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ABSTRACT Aiming at the limitation that traditional methods for combat intention recognition of aerial
targets are difficult to effectively capture the essential characteristics of intelligence information, we design
a novel deep learning method, Panoramic Convolutional Long Short-Term Memory networks (PCLSTM),
to improve the recognition ability. First, based on the characteristics of aerial target intelligence information,
a panoramic convolutional layer is designed to extract the loosely coupled characteristics of intelligence
information, and a time series pooling layer is designed to reduce the scale of neural network parameters on a
large scale. Then, the temporal feature extraction capability of the LSTM layer and the depth feature mining
capability of the traditional deep learning layer are combined to construct the PCLSTM neural network.
Subsequently, the recognition performance of PCLSTM is analyzed by simulation experiments compared
with standard deep net, convolutional neural network and LSTM network as benchmark models. Finally,
PCLSTM was used to carry out simulation tests on different truncated data sets of original intelligence
information, to analyze the optimal length of truncated data for different combat intention recognition.
And then a reasonable aerial target combat intention recognition method is designed. The simulation results
show that the method presented in this paper has theoretical significance and reference value for command
decision-making.

INDEX TERMS Aerial targets, combat intension recognition, deep learning, panoramic convolutional long
short-term memory neural network.

I. INTRODUCTION
Recognition for combat intention of enemy aerial targets is an
important prerequisite to modern air combat command deci-
sion, which directly determines the outcome of air combat
and even the whole campaign [1]. With the continuous devel-
opment of military science and technology, the complexity
and dynamic characteristics of modern battlefield increase
dramatically. Faced with the vast and complicated battle-
field information, it becomes very difficult for commanders
to quickly and accurately recognize enemy’s combat inten-
sion, especially to the aerial targets of large-scale systematic
confrontation [2]. Therefore, the construction of computer
combat assistance support system to improve the accuracy
and speed of air target combat intention recognition, has
gradually become one of the research hotspots in modern air
combat.
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Combat intention recognition tasks on aerial targets time
series are notoriously difficult, primarily driven by the high
degree of noise and the operational art of the commander [3].
Yet, combat intention of an aerial target is always closely
related to its equipment performance and the combat mission
to be carried out. That is to say, it is possible to extract
the typical characteristics of aerial targets from the chaotic
intelligence information, and then recognize their combat
intentions. The existing research methods of targets intention
recognition mainly include template matching method [4],
expert systemmethod [5]–[7], decision tree [8], [9], Bayesian
network [10]–[12] and neural network [13]–[15]. Floyd et al.
[4] applies the template matching method to combat intention
recognition in beyond-visual-range air combat. Ben-Bassat
and Freedy [5] evaluates military situation by integrating
knowledge requirements and management into expert deci-
sion support systems. In response to the rapid iteration of
expert knowledge in military issues, Carling [6] designed a
real-time expert system to assess naval combat situations.
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Zhou et al. [7] modified the expert system to accommo-
date combat intention recognition problems with insuffi-
cient expert knowledge. In decision tree, Niu et al. [8] has
applied it to the study of intention recognition of naval vessel.
By integrating information entropy into the decision tree,
Zhou et al. [9] improved the effectiveness of combat intention
recognition of aerial targets. Considering the advantage of
Bayesian network which is easy to calculate, Jin et al. [10]
tries to use it to solve the problem of intension recognition of
aerial targets. Chen and Wu [11] designed a layered inten-
tion model to represent the uncertain elements relating to
adversarial intention and their uncertain relations in naval
battlefield domain. In order to verify the effectiveness of
Bayesian algorithm, Xu et al. [12] used ACMI measured
data to assess situation of the beyond-visual-range air com-
bat. However, with the increasing complexity of battlefield
environment and the emergence of new combat platforms and
combat styles, it is more difficult for field experts to grasp
the mapping relationship between target information char-
acteristics and combat intention in a short time. Therefore,
the above methods are not able to capture complex non-linear
dependencies between intelligence information and combat
intension.

Aiming at the above limitations, researchers introduce
neural network into the field of target intention recognition.
Ahmed andMohammed [13] designed fuzzy min-max neural
network to automatically extract features and rules from train-
ing data, andmemorized recognition rules in networkweights
for later intention prediction. By introducing Rectified Lin-
ear Unit (ReLU) activation function and adaptive torque
estimation (Adam) optimization algorithm, Zhou et al. [14]
designed a combat intention recognition model based on
deep neural network, which can improve the convergence
speed of the model and effectively prevent it from falling
into local optimum. In fact, the mission implementation of
air targets is determined by a set of dynamic changes, one
part of which is contained in the static information, and the
other part is contained in the change of timing information.
Obviously, the maneuverability of an airplane is a typical
example of how difficult it is to describe static information
at a certain moment. Unfortunately, none of the above neural
networks has effectively considered the timing characteris-
tics of the target intelligence information. Although there is
no literature on identifying combat intention of air targets
through timing sequence information at this stage, the deep
learning method has made good achievements in detecting
and identifying high-speed trains. For example, Yao et al. [15]
presents intelligent inspection model for exterior substance
inspection.

In order to effectively recognize the combat intention of
aerial targets, we design the following strategies based on
the characteristics of aerial targets intelligence information.
1) According to the smooth transition characteristics of the
time dimension, time series pooling is carried out to reduce
the parameter scale of the neural network in a large scale.
2) According to the loose coupling of feature dimensions,

panoramic convolution operation of all feature dimensions is
carried out to abstract the essential features of information.
3) According to the characteristics of the temporal progres-
sion of intelligence information, Long Short-Term Memory
net is used to obtain useful information between the temporal
sequences. On the basis of the above strategy, combined with
Adam optimization algorithm and Sigmoid activation func-
tion, Panoramic Convolutional Long Short-Term Memory
Neural Network is construct to recognize combat intention
of aerial targets.

The remainder of this paper is organized as follows.
Section 2 briefly covers the data sample, software packages,
and hardware. Section 3 introduce deep learning models and
compare our model architectures, including the generation of
training and trading sets, the construction of input sequences,
the model architecture and training as well as the classifying
steps. Section 4 presents the results and discusses our most
relevant findings in light of the existing literature. Finally,
Section 5 concludes.

II. DATA, SOFTWARE, HARDWARE
A. CHARACTERISTIC VARIABLES
For the empirical application, we construct our aerial targets
combat intension database according to the actual character-
istics of the air combat data from radar station. The infor-
mation data of aerial target includes two parts, numerical
characteristic data and non-numerical characteristic data. The
numerical characteristic data includes azimuth angle, dis-
tance, heading angle, velocity and height of the aerial tar-
gets relative to our side. The non-numerical characteristic
data includes air-to-air radar status, air-to-surface radar sta-
tus, electronic-jamming status, level of Radar Cross-Section
(RCS) and so on. To air-to-air radar status, 1 indicates that
the target is using radar to search for airborne targets or to
guide air-to-air missiles and 0 means that this status is not
occurred. Air-to-surface radar status is similar to air-to-air
radar status, with 1 indicating that the target is searching
the ground and the sea surface, and 0 indicating that this
status has not occurred. 1 in the electronic-jamming status
means that the target is using related equipment to carry out
the electronic jamming task. To level of RCS, 1 represents
stealth aircraft whose RCS always below 1, 2 represents
medium aircraft whose RCS is always between 1 and 10, and
3 represents large aircraft whose RCS is above 10. A set of
aerial target intelligence data is proposed in this paper, with
specifics shown in Table 1 and Table 2.

Let I s =
(
I si,j
)
i∈N ,j∈T

be defined as the time series infor-

mation of aerial target s, and I si,j means information of the
j-th dimension for the s-th aerial target at time i. Set N is
determined by the dimension of aerial targets intelligence
information, denote as N = {1, 2, . . . j, . . . n}. There are
9 types of aerial targets intelligence information in this paper,
that is to say, n is 9 here. The time set T is determined
by the time length of the acquired aerial target intelligence
information, or the shortest combat intention recognition time
after finding the target, we denote it as T = {1, 2, . . . i, . . .m}.
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TABLE 1. A set of numerical air target intelligence data.

TABLE 2. A set of non-numerical air target intelligence data.

Due to the difference ofmeasurement units, the distribution
range of the original characteristics of aerial targets intel-
ligence information is often very different. Features with
a wide range of values play a leading role, so the core
features cannot be accurately obtained from the raw data.
Therefore, data preprocessing is needed to reduce the impact
of data dimensional differences and improve the conver-
gence efficiency of the network. In this paper, the maximum-
minimum standardized model is adopted to normalize 9 types
of attribute data such as azimuth, distance, heading angle,
velocity, height, air-to-air radar state, air-to-surface radar
state, disturbing state and level of RCS.

By mapping to the interval of [0,1], information about row
data in the i-th dimension, X ri =

[
xri,1, x

r
i,2, . . . x

r
i,j, . . . x

r
i,m

]
,

(i = 1, 2, . . . , 9, m is the dimension of time set T ), is normal-
ized to Xi =

[
xi,1, xi,2, . . . xi,j, . . . xi,m

]
, which is obtained as

follows,

xi,j =
xri,j −min

j
xri,j

max
j
xri,j −min

j
xri,j

(1)

in which max
j
xri,j, min

j
xri,j respectively denotes the maximum,

minimum value of the ith row data X ri .

B. SOFTWARE AND HARDWARE
Data preparation and handling is entirely conducted in Python
3.7.0, relying on the packages numpy 1.18.1 and pandas. Our
deep learning networks are developed with Google Tensor-
Flow 2.0.0, a powerful library for large-scale machine learn-
ing on heterogenous systems. The deep learning networks are
trained on NVIDIA GPUs, all other models are trained on a
CPU cluster.

III. MODEL
This section consists of three steps. First, we split our raw data
in study periods, composed of training sets (for in-sample
training) and trading sets (for out-of-sample classifications).
Second, we design a novel deep learning model, named
Panoramic Convolutional Long Short-Term Memory Neu-
ral Network (PCLSTM), for combat intension recognition
of aerial targets. Third, we briefly describe the deep net,
Convolutional Neural Network and LSTM model we apply.

A. TRAINING AND TESTING SETS
We divide the raw data set into two complementary parts
randomly. The first part is training and verification set,
accounting for 80% of the raw data set. Training and verifica-
tion set is used for training and adjusting relevant parameters
of neural network. The remaining part is testing set, which is
used to verify the algorithm performance.

On the basis of the above separation, the training and
verification set is further divided into two complementary
subsets for each other, the training set and the verification
set. Training subset, which accounting for 80% of training
and verification set, is used to train neural network param-
eters. The rest of the data used to adjust the neural network
hyperparameters is validation subsets.

B. RESPONSE VARIABLES
Depending on the difference of combat response strategy,
combat intention of aerial target can be preliminarily denoted
as 8 categories, such as penetration, attack, jamming, trans-
portation, refueling, Airborne Warning and control system
(AWACS), Scout and civil flight. Therefore, we can solve
the problem of combat intention recognition of aerial targets
by defining an eight-category classification problem. i.e., the
response variable Ys,t+1 for each time series s and time t
can take on eight different probability values, and the combat
intension corresponds to the maximum probability means the
aerial target.

C. MODEL OF PCLSTM NEURAL NETWORK
According to the characteristics of aerial target intelligence
information, we designed the Panoramic Convolutional Layer
to extract the loosely coupled characteristics of intelligence
information, Time Series Pooling Layer to reduce the param-
eter scale of neural network. Combined with LSTM layer,
batch normalization layer, soft max layer, Adam optimiza-
tion algorithm and sigmoid activation function, Panoramic
Convolutional Long Short-Term Memory Neural Network
is constructed to recognize the combat intention of aerial
targets.

1) PANORAMIC CONVOLUTIONAL LAYER
In the deep learning problem of static image, the relation-
ship between pixels in the image is closely related to their
distance. The closer the pixels are, the higher the correlation
is. Therefore, convolution kernel can be used in typical static
image recognition problems to explore the feature informa-
tion in the small receptive field. However, when it comes
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FIGURE 1. Schematic of aerial targets intelligence information.

to the recognition of aerial targets combat intention, there
is no fixed position relationship between the nine types of
typical information. That is to say, although there is a cer-
tain coupling between each type of aerial targets intelligence
information, it presents obvious characteristics of loose cou-
pling. At the same time, the air target intelligence information
is a data whose length is much larger than the width, the
traditional convolutional neural network layer is difficult to
capture data characteristics effectively.

In order to obtain the essential characteristics of aerial
targets intelligence information effectively, we designed a
panoramic convolutional layer. In a small range of time,
the panoramic convolution kernel acquires the essential char-
acteristics of the temporal receptive field by covering all
dimensional information. For a set of information with time
length t and information dimension n, it can be denoted as
X =

(
xi,j
)
i∈{1,2,...,n},j∈{1,2,...,t} and expressed as Fig. 1.

According to the dimension of the aerial target informa-
tion, the convolution kernel which can cover all the informa-
tion dimensions is designed, and then slide through the time
dimension to obtain the feature information. Assuming that
the input dimension of the first layer (or the output of the
previous layer) is n times t , then the panoramic convolution
kernel can be designed as W pc

=
(
wi,j

)
i∈{1,2,...,n},j∈{1,2,...,k},

in which n is the characteristic dimension of input informa-
tion, and k is the width of convolution kernel. In general,
width of convolution kernel k is much less than the time
length t , so that the convolution kernel may slide on the input
information matrix.

Correspondingly, the shared bias of panoramic convolution
layer is denoted as bpc. Using the panoramic convolution
kernel to slide in the time dimension, the output of panoramic
convolution can be obtained. Panoramic convolution is cal-
culated in the same way as a typical convolutional neural
network, that is, the corresponding elements are multiplied,
and then summed. For input information X at time l, its
panoramic convolution output is:

ol = bpc +
n∑
i=1

k∑
j=1

wi,j · xi,j+l (2)

By designing multiple panoramic convolution kernels,
the essential features of input information can be extracted
in many aspects, and the output feature under multiple map-
pings can be obtained. The schematic diagram of panoramic
convolutional layer is shown in Fig. 2.

FIGURE 2. Schematic of panoramic convolution operation.

It can be seen that the training parameters of the panoramic
convolutional layer are jointly determined by the character-
istic dimension of input information ni, the characteristic
dimension of output information no and the width of the
panoramic convolutional kernel nh. The number of train-
ing parameters of a panoramic convolutional layer can be
calculated as follows,

npc = ni × nh × no + 1 (3)

2) TIME SERIES POOLING LAYER
For a typical convolutional neural network, the pooling opera-
tion is to simplify the information in the fixed pooling field by
obtaining the maximum or average value. Because the aerial
targets information does not have obvious position relation
in the characteristic dimension, and shows obvious smooth
change characteristic in the time dimension, the traditional
pooling operation is not suitable for the aerial targets combat
intention recognition. Therefore, we design a time series
pooling strategy for discrete data characteristics. On the one
hand, time series pooling retains information of every fea-
ture by performing on each feature dimension. Considering
the smooth change of time series information, the partially
overlapping view sliding is adopted to simplify information
on time dimension. The value of time series pooling is taken
as the average of the information on the pooling field of
vision. The schematic diagram of average time series pooling
is shown in Fig. 3.

3) LSTM LAYER
LSTMs have been introduced byHochreiter and Schmidhuber
in [16], and then were further refined in the following years
in [17], [18]. It belongs to the class of recurrent neural
networks (RNNs), i.e., neural networks whose ‘‘underlying
topology of inter-neuronal connections contains at least one
cycle’’. LSTM networks are specifically designed to learn
long-term dependencies and are capable of overcoming the
previously inherent problems of RNNs, i.e., vanishing and
exploding gradients in [19].

LSTM networks are composed of an input layer, one or
more hidden layers, and an output layer. The number of
neurons in the input layer is equal to the number of explana-
tory variables (feature space). The number of neurons in the
output layer reflects the output space, i.e., eight neurons in
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FIGURE 3. Schematic diagram of average time series pooling.

FIGURE 4. Architecture of typical LSTM memory cell.

our case mapping eight types of combat intention. The main
characteristic of LSTM networks is contained in the hidden
layer(s) consisting of memory cells.

Structure of typical LSTMmemory cell is shown as Fig. 4,
in which ct−1 means the memory cell states at time step t − 1,
ct means the cell states at time step t , c̃t is the candidate values
at time step t , ht−1 is output vector of memory cell at time
step t-1, ht is output value of memory cell at time step t , xt
is vector of input sequence at time step t , and ft is the forget
gate, it is the input gate, ot is the output gate.

As we can see, an LSTM cell contains three gates inside,
forget gate ft , input gate it , and output gate ot . The design
of gating mechanism can control the path of information
transmission. The value of ‘‘gate’’ control is between (0, 1),
indicating that the proportion of information could pass
through.

The forget gate ft defines which information is removed
from the cell state ct−1.

ft = σ
(
Wf xt + Uf ht−1 + bf

)
(4)

in which Wf , Uf , bf are respectively input weight matrics,
recurrent weight matrics, bias vector for forget gate, and σ (·)
is Logistic function.

The input gate it specifies which information is added to
the cell state.

it = σ (Wixt + Uiht−1 + bi) (5)

in which Wi, Ui, bi are respectively input weight matrics,
recurrent weight matrics, bias vector for input gate.

TABLE 3. Training parameters of LSTM layer.

The output gate ot specifies which information from the
cell state is used as output.

ot = σ (Woxt + Uoht−1 + bo) (6)

in which Wo, Uo, bo are respectively input weight matrics,
recurrent weight matrics, bias vector for output gate.

In order to reduce the input information loss caused by
single activation function, candidate state c̃t is designed to
improve the information acquisition ability of the input gate.
The calculation formula of candidate states is as follows,

c̃t = tanh (Wcxt + Ucht−1 + bc) (7)

in which Wc, Uc, bc are respectively input weight matrics,
recurrent weight matrics, bias vector into the LSTM cell.

By integrating forgetting gate information ft , input gate
information it and candidate state information c̃t , LSTM
memory cell states ct can be obtained as follows,

ct = ft � ct−1 + it � c̃t (8)

in which � is the Hadamard (elementwise) product.
Then, output value is obtained by synthesizing input gate

value it and memory cell states ct .

ht = ot � tanh (ct) (9)

To the entire LSTM layer, its input information contains
input sequence X =

{
x1, x2, . . . xt , . . . , xni

}
, initial memory

cell states c0, initial output value of memory cell h0. The
input sequence is determined by the output of the previous
layer. Initial memory cell states c0 and initial output value of
memory cell h0 is obtained by random generation.
To sum up, training parameters for the LSTM layer include

input weight matrics, recurrent weight matrics, bias vector for
forget gate, input gate, output gate and memory cell. All the
training parameters of LSTM layer are shown as Table 3.

The number of weights and bias terms being trained is
calculated as follows, let nc denote the number of memory
cell of the LSTM layer, and ni the number of input features,
then the number of parameters of the LSTM layer that needs
to be trained is,

nls = 4 (nh × ni + nh + nh × nh) (10)

Hereby nh×ni refers to the dimensions of the input weight
matrices, nh refers to the dimensions of the bias vectors,
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FIGURE 5. Architecture of panoramic convolutional module.

nh × nh corresponds to the dimensions of the recurrent
weight matrices. Since the input weight matrix, cycle weight
matrix and bias vector dimensions of the four gates are the
same, the total number of training parameters is 4 times of
nh × ni + nh + nh × nh.

4) ARCHITECTURE OF PCLSTM NEURAL NETWORK
Based on the design of panoramic convolutional layer, time
series pooling layer and LSTM layer, Panoramic Convolution
Long-Short time memory network for aerial targets com-
bat intention recognition is construct by combining typical
network layers and related functions of deep learning. The
functional modules of PCLSTM mainly include panoramic
convolution module, LSTMmodule and fully connected out-
put module.

The panoramic convolution module aims to explore the
essential characteristics of data information at feature dimen-
sion. On the basis of panoramic convolution layer and time
series pooling layer, batch standardization layer, ReLU acti-
vation layer and Dropout layer are added to improve its
deep learning performance. And the panoramic convolution
module is built with panoramic convolutional layer, batch
standardization layer, activation layer, timing pooling layer
andDropout layer in sequence. The architecture of panoramic
convolutional module is shown in Fig. 5.

The LSTMmodule aims to explore the essential character-
istics of data information at time dimension. On the basis of
LSTM layer, LSTM module improves deep learning ability
by stacking dropout layers. LSTM modules are built in the
order of LSTM layer and Dropout Layer.

The fully connected output layer aims to transform feature
information into the dimension of output classification. And
It is formed by stacking the full connection layer and the
softmax layer in turn.

According to the specific requirements of aerial target
intention recognition, the Panoramic Convolutional LSTM
neural network is formed by stacking 4 panoramic convo-
lution modules, 2 LSTM modules and 1 fully connected
module. The architecture of PCLSTM is shown in Fig. 6.

D. BENCHMARK MODELS
For benchmarking the PCLSTM, we choose a standard deep
net, i.e., a standard classifier as baseline, a Convolutional
Neural Network, i.e., to compare time-domain analysis capa-
bilities with PCLSTM, and a LSTM, i.e., for showing the
advantage of PCLSTM.

1) STANDARD DEEP NET
We deploy a standard deep neural network to be a standard
classifier as baseline, we use a feed forward neural network
with 9 input neurons, 10 neurons in the first, 20 in the second,
20 in the third hidden layer, and 8 neurons in the output layer.

FIGURE 6. Architecture of PCLSTM.

The activation function is ReLU, and softmax in the output
layer – see ZHOU et al. for further details in [14].

2) CONVOLUTIONAL NEURAL NETWORK
The convolutional neural network is the most successful deep
learning model. Therefore, it is selected as one of the bench-
mark models. It is well known that aerial targets intelligence
information is composed of multiple time-series data with
different characteristics. If we treat the data of each feature
dimension on each timestamp as a pixel, the aerial targets
intelligence information can be turned into a picture. And the
height of the picture is equal to the dimension of characteris-
tic, and the width of the picture is equal to the dimension of
time. Therefore, standard convolutional neural networks can
be used for classification, architecture and further details of
standard convolutional neural networks can be seen in Lecun
and Bottou [20].

The convolutional neural network is composed of three
convolution modules and three fully connected modules. The
convolution module is composed of the convolution layer,
batch standardization layer, sigmoid activation layer, pooling
layer and dropout layer. The fully connected module consists
of the fully connected layer, softmax layer and dropout layer
stacked one by one. The last fully connected module, which
is the output module, only contains fully connected layer
and softmax activation layer. The architecture diagram of
convolutional neural network is shown as Fig. 7.

3) LONG SHORT-TERM MEMORY NETWORK
Note that standard deep net and convolutional neural network
are both memory-free methods, we choose LSTM as the
benchmark model to show the advantage of PCLSTM.

LSTM network is stacked successively with LSTM Layer,
dropout layer, fully connected layer, softmax layer, and the
optimizer is RMSprop – see Thomas et al. for further details
in [21].

IV. SIMULATION AND ANALYSIS
Our results are presented in three stages. First, we analyze the
original intelligence information of aerial targets for combat
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TABLE 4. Confusion matrix instance for a eight-class problem.

FIGURE 7. Architecture of CNN.

TABLE 5. Outcome labels of confusion matrix for two-class problem.

intention recognition, and contrast the performance of the
LSTM network against the standard deep net, convolutional
neural network, and the LSTM. Second, in order to find a
more reasonable time span of aerial targets combat intention
data, we truncate the original data to obtain the intelligence
data with different length.

A. EVALUATION METRICS
To evaluate the performance of our proposed PCLSTMmodel
on aerial targets combat intention recognition, Error Rate
(ER), Accuracy Rate (AR) and Recall Rate (RR) are applied
to estimate the classification performance.

To better understand the above evaluation metrics, confu-
sion matrix is introduced first. A confusion matrix instance
for an eight-class problem involving predicting aerial targets
combat intension is shown in table 4.

In the previous eight-class problem, confusion matrix can
be viewed as two-class problem by packaging all classes
other than one class into others. To each combat intension,
such as invasion, the outcome labels of packaging two-class
confusion matrix is given in Table 5. If we correctly classify
invasion, it’s called a True Positive (TP), and it’s called a
False Negative (FN) when we classify invasion as others.
On the contrary, if we misclassify something as invasion, it’s
outcome label called False Positive (FP), and the rest of the
case is called Ture Negative (FN).

On the basis of confusion matrix, ER, AR and RR can
be expressed simply. Error Rate is defined as the number of
misclassifications divided by the number of test executions,
which can be expressed as follows,

ER = 1−

nclass∑
i=1

TPi

ntotal
(11)

in which nclass is the number of combat intension type, TPi
is the number of True Positive for the ith type of combat
intension, ntotal is the total number of instances tested.
AR tells us the fraction of records that were positive from

the group that the classifier predicted to be positive,

AR =
TP

TP+ FP
(12)

Recall rate measures the fraction of positive examples the
classifier got right.

RR =
TP

TP+ FN
(13)

The error rate is used to evaluate the performance of the
classifier over the entire aerial targets combat intention recog-
nition data set. The accuracy rate and recall rate are more
concerned with one or more combat intentions in the classi-
fication problem. Because accuracy rate pays more attention
to the proportion of true positive value, it is more applicable
to the combat intention that poses little threat to us but our
countermeasures cost more. Recall rate is more concerned
with recognizing the proportion of such intentions, it is more
applicable to the combat intention which poses more threat to
us.

The larger the AR index is, the better the model
performance will be, while the smaller the ER and RR index
is, the better the model performance will be. In order to
facilitate the performance result demonstration in the follow-
ing text, we design reverse-accuracy rate (R-Acc), it can be
calculated as follows,

R− Acc = 1− AR (14)

B. MODEL EVALUTION
In this subsection, hyperparameters of PCLSTM are designed
through simulation experiment. Then, the performance of
PCLSTM network designed in this paper is verified by com-
paring with standard deep network, standard convolutional
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TABLE 6. Minimum error rate on validation set (Epoch = 50).

TABLE 7. Minimum error rate on validation set (Epoch = 100).

neural network and LSTM network on the aerial targets com-
bat intention recognition data set. Due to the confidentiality
of the information, there is no public data set for aerial target
intelligence data, so we use the data collected by ourselves
for analysis. The basic information of our aerial target intelli-
gence data is as same as described in Section II. Subsection A.
Data, data set with 8,000 time-series data are obtained by
normalizing the raw data. And then we can get training sub-
set, verification subset and testing subset through the subset
partitioning method described in Section III. Subsection A.
Training and testing sets.

1) EXPERIMENTAL DESIGN
Hyperparameters have great influence on the classification
performance of neural networks. Therefore, the relevant
hyperparameters of PCLSTM neural network are optimized
to obtain better recognition performance of aerial targets
combat intention. Hyperparameters of PCLSTM neural net-
work mainly include epoch ne, batch size nb, learning rate lr,
dropout probability p of each layer, and hyperparameters in
Adam algorithm, such as exponential decay rate of first order
moment estimation β1, exponential decay rate of the second
moment estimation β2. According to the design experience
of neural network, hyperparameters β1 of Adam optimization
algorithm is set as 0.9 and β2 as 0.99. To dropout probability,
we set input unit dropout probability as 0.8 and hidden unit
dropout probability p as 0.5.
That is to say, the hyperparameters that are difficult to

set directly include epochs, batch size and learning rate lr.
According to the design experience of deep neural network,
the alternative set of three hyperparameters was set as ne =
{50, 100}, nb = {8, 16, 32} and lr = {0.01, 0.05, 0.1}.
Since hyperparameters optimization is mainly aimed at the
overall performance of the classifier PCLSTM, the error rate
ER is used to evaluate the classification and recognition
performance of each group of hyperparameters in the test set
and verification set. The error rate of the optimal verification
set obtained by each group of hyperparameters is shown
in Table 6 and Table 7.

It can be seen that, the best classification performance is
for parameters ne = 50, nb = 16 and lr = 0.1, namely
2.87%. The evolution curve of PCLSTM with previous
hyperparameter combination is shown in Fig. 8.

FIGURE 8. Error Rate of PCLSTM on validation data set and training data
set with hyperparameter epoch = 50, batch size = 16 and lr = 0.1.

TABLE 8. Hyperparameters of PCLSTM.

Combined with the relevant hyperparameters setting
according to experience above, hyperparameters of PCLSTM
are set as follows in Table 8.

2) PERFORMANCE ANALYSIS OF PCLSTM
When recognizing the combat intention of aerial targets,
we should not only care about the classification performance
of the classifier on the whole data set (judged by the error
rate), but also make targeted evaluations according to the
particularity of some combat intentions. To aerial targets
threat us more, such as penetration and attack, recall rates are
more focused on unrecognized threats to improve our combat
response capability. And the accuracy rate is more important
for civil aviation flight, so as to avoid the accidental attack
and injury of civil aviation flight as much as possible.

Considering the large amount of randomness in neural
network, we take several independent simulation experiments
to improve the objectivity of the type performance test.
However, neural network analysis requires a large amount of
computational cost, so the number of independent simulation
tests is often not very large. Since there is no published
data set, it is difficult to make a direct comparison with
existing literature on the same data set. Therefore, we take
the method of the existing typical literature as the benchmark
model and make a comparative analysis with PCLSTM on
the data set we collected. Further details of standard deep
network, standard CNN and LSTM can be seen in Section III.
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FIGURE 9. Performance of four networks in different evaluation metrics.

Subsection D. benchmark models. According to the com-
putational cost of each neural networks in this paper, 10
independent simulation tests are conducted for each neural
network. Performance of PCLSTM, standard deep network,
standard CNN and LSTM are shown in Fig. 9.

Simulation results show that, PCLSTM has the optimal
ER on the overall data set, and it reduces the error rate by
about half than the other classifiers. Moreover, PCLSTM
has a lower recall rate in the recognition accuracy rate of
penetration and attack. Recall rate of penetration is reduced
more than 20%, and attack 40%. In terms of the accuracy rate
of civil flying, PCLSTM also has a better recognition perfor-
mance. The accuracy rate of PCLSTM is 1.32% higher than
CNN, which is the second-best classifier. The improvement
of the accuracy rate will effectively reduce the mis-hit and
mis-hurt to civilian aircraft, and better safeguard the safety of
people’s lives in the face of enemy threats.

To sum up, PCLSTM classifier not only has better perfor-
mance on the error rate of overall recognition, but also has
a good performance in specific combat intention recognition
such as penetration, attack, civil flying and so on.

C. OPTIMIZATION OF DATA LENGTH TRUNCATION
The previous recognition of aerial targets combat intention
are all based on the complete data acquiring from aerial tar-
gets. However, in the process of carrying out the aerial targets

combat intention recognition mission, it is not expected to
analyze after obtaining the full-time data. When the aerial
target enters radar coverage area, combat intention should
be recognized with as little data as possible. In other words,
aerial target combat intention is expected to be effectively
recognized within a short time range. Therefore, this subsec-
tion intends to truncate the intelligence information data into
different lengths, and select the optimal data length truncation
for combat intention recognition by comparing performance
of truncated intelligence data with different length.

1) DATA TRUNCATION
Without loss of generality, it is assumed that the data length
after truncation is t1. The way of data truncation is as fol-
lows. For each piece of data in the original data set, the t1
length fragment is truncated in a random way. The truncated
data is put into the new dataset, and the remaining two data
fragments are returned to the original dataset. The above
truncation is repeated on the original data set until the length
of the remaining data fragments in the original data set are
all less than t1. Thus, the truncated data set of t1 length is
obtained.

2) SIMULATION TEST
In order to compare the combat intention recognition capa-
bility of different duration data, we set the truncated length
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FIGURE 10. Error rate on each truncated data set.

FIGURE 11. Recall rate for penetration on each truncated data set.

as 1/10, 1/7, 1/5, 1/3, 1/2 and 2/3 of the original data length
respectively, and denote them as t1, t2, t3, t4, t5 and t6. The
number of data in the truncated data set obtained by differ-
ent truncation duration is different. In a random simulation
test, the sizes of each truncated data set are 58,462, 41,973,
30,868, 20,023, 8,000 and 8,000, and the corresponding time
lengths are t1, t2, t3, t4, t5 and t6 respectively.
According to the training set and test set allocation method

introduced in Section III. subsection A. training and testing
sets, randomly select 80% of each truncated data set as its
training set. And then train the PCLSTM network with hyper-
parameters in Table 8. After the trained PCLSTM neural
network is obtained, simulation experiments are carried out
on each truncated test sets respectively. The performance
results on each truncated test sets are shown in Fig. 10, 11,
12 and 13 in terms of the overall error rate, recall rate of
penetration, recall rate of attack, Accuracy rate of civil flying
respectively.

According to Fig. 10, the error rate first decreases and
then increases with the growth of truncation time. The low-
est rate of recognition error occurs at 1/5 of the original
length. To recall rate of penetration, the curve shows a trend
of first decreasing and then increasing in Fig. 11, and the
lowest recall rate occurs at 1/5 of the original data. As shown
in Fig. 12, recall rate of attack is very similar to penetration.
To accuracy rate (or reverse accuracy rate) of civil flying,
the curve in Fig. 13 shows a trend of first decreasing, then a

FIGURE 12. Recall rate for attack on each truncated data set.

FIGURE 13. Reverse Accuracy rate for civil flying on each truncated data
set.

small increase, and then continued to fall down. The optimal
reverse accuracy rate of civil flying is the test based on the
original data set.

The recognition performance of classifier is closely related
to the size of data set and the information amount of a
single truncated data. As the size of the data set decreases,
the recognition performance gradually decreases. At the same
time, the recognition performance will continuously improve
with the growth of truncation time. Therefore, the overall
recognition performance is bound to increase first and then
decrease, which is mutually verified with the results of our
simulation test.

According to the classifier recognition performance trend
obtained above, the overall error rate, recall rate of penetra-
tion and attack all show the optimal performance at t3, and
accuracy rate of civil flying shows good performance at data
sets more than 1/3 of the original data set. By sorting the
optimal data duration for different combat intentions, the fol-
lowing combat intention recognition method is designed.
The aerial targets combat intention recognition is carried out
with two truncated length, t3 and t4 respectively. When the
aerial target is detected after t3, the first combat intention
recognition is carried out, and countermeasures are directly
implemented for penetration and attack. To other combat
intensions, we should prepare the corresponding countermea-
sures, but not carry out countermeasures for the time being.
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And then, comprehensive judgment should be made based on
the secondary recognition results on truncated data set of t4.
If it is recognized as civil flying by secondary recognition,
the aerial target combat intension is determined as civil flying.
If it is not recognized as civil flight, the combat intention is
determined according to the recognition result on t3 truncated
data set.

V. CONCLUSION
In view of the important role of aerial targets combat intention
recognition in modern air combat, we design a novel deep
learning method to improve the recognition ability. Firstly,
the panoramic convolutional layer, time series pooling layer
and LSTM layer are designed according to the characteristics
of aerial targets intelligence information. Then the Panoramic
Convolution LSTM neural network is constructed by stack-
ing panoramic convolution module, LSTM module and fully
connected output module. On this basis, simulation test is
carried out with performance comparison indexes error rate of
overall data set, recall rate of penetration, recall rate of attack
and accuracy rate of civil flying. In the simulation experi-
ment, benchmark models include standard deep net, standard
convolutional neural network and LSTM neural network.

Simulation results show that, PCLSTM not only has the
optimal error rate, but also has obvious advantages in criti-
cal combat intention recognition than any other benchmark
models. Therefore, the PCLSTM designed in this paper can
better complete the task of aerial target combat intention
recognition.

In terms of truncation length optimization of intelligence
information, we compare and analyze the performance of
several combat intentions on each truncation data sets, and
design the following countermeasures. First, determine the
combat intention of penetration and attack within 1/5 of
the cut-off time, and take corresponding countermeasures
directly. And the rest of the combat intentions can only be
used as references to prepare corresponding countermea-
sures, but not to carry out counter-strikes for the time being.
Third, determine the combat intention (other than penetration
and attack) within 1/3 of the cut-off time. If it is recognized
as civil flying in this step, the aerial target combat intension
is determined as civil flying. If it is not recognized as civil
flight, the combat intention is determined according to the
recognition result in first step.

In conclusion, we successfully design the PCLSTM
classifier which has great advantage for recognition of aerial
targets combat intention. Moreover, the specific determina-
tion methods for different combat intentions are obtained by
optimizing the truncation data length. It is of great signifi-
cance to improve the recognition ability of aerial targets com-
bat intention, and has theoretical significance and reference
value for command decision.
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