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ABSTRACT It is very difficult to obtain the label data of rolling bearings under the complicated and variable
working conditions, which results in low diagnosis accuracy. Transfer sparse coding(TSC) is a new feature
representationmethod, which can effectively extract features from data matrix. Joint geometric and statistical
alignment (JGSA) is a domain adaptation method, which can reduce the distribution shift and geometric shift
between domains. In order to make full use of the feature extraction ability of the TSC and the transfer
classification ability of the JGSA, a new transfer learing fault diagnosis(TSC-JGSA) method based on
combining the characteristics of the TSC and JGSA is proposed to realize the fault diagnosis of rolling
bearings under variable working conditions in this paper. In the TSC-JGSA, the fast Fourier transform
technology is used to transform the time-domain signals into frequency-domain amplitudes. Then the TSC
is used to effectively extract the deep features from the obtained frequency-domain amplitudes in order to
construct a sparse feature matrix, which is input into the JGSA in order to realize the fault diagnosis of rolling
bearings. Finally, the vibration data of rolling bearings under variable working conditions is used to prove
the effectiveness of the TSC-JGSA. The experiment results show that the TSC-JGSA can effecrively solve
the problem of lacking label data in actual engineering by using label data in the laboratory, and obtan higher
diagnosis accuracy than other compared methods. It provides a new diagnosis idea for rotating machinery.

INDEX TERMS Fault diagosis, transfer learning, domain adaptation, sparse coding, variable working
conditions.

I. INTRODUCTION
Rolling bearings play an important role in large-scale rotating
machinery and equipment. Once a fault occurs for rolling
bearings, it will cause serious economic loss or casualties.
Therefore, it is very necessary to carry out fault diagnosis
for them [1]–[3]. However, the actual working conditions
of rolling bearings are complex and changeable. It is of
great practical significance to effectively use the labeled data
of known working conditions for fault diagnosis of unla-
beled data in the actual engineering under unknown working
conditions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Baoping Cai .

In recent years, many scholars have deeply studied the
fault diagnosis problem under variable operating condi-
tions [4]–[7]. The electrostatic detection method is used to
study the characteristics of electrostatic signals correspond-
ing to different fault injection degrees of rolling bearing
under variable working conditions. The multi-body contact
dynamic model is established to explore the multi-body
contact dynamic characteristics of ball bearing under vari-
ableworking conditions. The parameter optimized variational
mode decomposition (POVMD) and envelope order spectrum
are used to extract fault feature information. The vibration
signal of rolling bearings is analyzed and processed by fast
spectral correlation to obtain the eigenvector, which is input
into PSO-SVM for state recognition.
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However, the traditional fault dianosis methods have the
limitations of complicated analysis process and poor gener-
alization ability under variable working conditions. Transfer
learning has attracted extensive attention [8], [9]. The fea-
ture extraction method of singular value decomposition and
autocorrelation matrix is combined with the transfer learning
TrAdaBoost algorithm to diagnose the motor fault [10]–[14].
A new fault identification method based on the combining
long and short term memory network (LSTM) and trans-
fer learning (TL) is proposed. A semi-supervised integrated
learning tool (SSIT) based on transfer learning is proposed
for engine bearing fault prediction to solve the problems of
insufficient prediction accuracy and over-fitting [15]–[17].
A bearing fault diagnosis model based on the transfer learn-
ing is composed of a stack sparse automatic encoder and a
flexible maximum function regression.

Domain adaption is an important branch of transfer learn-
ing. It is an effective method to solve the problem that the
source domain and the target domain have different data
distribution but the same task. The subspace described by the
eigenvector is used to represent the source domain and the
target domain [18]. A mapping function is learned to find
a domain adaptation solution. The mapping function aligns
the source subspace with the target subspace. The subspace
mapping method is extended. The distribution and subspace
basis of source domain and target domain are aligned simul-
taneously [19]. A kernel-based method is proposed to utilize
the inherent low-dimensional structure of data sets [20]. The
geodesic flow kernel model describes the changes in geo-
metric and statistical characteristics from the source domain
to the target domain by integrating infinite subspaces [21].
A new dimension reduction method, transfer component
analysis, is proposed to find a good cross-domain feature
representation [22]. The joint distribution adaptation method
adapts marginal distribution and conditional distribution in
the process of dimension reduction according to certain rules.
It constructs a new feature representation. Feature match-
ing and sample re-weighting are established in a unified
optimization problem. A transfer joint matching method is
proposed [23]. A joint geometric and statistical alignment
(JGSA) algorithm is proposed to reduce domain shift both
statistically and geometrically [24].

Recently, except for the mentioned feature-based trans-
fer learning methods, domain adaptation is realized through
many new ideas. Meanwhile, more and more scholars focus
on neural networks and adversarial learning. An algo-
rithm named structured domain adaptation (SDA) is pro-
posed to seek a discriminate subspace shared by two
domains where the well-learned knowledge of the source
domain can be transferred to the target domain [25]. Sam-
ples from both domains are combined together to reveal
more shared information across two domains. A previ-
ously unexplored instance of the general framework is
proposed which combines discriminative modeling, untied
weight sharing [26]. A novel deep learning framework that
can exploit labeled source data and unlabeled target data

to learn informative hash codes is proposed to accurately
classify unseen target data [27]. A weighted MMD model
is proposed by introducing an auxiliary weight for each
class in the source domain [28]. A novel approach named
Learning Distribution-Matched Landmarks (LDML) is pro-
posed [29]. LDML reveals the latent factors by learning a
domain-invariant subspace where the two domains are well
aligned at both feature level and sample level. A two-stream
architecture is introduced where one operates in the source
domain and the other in the target domain [30]. In con-
trast to other approaches, the weights in corresponding lay-
ers are related but not shared. A new unsupervised domain
adaptation approach called Collaborative and Adversarial
Network (CAN) is proposed through domain-collaborative
and domain-adversarial training of neural networks [31].
A new domain adaptation method called Domain-Symmetric
Networks (SymNets) is proposed [32]. Transferrable Pro-
totypical Networks (TPN) is presented for adaptation such
that the prototypes for each class in the two domains are
close in the embedding space and the score distributions
predicted by prototypes separately on source and target data
are similar [33]. Contrastive Adaptation Network (CAN) is
proposed to optimize a new metric which explicitly models
the intra-class domain discrepancy and the inter-class domain
discrepancy [34]. A dynamic Bayesian network (DBN)-based
fault diagnosis methodology in the presence of TF and IF
for electronic systems is proposed [35]. An OOBN-based
real-time fault diagnosis methodology is proposed [36].
A hybrid physics-model-based and data-driven remaining
useful life (RUL) estimation methodology of structure sys-
tems by using dynamic Bayesian networks (DBNs) is pro-
posed [37]. A personalized diagnosis method to detect faults
in gears using numerical simulation and extreme learning
machine is proposed [38]. A personalized diagnosis method
to detect faults in a bearing based on acceleration sensors and
an FEM simulation driving support vector machine is pro-
posed [39]. A new unsupervised domain adaptation method
named domain-adversarial residual-transfer learning of deep
neural networks is proposed to tackle cross-domain image
classification tasks [40]. A domain adaptation method for
machinery fault diagnostics based on deep learning is pro-
posed to address the fault diagnostic tasks with data from
different places of machines [41], [42]. A domain adap-
tation diagnostic model based improved deep neural net-
work is proposed, which diagnoses early gear pitting faults
under multiple working conditions [43], [44]. In addition,
some new algorithms are also proposed, which can opti-
mize the diagnosis models to improve the classification
performance [45]–[52].

It can be seen from the previous work that the deep
learning method is introduced to solve the transfer prob-
lem, which can achieve ideal results by better feature
extraction effect. Transfer sparse coding (TSC) is proposed
to construct robust sparse representations for classifying
cross-distribution images accurately [53]. It is a new fea-
ture representation method, which can effectively extract
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features from data matrix. The JGSA is a domain adaptation
method, which can reduce the distribution shift and geo-
metric shift between domains by using shared features and
domain-specific features. It can effectively and accuractely
realize the classification. In order to make full use of the
feature extraction ability of the TSC and the transfer classifi-
cation ability of the JGSA, the TSC and JGSA are conbined
and introduced into fault diagnosis to propose a new trans-
fer learning fault diagnosis (TSC-JGSA) method for rolling
bearings under variable working conditions. In the proposed
TSC-JGSA method, the time-domain vibration signals under
known and unknown working conditions are preprocessed
by fast Fourier transform to obtain the frequency-domain
amplitudes. Then the TSC is used to extract features from
frequency-domain amplitudes to construct the sparse feature
matrix, which is input into the JGSA model to realize a
new fault diagnosis method. Finally, the vibration signals of
rolling bearings under variable working conditions are used
to prove the effectiveness of the TSC-JGSA method.

The main contributions of this paper are summarized as
follows:
• A new transfer learning fault diagnosis method based

on creatively combining sparse coding method with the
domain adaptation algorithm is proposed to realize the fault
classification.
•Themotivation to combine TSC and JGSA is to make full

use of the feature extraction ability of the TSC and the transfer
classification ability of the JGSA to realize the fault diagnosis
of rolling bearings under variable working conditions.
• The performance of the TSC-JGSA method is has been

extensively investigated by the vibration signals of rolling
bearings under variable working conditions.
• The TSC-JGSA method can effecrively solve the prob-

lem of lacking label data in actual engineering by using label
data in the laboratory.

II. BASIC METHODS
A. TSC
Sparse coding is an effective method in feature extraction,
which can realize adaptive feature extraction [53], [54]. Given
a data matrix X = [x1,. . . , xn]∈Rm×n, it means that n data
points are sampled from the m-dimension feature space, and
the dictionary matrix is expressed as B = [b1,. . . , bk]∈Rm×k,
where each column vector bi represents a basis vector in the
dictionary, and the coding matrix is expressed as S=[s1,. . . ,
sn]∈Rkxn, where each column vector si is a sparse representa-
tion of a data point xi. The specific formula is given as follow.

minB,S | |X− BS| |2F + λ
∑n

i=1
|si|

s.t.||bi||2 ≤ c, ∀i = 1, . . . , k (1)

where λ is an adjustable regularization parameter, which is
used to determine the sparsity of coding and the approxima-
tion of input data.

Sparse coding learns a set of dictionary basis vectors
and the coding matrix from given training samples by

loop iteration. Then it uses the optimized method to solve
the coding matrix of the test samples. Through this process,
the raw data is reconstructed into a new feature representation
using dictionary basis vectors. The codingmatrix S is a sparse
matrix, which can greatly improve the calculation speed and
save storage space. It is the advantage of sparse matrix.

In order to take into account the potential intrinsic geom-
etry of the input data, a graph regularized sparse cod-
ing (GraphSC) method is proposed [54]. This method obtains
data geometric information by learning the sparse represen-
tation that explicitly considers the local manifold structure of
the data. The formula is given as follow.

minB,S ||X− BS|| 2F + γ tr
(
SLST

)
+ λ

∑n

i=1
|si|

s.t.||bi||2 ≤ c, ∀i = 1, . . . , k (2)

where γ is a graph regularization parameter, which is used
to determine the weight between sparse coding and geometry
preservation.

However, when the labeled and unlabeled data are sam-
pled from different distributions, they may be quantized into
different feature words of the codebook and encoded with
different representations, which may seriously degrade the
classification performance. To improve the learning ability
of sparse coding, we minimize the distribution difference
between the labeled data and unlabeled data, and apply this
criterion to the objective function of sparse coding [45].
The empirical maximum mean difference (MMD) is used
as a nonparametric distance measure to compare different
distributions, and the objective function of TSC is obtained
as follow.

minB,S ||X− BS|| 2F + tr
(
S (µM+γL) ST

)
+λ

∑n

i=1
|si|

s.t.||bi||2 ≤ c, ∀i = 1, . . . , k (3)

where µ > 0 is the MMD regularization parameter, which is
used to determine the weight between GraphSC and distribu-
tion matching.

B. JGSA
In order to reduce the shift between domains both geometri-
cally and statistically, a domain adaptation method, referred
as joint geometric and statistical alignment, namely JGSA is
proposed by using both shared features and domain-specific
features. The definition of the JGSA is described as follows.
Source domain data is represented as Xs, extracted from dis-
tribution Ps(Xs), and target domain data is represented as Xt,
obtained from distribution Pt(Xt), where ns and nt are number
of samples in source domain and target domain, respectively.
We assume that the feature space and label space of the two
domains are the same as Xs = Xt and Ys = Yt. Due to data
set offset, there is Ps(Xs) 6= Pt(Xt).

The JGSA obtains a new representation of each domain by
finding two coupling projections (A for the source domain
and B for the target domain), mapping the source domain
data and the target domain data to their respective subspaces.
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After projection, 1) Maximize the variance of the target
domain data to maintain the target domain data attributes.
2) The discrimination information of the source domain
data is retained to transfer the label information effec-
tively. 3) Minimize both the marginal distribution and condi-
tional distribution divergences between the source and target
domains to statistically reduce domain shift. 4) The diver-
gence between the two projections is limited as small as
possible, and the shift is reduced geometrically.

Based on the above four points, the objective function of
the JGSA method is obtained as follow.

maxA,B

Tr([AT BT ][
βSb 0
0 µSt

][
A
B
])

Tr([AT BT ][
Ms + λI + βSw Mst − λI

Mts − λI Mt + (λ+ µ)I
][
A
B
])

(4)

The goal is to find two coupled projections A and B by
solving the optimization function, where I ∈ Rd×d is the iden-
tity matrix, µ is the target domain scatter matrix coefficient,
β is the within class scatter matrix and between class scatter
matrix coefficient, and λ is the subspace shift coefficient.

III. A TRANSFER LEARNING FAULT DIAGNOSIS METHOD
A. THE IDEA OF THE FAULT DIAGNOSIS
In the case of variable working conditions, there is a large
difference in the statistical distribution between the data
under known and unknown working conditions, but the fea-
ture space and the label space are the same. The potential
common features from the known working conditions is
learned. At the same time, the unique features of the unknown
working conditions is retained to improve the generalization
ability of the model. The vibration signal is transformed
from time-domain to frequency-domain, so as to obtain fault
information, which is more conducive to identification and
matching. This transformation is also of practical significance
for reducing the computational complexity of subsequent
algorithms. The data collection environment is not a strict
laboratory environment, it is closer to the actual engineering
conditions. So the fault data often contains more redundant
information and is accompanied by noise, which needs to
be further extracted. The sparse coding is superior in fea-
ture extraction. TSC is a new feature representation method,
which can achieve the desired feature extraction effect. It can
find and extract effective features from the data, which also
eliminates the influence of noise. It is a powerful tool to
extract useful features from data, thus can more accurately
and concisely express data features. The domain adaptation
method is an effective method to solve the problem that the
data distribution in the source domain is different from that
in the target domain, but the tasks are the same. The JGSA
method can reduce the distribution shift and geometrical shift
between domains by simultaneously using the shared features
and domain-specific features between source domain data
and target domain data to achieve the purpose of transfer
learning. In order to make full use of the feature extraction

ability of the TSC and the transfer classification ability of the
JGSA, a new transfer learning fault diagnosis (TSC-JGSA)
method based on creatively combining TSC with JGSA is
proposed to realize the fault diagnosis of rolling bearings
under variableworking conditions. The bearing vibration data
of three different rotating speeds and ten fault types under
known and unknown working conditions are used to verify
the effectiveness of the TSC-JGSA method.

B. FAULT DIAGNOSIS MODEL
The flow of the TSC-JGSA method for the fault diagnosis of
rolling bearings under variable condition is shown in Figure 1.

FIGURE 1. The flow of TSC-JGSA.

C. THE STEPS OF THE TSC-JGSA
In this paper, the advantages of sparse coding are used to
extract deep features. The variable working condition is
solved by combining the characteristics of the TSC and
JGSA, the differences of samples between different working
conditions are reduced to realize fault diagnosis with various
types for rolling bearings at different rotating speeds. The
specific steps of the TSC-JGSA are described as follows.

Step 1. Data preprocessing
The multi-state time-domain vibration signals of rolling

bearings under known and unknown working conditions are
transformed into frequency-domain by using fast Fourier
transform in order to obtain corresponding frequency-domain
amplitudes.

Step 2. Feature extraction
The TSC is used to extract the deep features of frequency

domain amplitudes of the vibration signals.
Step 3. Construct feature matrix
The obtained features are used to construct the feature

matrix, which is composed of the training samples(source
domain) and the test sample(target domain).
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Step 4. Domain adaptation processing
The JGSA is used to perform domain adaptation pro-

cessing on the training samples(source domain) and the
test samples(target domain), which statistically reduce the
marginal distribution domain shift and the conditional dis-
tribution domain shift between different domains, geometri-
cally reduces the subspace domain shift after projection, and
improves the distribution similarity of the samples between
domains.

Step 5.Model establishment
The k-NearestNeighbor (KNN) classification model is

trained by the known label samples in the source domain after
JGSA domain adaptation, and the unknown label samples of
target domain are used to test model after domain adaptation.
Through continuous iterative calculation, multi-state classifi-
cation results of bearings under variable working conditions
are obtained on the target domain samples.

IV. VALIDATION AND ANALYSIS
A. DATA DESCRIPTION AND PARAMETER SETTING
In this experiment, the obtained experimental data come from
the experiment platform of QPZZ-IIrotating machinery. The
experiment platform of QPZZ-IIrotating machinery is shown
in Figure 2. The experiment platform of QPZZ-II rotating
machinery consists of a variable-speed drive machine with
a power of 0.75KW, bearings, gearboxes, shafts, eccentric
turntables, governor, and so on.

FIGURE 2. The experiment platform of QPZZ-IIrotating machinery.

The inner ring, outer ring and rolling elements of the
bearing are processed with single-point damage. The eccen-
tric turntable simulates the unbalanced working condition
of the rotor by placing weights. The rolling bearing is a
cylindrical roller rolling bearing of type N205. By simulating
the imbalance between the fault bearing and the shafting,
the acceleration vibration signals at different rotating speeds
and different fault positions are collected. The fault posi-
tions are at the inner ring, outer ring and rolling element
of the rolling bearings. The vibration signal is collected
by vibration acceleration sensor and data acquisition card,
and the sampling frequency is 12kHZ. The bearing fault

also contains data with a sampling frequency of 48kHZ.
Record the vibration acceleration signal data under the
motor speed conditions of 1000rpm, 1250rpm and 1500rpm,
respectively.

At each speed, the vibration signal data of 10 states are
divided into 5 single faults of normal, inner ring, outer ring,
rolling element and rotor imbalance and 5 coupling faults.
The data is interceptedwith 1024 length. A total of 10 classifi-
cations were performed on the input data. The states and label
descriptions of the 10 classifications are shown in Table 1.
The environment of this experiment is the computer processor
Intel (R) Core (TM) i5-7400 CPU@3.00GHz, memory 8GB,
MATLAB 2018b.

TABLE 1. Data descriptions.

10 kinds of multi-state samples of rolling bearings under
different working conditions are set as follows.

(1) Set the working condition A as 1000r/min.
(2) Set the working condition B as 1250r/min.
(3) Set the working condition C as 1500r/min.

TABLE 2. Sample set composition of rolling bearing.

The specific descriptions of the vibration signal samples
are shown in Table 2. In Table 2, the A/B working condi-
tion indicates that the working condition A feature sample
set in multiple states is used as the source domain, that is,
the training feature sample set, and the working condition B
feature sample set is used as the target domain, that is, the test
feature sample set. Select 2000 samples in the source domain
for training and 1800 samples in the target domain for testing
under each working condition. The reason for this choice is
that the fault diagnosis accuracy can achieve better results
when the training data is slightly more than the test data.
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The time-domain data samples of rolling bearing vibration
signals under the above-mentioned different working condi-
tions are transformed into the frequency-domain data samples
by using fast Fourier transform. At this time, the dimension
of the frequency domain amplitudes is half of the original
time-domain dimension, namely 513 dimensions. Input the
transformed frequency- domain amplitudes of all samples as
the characteristic values into TSC.

In this paper, the values of parameters are set
according to the suggestions given by the original authors
of the two methods. It is generally believed that as long as
they are within the given range, they can achieve good results.
The subspace basis vector of JGSA is set as 30, and the
kernel type is set to primeval, which represents the results
of the JGSA in the original data space. In JGSA, the target
domain scatter matrix coefficient µ is 1, the within class
scatter matrix and between class scatter matrix coefficient β
is 0.1, and the subspace shift coefficient λ is 1. The number
of PCA basis vectors in TSC is set as 64, the dictionary
dimension is k, the number of dictionary basis vectors is
128, the MMD regularization parameter is 1e6, the graph
regularization parameter is 1, the sparsity penalty parameter
is 0.1, and the number of TSC iterations is 10.

B. FEATURE EXTRACTION
The TSC can adaptively extract the features from the data
under the unknown data label condition, which can avoid
the empirical dependence of signal processing methods and
improve the feature extraction efficiency. Therefore, in this
paper, the features of distinguishable multi-state vibration
signals obtained by TSC are used as the input of the domain
adaptation model of JGSA. The flow of deep feature extrac-
tion of rolling bearing vibration signals using the TSC is
shown in Figure 3.

The TSC is adopted to extract the vibration signal feature
of rolling bearing. The specific steps are described as follows.

Step 1. Select the original multi-state data of rolling bear-
ings. Set the number of vibration signal data points in each
state and the length of each sample.

Step 2.According to the equation(1), the time-domain data
is transformed into the frequency-domain data by using fast
Fourier transform. The obtained frequency-domain data is
used as the input data of TSC.

Step 3. Initialize the network structure parameters of the
TSC. The frequency-domain data of the vibration signal is
used as training samples. The TSC is trained in order to obtain
the optimal outputs B and S when the objective function is
minimized.

Step 4. The output result of the data is the sparse matrix S,
which is the deep features extracted by TSC.

C. EXPERIMENT RESULTS
After the frequency-domain amplitudes of rolling bearing
vibration signals is input ito the TSC to obtain deep feature
samples. The JGSA is introduced to process the deep feature
samples under different working conditions to achieve the

FIGURE 3. The flow of deep feature extraction.

TABLE 3. Diagnosis accuracies under different working conditions.

increasing purpose within class compactness and between
class discrimination. In order to reflect the advantages of
JGSA, the non-transfer learning scheme of TSC-KNN was
selected to compare with the schemes of principal compo-
nents analysis (PCA), GFK, TJM and JDA. The fault diag-
nosis accuracies of rolling bearings using different schemes
under different working conditions are shown in Table 3 and
Figure 4.

As can be seen from Figure 4 and Table 3 that compared
with the other five schemes, JGSA has the highest fault
diagnosis accuracy under five working conditions except for
the working condition A/C. Its accuracy is slightly lower than
the two schemes of TJM and JDA under the working condi-
tion A/C. By the comprehensive comparison, JGSA has the
highest average accuracy of fault diagnosis, which is higher
than the other five comparison schemes. It can be seen from
the analysis results that the deep features obtained by TSC
are the same. Other methods do not well retain the attributes
of the original data when the distribution shift is reduced.
It fail to consider the correlation between the statistical
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FIGURE 4. Diagnosis accuracies under different working conditions.

distribution and the geometric subspace. However, from the
perspective of feature transfer, the JGSA comprehensively
considers the geometric and statistical characteristics of the
source domain data and target domain data, and uses shared
and domain-specific features to reduce domain shift. The
samples under different working conditions are well aligned
in the statistical distribution and geometric subspace, so that
the proposed deep transfer learning has the highest accuracy
of fault diagnosis in multi-state vibration signals of rolling
bearing under variable working conditions.

Due to the randomness of the TSC, in order to prove
that the experimental results are not accidental but universal,
and also to further explore the robustness of the proposed
scheme, each experiment method is repeated 10 times, and
the box plots of six experimental schemes under six working
conditions according to the results of 10 experiments are
shown in Figure 5∼Figure 10.

FIGURE 5. Diagnosis accuracy under A/B working condition.

As can be seen from Figure 5 to Figure 8, under the
four working conditions, the lowest accuracy rate of the
TSC- JGSA in 10 experiments is still higher than those
of other comparative methods. Therefore, the experimental
results are less discrete, which shows that the TSC- JGSA
does not only have the highest accuracy in the experimen-
tal results under the four conditions, but also shows good
robustness.

FIGURE 6. Diagnosis accuracy under B/A working condition.

FIGURE 7. Diagnosis accuracy under B/C working condition.

FIGURE 8. Diagnosis accuracy under C/B working condition.

It can be seen from Figure 9 that under the working con-
dition A/C, the JGSA shows a large dispersion, including the
lowest accuracy rate than the TJM method, and the median
accuracy rate than the other two methods, namely TJM and
JDA. It shows that when the working conditions are greatly
different, that is, when the two rotating speeds are different,
the JGSA can not show strong robustness. Especially the high
speed data learns from the low speed data. The reason may be
that the data of the two speeds are quite different, and the
features can not be well aligned to reduce the distribution
domain shift and the subspace domain shift. This is also a
limitation of the scheme. How to enhance the robustness of
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FIGURE 9. Diagnosis accuracy under A/C working condition.

FIGURE 10. Diagnosis accuracy under C/A working condition in different
schemes.

the JGSA under two different working conditions is the focus
of the next research.

It can be seen from Figure 10 that the accuracy of the JGSA
is lower than that of the JDA in the 10 experiments. It is
still the robustness problem of the proposed method when the
reflected working conditions in Figure 9 are quite difficult.
However, the dispersion of the experiment results and the
median accuracy rate have been greatly improved by com-
paring the results of the previous working condition, which
is still higher than the other five comparative experimental
methods.

V. CONCLUSION AND PROSPECTS
In this paper, a new transfer learning fault diagnosis method
based on TSC and JGSA for rolling bearings under vari-
able working conditions is proposed. The TSC is used to
extract the vibration signal features of rolling bearings under
variable working conditions, so as to obtain features that
can better represent the state of rolling bearing. The JGSA
domain adaptation method is introduced to reduce the dis-
tribution domain shift and subspace domain shift simultane-
ously, and the samples under different working conditions are
well aligned statistically and geometrically to reduce sam-
ple differences between different working conditions. Com-
pared with other domain adaptationmethods and non-transfer

learning methods, the experimental results show that the pro-
posed TSC-JGSA method has higher accuracy and stronger
robustness in rolling bearing state classification under vari-
able speed.

In the next step, we will further study the domain adapta-
tion method in the transfer learning to improve the robustness
of the JGSA in the fault diagnosis under variable working
conditions, so as to better diagnose rolling bearing fault diag-
nosis under variable speed.
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