical analyses of generation mechanisms of solitary internal waves
in the northern south China sea,’’ J. Geophys. Res., vol. 112, no. C3,
pp. 21–37, Mar. 2007, doi: 10.1029/2006JC003551.

[8] C. X. Wang, X. Wang, and J. C. B. da Silva, ‘‘Studies of internal waves
in the strait of Georgia based on remote sensing images,’’ Remote Sens.,
vol. 11, no. 1, pp. 96–112, Jan. 2019, doi: 10.3390/rs11010096.

[9] J. P. Pisoni, N. G. Glembocki, S. I. Romero, and M. H. Tonini, ‘‘Internal
solitary waves from L-band SAR over the argentine inner patagonian
shelf,’’ Remote Sens. Lett., vol. 11, no. 6, pp. 525–534, Mar. 2020, doi:
10.1080/2150704X.2020.1736725.

[10] N. J. Raju, M. K. Dash, S. P. Dey, and P. K. Bhaskaran, ‘‘Potential genera-
tion sites of internal solitary waves and their propagation characteristics in
the andaman sea—A study based on MODIS true-colour and SAR obser-
vations,’’ Environ. Monitor. Assessment, vol. 191, no. S3, pp. 809–819,
Dec. 2019, doi: 10.1007/s10661-019-7705-8.

[11] W. Alpers and I. Hennings, ‘‘A theory of the imaging mechanism of
underwater bottom topography by real and synthetic aperture radar,’’
J. Geophys. Res., vol. 89, no. C6, pp. 10529–10546, Nov. 1984, doi:
10.1029/JC089iC06p10529.

[12] W. Alpers, ‘‘Theory of radar imaging of internal waves,’’ Nature, vol. 314,
no. 6008, pp. 245–247, Mar. 1985, doi: 10.1038/314245a0.

[13] J.-S. Lee and E. Pottier, Polarimetric Radar Imaging: From Basics to
Applications. Boca Raton, FL, USA: CRC Press, 2009, pp. 171–193.

172846 VOLUME 8, 2020

http://dx.doi.org/10.1134/1.1983608
http://dx.doi.org/10.3788/HPLPB20102209.2186
http://dx.doi.org/10.1029/97JC01918
http://dx.doi.org/10.1029/2003GL019077
http://dx.doi.org/10.1016/j.dsr.2006.01.013
http://dx.doi.org/10.1029/2006JC003551
http://dx.doi.org/10.3390/rs11010096
http://dx.doi.org/10.1080/2150704X.2020.1736725
http://dx.doi.org/10.1007/s10661-019-7705-8
http://dx.doi.org/10.1029/JC089iC06p10529
http://dx.doi.org/10.1038/314245a0


H. Zhang et al.: Performance Analysis of ISW Detection and Identification Based on CP SAR

[14] D. L. Schuler, R. W. Jansen, J. S. Lee, and D. Kasilingam, ‘‘Polarisation
orientation angle measurements of ocean internal waves and current fronts
using polarimetric SAR,’’ IEE Proc. Radar, Sonar Navigat., vol. 150, no. 3,
pp. 135–143, Jun. 2003, doi: 10.1049/ip-rsn:20030492.

[15] L. J. Li, J. M.Meng, X. Zhang, and L. N. Sun, ‘‘Comparison for the visibil-
ity of the SAR polarization characteristics and images of internal waves,’’
J. Mar. Sci., vol. 32, no. 2, pp. 23–34, Jun. 2014, doi: 10.3969/j.issn.1001-
909X.2014.02.003.

[16] J. C. Souyris and S. Mingot, ‘‘Polarimetry based on one transmitting
and two receiving polarizations: The π /4 mode,’’ in Proc. IEEE Int.
Geosci. Remote Sensing Symp., vol. 1, Jul. 2002, pp. 629–631, doi:
10.1109/IGARSS.2002.1025127.

[17] R. K. Raney, ‘‘Hybrid-polarity SAR architecture,’’ IEEE Trans. Geosci.
Remote Sens., vol. 45, no. 11, pp. 3397–3404, Nov. 2007, doi:
10.1109/TGRS.2007.895883.

[18] R. Shirvany, M. Chabert, and J.-Y. Tourneret, ‘‘Ship and oil-spill detection
using the degree of polarization in linear and Hybrid/Compact dual-pol
SAR,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 3,
pp. 885–892, Jun. 2012, doi: 10.1109/JSTARS.2012.2182760.

[19] C. H. Cao, J. Zhang, J. M. Meng, X. Zhang, and X. P. Mao, ‘‘Analysis
of ship detection performance with full-, compact-and dual-polarimetric
SAR,’’ Remote Sens., vol. 11, no. 18, pp. 2160–2183, Sep. 2019, doi:
10.3390/rs11182160.

[20] A.-B. Salberg, O. Rudjord, and A. H. S. Solberg, ‘‘Oil spill
detection in hybrid-polarimetric SAR images,’’ IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 10, pp. 6521–6533, Oct. 2014, doi:
10.1109/TGRS.2013.2297193.

[21] Y. Jiang, X. L. Zhang, and J. Shi, ‘‘Speckle reduction for polarimetric SAR
images by improved Lee filter,’’ J. Univ. Electron. Sci. Technol. China,
vol. 38, no. 1, pp. 5–8, Jan. 2009, doi: 10.1016/j.apm.2007.10.019.

[22] H. Li, W. Perrie, Y. He, S. Lehner, and S. Brusch, ‘‘Target detection on
the ocean with the relative phase of compact polarimetry SAR,’’ IEEE
Trans. Geosci. Remote Sens., vol. 51, no. 6, pp. 3299–3305, Jun. 2013,
doi: 10.1109/TGRS.2012.2224119.

[23] S. R. Cloude, D. G. Goodenough, and H. Chen, ‘‘Compact decomposi-
tion theory,’’ IEEE Geosci. Remote Sens. Lett., vol. 9, no. 1, pp. 28–32,
Jan. 2012, doi: 10.1109/LGRS.2011.2158983.

[24] T. L. Ainsworth, S. R. Cloude, and J. S. Lee, ‘‘Eigenvector analysis of
polarimetric SAR data,’’ IEEE Int. Geosci. Remote Sens. Symp., vol. 1,
Feb. 2002, pp. 626–628, doi: 10.1109/IGARSS.2002.1025126.

[25] R. K. Raney, J. T. S. Cahill, G. W. Patterson, and D. B. J. Bussey, ‘‘The m-
chi decomposition of hybrid dual-polarimetric radar data with application
to lunar craters,’’ J. Geophys. Res., vol. 117, no. E12, pp. 5093–5096,
May 2012, doi: 10.1029/2011JE003986.

[26] M. Dabboor, S. Howell, M. Shokr, and J. Yackel, ‘‘The Jeffries–Matusita
distance for the case of complex Wishart distribution as a separability
criterion for fully polarimetric SAR data,’’ Int. J. Remote Sens., vol. 35,
no. 19, pp. 6859–6873, May 2014, doi: 10.1080/01431161.2014.960614.

[27] C. H. Cao, J. Zhang, X. Zhang, J. M. Meng, and J. Yue, ‘‘The analysis
of ship target detection performance with C band compact polarimetric
SAR,’’ Periodical Ocean Univ. China, vol. 47, no. 2, pp. 85–93, Feb. 2017,
doi: 10.16441/j.cnki.hdxb.20160347.

[28] J.-S. Lee, M. R. Grunes, T. L. Ainsworth, D. L. Schuler, and S. R. Cloude,
‘‘Unsupervised classification using polarimetric decomposition and the
complex Wishart classifier,’’ IEEE Trans. Geosci Remote Sens., vol. 37,
no. 5, pp. 2249–2259, Sep. 1999, doi: 10.1109/36.789621.

[29] S. Skrunes, C. Brekke, and T. Eltoft, ‘‘Characterization of marine
surface slicks by Radarsat-2 multipolarization features,’’ IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 9, pp. 5302–5319, Sep. 2014, doi:
10.1109/TGRS.2013.2287916.

HAO ZHANG was born in Weifang, Shandong,
China, in 1995. He received the B.S. degree in
marine mapping from the Shandong University of
Science and Technology, Qingdao, China, in 2014,
and the M.S. degree from the First Institute of
Oceanography, Ministry of Natural Resources of
China, Qingdao, in 2020.

His research interests include detection of ocean
internal waves using remote sensing images and
characteristics of ocean internal waves.

JUNMIN MENG (Member, IEEE) received the
B.S. degree in mathematics from Inner Mongo-
lia Normal University, Urumqi, China, in 1996,
the M.S. degree in applied mathematics from
Inner Mongolia University, Urumqi, in 1999, and
the Ph.D. degree in physical oceanography from
the Ocean University of China, Qingdao, China,
in 2002.

He is currently a Professor with the Labora-
tory of Marine Physics and Remote Sensing, First

Institute of Oceanography, Ministry of Natural Resources, Qingdao. He is
working on the development of algorithms determining marine parameters
from microwave remote sensing.

LINA SUN was born in Huadian, Jilin, China,
in 1985. She received the B.S. degree from
Weifang University, Weifang, China, in 2005, and
the M.S. degree from the Ocean University of
China, Qingdao, China, in 2012.

Since 2012, she has been working as an Assis-
tant Engineer with the First Institute of Oceanog-
raphy, Ministry of Natural Resources, Qingdao,
where she was an Engineer, in 2019. Her research
interests include detection of ocean internal waves

using remote sensing images and remote sensing data processing.

XI ZHANG (Member, IEEE) received the B.S.
degree in information systems from the Qingdao
University of Science and Technology, Qingdao,
China, in 2005, and the M.S. degree in signal and
information processing and the Ph.D. degree in
computer science from the Ocean University of
China, Qingdao, in 2008 and 2011, respectively.

He is currently an Associate Professor with the
Laboratory of Marine Physics and Remote Sens-
ing, First Institute of Oceanography, Ministry of

Natural Resources, Qingdao. He has participated in several land-based and
airborne geoscientific field studies, among which a number of campaigns
were related to sea ice studies in the Bohai Sea. His research interests
include microwave remote sensing of sea ice, numerical modeling of sea ice
scattering, and synthetic aperture radar data analysis.

SIJING SHU was born in Huangshi, Hubei, China,
in 1994. He received the M.S. degree from the
First Institute of Oceanography, Ministry of Natu-
ral Resources of China, Qingdao, China, in 2020.

He is currently an Algorithm Engineer with
PIESAT Information Technology Company Ltd.,
Beijing, China. His research interests include
detection of marine oil spills using synthetic aper-
ture radar and characteristics of films.

VOLUME 8, 2020 172847

http://dx.doi.org/10.1049/ip-rsn:20030492
http://dx.doi.org/10.3969/j.issn.1001-909X.2014.02.003
http://dx.doi.org/10.3969/j.issn.1001-909X.2014.02.003
http://dx.doi.org/10.1109/IGARSS.2002.1025127
http://dx.doi.org/10.1109/TGRS.2007.895883
http://dx.doi.org/10.1109/JSTARS.2012.2182760
http://dx.doi.org/10.3390/rs11182160
http://dx.doi.org/10.1109/TGRS.2013.2297193
http://dx.doi.org/10.1016/j.apm.2007.10.019
http://dx.doi.org/10.1109/TGRS.2012.2224119
http://dx.doi.org/10.1109/LGRS.2011.2158983
http://dx.doi.org/10.1109/IGARSS.2002.1025126
http://dx.doi.org/10.1029/2011JE003986
http://dx.doi.org/10.1080/01431161.2014.960614
http://dx.doi.org/10.16441/j.cnki.hdxb.20160347
http://dx.doi.org/10.1109/36.789621
http://dx.doi.org/10.1109/TGRS.2013.2287916

