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ABSTRACT The ubiquitous deployment of smart wearable devices brings promises for an effective
implementation of various healthcare applications in our everyday living environments. However, given that
these applications ask for accurate and reliable sensing results of vital signs, there is a need to understand
the accuracy of commercial-off-the-shelf wearable devices’ healthcare sensing components (e.g., heart rate
sensors). This work presents a thorough investigation on the accuracy of heart rate sensors equipped on three
different widely used smartwatch platforms. We show that heart rate readings can easily diverge from the
ground truth when users are actively moving. Moreover, we show that the accelerometer is not an effective
secondary sensing modality of predicting the accuracy of such smartwatch-embedded sensors. Instead,
we show that the photoplethysmography (PPG) sensor’s light intensity readings are an plausible indicator
for determining the accuracy of optical sensor-based heart rate readings. Based on such observations, this
work presents a light-weight Viterbi-algorithm-based Hidden Markov Model to design a filter that identifies
reliable heart rate measurements using only the limited computational resources available on smartwatches.
Our evaluations with data collected from four participants show that the accuracy of our proposed scheme can
be as high as 98%. By enabling the smartwatch to self-filter misleading measurements from being healthcare
application inputs, we see this work as an essential module for catalyzing novel ubiquitous healthcare
applications.

INDEX TERMS Heart rate monitoring, PPG sensor, reliable healthcare sensing, smartwatch, wearable
devices.

I. INTRODUCTION

Smartwatches are now a ubiquitously deployed mobile device
and can be considered a representative form of wearable plat-
forms. Users wear smartwatches for various reasons. Some to
quickly receive the smartphone’s notification alarms, some
for fitness tracking and healthcare, and some to enjoy these
new feature while simply keeping track of time. This work
focuses on the fact that smartwatches, while not yet, hold
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the potential to act as a core components for at home and
remote healthcare applications. Specifically, given that most
smartwatches offer heart rate sensor readings they can be
used to continuously monitor critical events that may occur
to patients with various chronic cardiac disorders or even
accurately track and quantify the activity levels of patients
with maladies such as diabetes [2].

Unfortunately, unlike the hype in applying smartwatches
to clinical and healthcare protocols, even the smartwatch
vendors admit that the heart rate readings from smartwatches
are only accurate under specific conditions [3]. This work
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targets to design a subsystem that can be embedded within
a smartwatch to track the validity of the heart rate mea-
surements so that application designers can use the informa-
tion to exploit measurements with enough confidence on its
accuracy. Such a validation process is especially important
for clinical and many healthcare applications given that the
measurement accuracy leads to accurate health status analysis
and decision/suggestion making [4].

To design a simple sensing system with small form-factor,
heart rate measurements on smartwatches are usually done
using a photoplethysmography (PPG) sensor. Specifically,
PPG sensors on smartwatches use LED diodes to emit light to
the skin, and an optical sensor measures the amount of light
absorption at the veins to identify the precise times in which
the heart beat generates blood flow. Nevertheless, despite
its simplicity, accurate heart rate readings are challenging
since the sensors can be sensitive to human movements and
users wear the smartwatch in different ways. Some previous
approaches target to remove the effect of such motion arti-
facts on the sensor readings using the smartwatch-embedded
motion sensors (e.g., accelerometer/gyroscope) and a mea-
surement calibration model, but with random user move-
ments, such static approaches may not be effective enough.
Nevertheless, the interest in applying smartwatches for
healthcare applications request for some scheme to (at the
very least) suppress inaccurate readings from being used as
input to the application logic.

This work starts with a preliminary study phase in which
we test the heart rate measurements collected from smart-
watches of various manufacturers (c.f., Figure 1) with and
FDA-approved Zephyr Bioharness chest strap as the ground
truth measurements. Results from our preliminary study sug-
gest that when the user stays still the accuracy of the heart rate
measurements are very high with an error of only 1.23 bpm,
but as the user actively moves the smartwatch heart rate
measurements start to deviate from the ground truth. Based on
such observations we design a light-weight system that can be
implemented directly on smartwatches to exploit their inter-
nal sensing components to predict the accuracy of each heart
rate measurement output generated from the on-board PPG
sensor. Specifically, we exploit the variations of the reflected
LED signals from the skin captured at the photodiode, and

[ BioHarness

FIGURE 1. Three different COTS smartwatches and the ground truth
device used for heart rate measurements: (a) Apple Watch, (b) LG Urbane,
and (c) Samsung Gear S2 and (d) Zephyr BioHarness chest strap for
ground truth measurements.

VOLUME 8, 2020

use a Viterbi algorithm connected to a Hidden Markov Model
to make predictions on the accuracy of the heart rate mea-
surements. Overall our evaluations suggest that the proposed
system correctly classifies the heart rate sensor readings with
an accuracy of ~98% with ~8% false-negative ratios when
the accuracy threshold is set to 5 bpm.

Specifically, the contributions made in this work can be
summarized in three-fold.

o First, we present results on commercial-off-the-shelf
(COTS) smartwatches’ capability in measuring heart
rate under various wearing conditions to quantify the
accuracy of sensor readings. Specifically, our experi-
mental results show that the PPG sensor’s input light
reading variance plays an important role in delivering
accurate heart rate readings on mobile PPG sensors.

« Second, we propose a scheme to classify between accu-
rate and inaccurate heart rate measurements using a
Viterbi algorithm-based Hidden Markov Model. For
designing such a scheme, we gather experiences from
physicians to define tolerable heart rate measurement
errors. The scheme presented here is designed to be
light-weight so that they can be easily implemented on
smartwatches themselves.

o Lastly, we implement the proposed algorithm on a COTS
smartwatch, and present experimental results based on
real-world data collected in both indoor and outdoor
environments.

Il. BACKGROUND AND PROBLEM STATEMENT

A. BACKGROUND

1) HEART RATE MONITORING

There are two different methods that are typically used for
heart rate measurements: (1) the electrocardiogram (ECG)
signals via electric signals or (2) photoplethysmogra-
phy (PPG) samples made via optical measurements. ECG
is the most commonly used method for clinical purposes in
hospitals due to its highly accurate and reliable manner. ECG
records and amplifies an electric signal generated from heart
beats. For ECG-based heart rate measurements, lead cables
and electrodes are attached to the subject’s chest near his or
her heart. Given that ECG is captured using leads that are
connected closely to the body, depending on the connectivity
of the leads, it can be less-effected from motion artifacts.
However, the form factor of ECG sensors are inappropriate
for widely used mobile platforms. Therefore, on smartphones
or smartwatches, PPG sensing is typically used. PPG sensors
exploit LEDs that emits light to the skin and a photodiode that
captures the reflected light from the skin. This process can be
formulated by following equation [5], [6], the Beer-Lambart
law which defines the attenuation of light to the properties of
the penetrated material.

L(t) = 1I; - exp (—2;;1% Loi(t) - d,-(r)), (1

where I; is the input light intensity of PPG sensor, A is wave-
length of the light, €;_; is the reflection/absorption coefficient
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of the material (e.g., in our case, tissue of users’ skins), c is
concentrations of the material, d is the light path length, and
1, is the intensity of reflected light which the result of absorp-
tion and reflection traveling the blood flow. As we aforemen-
tioned, the photodiode captures the /, signal to measure heart
rate. The wavelength of the emitted LED on a PPG is between
500 nm to 600 nm, which represents the green-yellow region
of the visible light spectrum [7]. If the wavelength is longer
(e.g. 630nm; red light region), the reflected light intensity
becomes weaker since longer wavelengths penetrate the tis-
sue of skin deeper than shorter wavelengths. Thus, the use of
green-yellow wavelengths allows for less impact from motion
artifact compared to other light wavelengths [8].

The PPG sensor can also be designed in two ways, where
in the first the reflectance of light is utilized (as discussed
until now) and in the second we use a “‘transmission mode”’.
The difference between the two is mainly in the location
of the photodiode. When exploiting the transmission mode,
the LED and a photodiode are located at opposite sides of
the body (e.g., earlobe, finger). Thus, the photodiode reads
LED light passing through the body parts. This approach
relatively shows better results [7]. However, this approach
can only be applied to specific body parts; thus, cannot be
used in general platforms. On the other hand, when using the
light reflectance, the photodiode can be located close to the
LED and the form factor can be minimized. Unfortunately,
this approach is heavily affected by motion artifacts.
Nevertheless, since reflectance-based PPG sensors are most
widely used we focus on these devices for the remainder of
this work.

2) PPG SENSORS WITH MOTION ARTIFACTS

As aforementioned, reflectance-based PPG sensors are used
on many commercialized mobile wearable devices due to its
compact design. However, even the simplest hand gestures
can cause inaccurate sensor readings due to motion artifacts.
Specifically, such motion artifacts will impact expressions ¢
and d in Equation 1. When the location of LED and photo-
diode is moved, the concentration of material ¢ changes and
when the space between skin and both LED and photodiode
impacts d, the light path length [6]. Thus, when the user is
mobile, the photodiode is likely to read abnormally reflected
light (/) from the user’s skin. Consequently, motion artifacts
debase the quality of the PPG signal [4].

While it is difficult to completely remove motion arti-
facts or reconstruct the original PPG signals, many stud-
ies have tried to minimize the impact of motion artifacts
from wearable PPG sensors [9]-[13]. These studies exploit
physical information extracted from an accelerometer to
perform noise reduction, signal reconstruction and heart rate
estimation. We will discuss these efforts in greater detail
using Section III.

B. PROBLEMS
« Ubiquitous usage: Mobility is a major advantage
that PPG sensor-equipped wearable devices possess

184776

compared to using a static ECG monitor. It is known
that 45% of users bought a smartwatch to use as activ-
ity trackers [14] as a way to exploit such advantages.
Furthermore, a wearable device can offer heart rate mea-
surements in a miniature form-factor, and mobile device
manufacturers even produce earbuds which can monitor
the user’s heart rate using the PPG sensor. However,
paradoxically, PPG sensors cannot assure high reading
reliability due to the user’s mobility. We will futher
formulate this problem through our preliminary study
(Section 1V).

« Inapplicable measurement reconstruction: There
have been a number of previous studies that propose
PPG signal and heart rate estimation reconstruction.
These works showed the feasibility of heart rate
reconstruction and achieved reasonable performance.
However, we note that clinical sensor signal noise reduc-
tion and reconstruction can cause negative implications
to clinical diagnose; thus, cannot be directly used for
clinical use. Rather, simply identifying what samples are
right an what are wrong can give more practical feedback
to the clinical personnel [15].

o Healthcare application design: Wearable devices have
hardly been considered as clinical-grade devices due to
the unreliable performance of PPG sensors under motion
artifacts. Nevertheless, wearable devices with PPG sen-
sors still hold the potential to be used as clinical devices
because of their mobility. For example, in hospitals, fin-
gertip PPG sensors are attached to patients’ finger to col-
lect pulse rate and SpO; blood oxygen saturation from
a bedside monitoring system. Wearable devices are also
attached to users’ skin so they also can work similarly
like fingertips connected to bedside monitoring system.
For example, Apple designed an arrhythmia detection
application for the Apple watch using a PPG and ECG
sensor, respectively [16]. Even though wearable devices
have such potentials, developing clinical applications
(e.g., monitoring heart arrhythmia) is not easy if the
wearable device cannot assure the reliability of heart
rate readings. Thus, there is a need to at the very least
identify which measurements are accurate (or reliable)
and which are not.

Ill. RELATED WORK

Previous studies have examined how to handle the impact of
motion artifacts on the PPG sensor installed in wrist-worn
devices. Most of these previous work employed various sig-
nal processing algorithms to reconstruct abnormal raw PPG
sensor signals and also try to estimate the heart rate from the
reconstructed PPG signal. Zhang et al. [11], [17] proposed
pre- and post-processing algorithms to achieve an average
estimated error of 2.34 bpm [11] using signal decomposi-
tion for eliminating noise from motion artifacts, sparse sig-
nal reconstruction, and spectrum peak tracking. The authors
achieve 1.28 bpm estimated error using joint sparse spectrum
reconstruction using the multiple measurement vector model
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and spectral subtraction. Biswas et al. [18] proposed a deep
learning-based approach. Using two convolutional neural net-
works (CNN) layers, two long-short term memory (LSTM)
layers, and a dense layer, their approach achieves 1.47 bpm
average estimation error for data collected from 20 subjects.
Roy et al. [19] proposed artificial neural network which
improves heart rate measurement under motion artifacts and
shows high correlation 0.99 against a ECG-based heart rate
measuring device.

However, the aforementioned previous works require
high computation power and cause latency; thus, making
it difficult to address real-time constraint for continuous
PPG inputs. Especially, the work by Zhang et al. [11]
spends 0.942 seconds for reconstructing one time window
slot (8 seconds) [20] using a PC with Intel Core 2 Duo
P7550 @2.26GHz and 4 GB RAM.

Sun et al. propose a low latency heart rate estima-
tion scheme for samples collected under high motion arti-
facts using asymmetric least squares spectrum subtraction
and Bayesian decision theory [20]. This approach shows
2.13 bpm average estimation error and spends 0.0162 seconds
for estimating 8 seconds of data (using the same hardware
in [20]). Chung et al. also proposed a fast heart rate estimation
algorithm based on a finite state machine with a crest factor
and heart rate change [21]. They show that the proposed algo-
rithm only requires 1.1 ms for estimating 8 seconds of data
(using Intel Core 17-3770 CPU@3.40 GHz) while providing
less than 1 bpm average estimation error from 23 subject
datasets.

In recent studies, multi-wavelength a PPG sensor
design is suggested in order to mitigate and reduce the
impact of motion artifacts by combining multiple signals.
Ishikawa et al. propose a new PPG sensor design embedded
on a wristband form factor device that measures heart rate
robustly under motion artifacts using two different wave-
length LEDs; green LED for arm-motion noise reduction and
red LED for finger-motion noise reduction [8]. By combining
accelerometer and PPG signals, their proposed scheme can
instantly reduce incorrect measurement. Zhang et al. suggest
the motion artifact reduction algorithm using green PPG
signal and IR PPG signal using wavelet transform and signal
reconstruction. Lee ef al. suggest combining 12 channel PPG
signals generated by four PPG sensors each containing red,
green and infrared LEDs [22].

We note that most of the previous works refer to the
accelerometer signal for handling motion artifacts or integrate
multiple PPG sensor signals. However, in this paper, we dis-
cuss why the accelerometer-based approach might not be
sufficient to measure the reliability of heart rate measurement
directly on a smartwatch. Furthermore, a novel PPG sensor
design is an attractive approach but such methods cannot
be applied to the many already-deployed PPG-based heart
rate sensors and even for new devices, may increase the
production cost. Furthermore, we point out again that using
the heart rate estimation from a broken PPG signal may cause
negative implications for healthcare applications. We also
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point out that such reconstruction algorithms can cause heart
rate measurement delay when they are operated on wearable
devices even if the algorithm can operate very fast on PC class
devices.

IV. PRELIMINARY STUDY

In this preliminary study, we observe the difference of
heart rate sensor readings when the user is staying still
or naturally walking. Furthermore, we investigate into the
root cause of misleading heart rate measurements and what
the requirements for designing a filter for these misleading
measurements are.

A. DATA COLLECTION

For data collection, we use three smartwatches from differ-
ent manufacturers; Samsung Gear S2; LG Watch Urbane;
Apple Watch. These devices are based on three different
operating systems, Tizen, Android Wear OS and Apple
WatchOS, respectively. We implement applications for sen-
sor data logging on each OS platform. This application is
loaded to the smartwatch to record the heart rate measure-
ments and 3-axis acceleration. The heart rate measurements
are taken every second and the accelerometer sampled at a
rate of 1 KHz. For capturing ground truth heart rate mea-
surements, we employ Zephyr’s Bioharness device which is
chest-band type heart rate logger using its two-lead ECG
sensor, which is more robust to user movements than the PPG
sensors used on the smartwatch devices. The Bioharness,
approved by the FDA, allows accurate heart rate measure-
ments and we implement an Android platform-based sensor
data logging application to extract its data.

For measuring the heart rate from the sensors, we imple-
mented an application for logging the heart rate from
the smartwatches we tested with. Specifically, for the
Apple Watch, the application was implemented using Apple
HealthKit and the application is designed to sample heart
rates based on the Apple watchOS configurations (given that
Apple Watch does not allow modification to the sampling
interval) and the measurement is sent to an iPhone application
via Bluetooth connections.

Fortunately, for the LG Urbane application developed
using Android Wear, we were able to set the sampling rate
to 1 Hz, and this application performs similar behavior of
sending its heart rate measurements (on a per-second basis)
to its associated smartphone app using Bluetooth.

Finally, the Samsung Gear S2 smartwatch operates Tizen
OS. Since the Gear S2 is equipped with an on-board WiFi
chipset, the application is designed to transmit the heart rate
measurement (sampling rate of 1 Hz) to our data analytics
server directly. Furthermore, for future use, for the Gear S2,
we also capture and report the light intensity measurements
of the PPG sensor (not provided in Apple HealthKit of
Android Wear) for each heart rate measurement as well.
Unlike watchOS and Andoid Wear, in which the raw mea-
surements of heart rate signals pass through software cali-
brations, Gear S2 allows access to the raw heart rate value
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FIGURE 2. Heart rate readings for the BioHarness (purple; ground truth) and three COTS smartwatches (green) while continuously moving. The plots also
present the smartwatches’ internal accelerometer readings (in light blue, orange, yellow for each axis) and the PPG sensor light intensity plots captured

from the Samsung Gear S2 watch (blue).

measurements directly from the PPG sensor, and we report
this raw value to the server.

B. SMARTWATCH HEART RATE ERRORS

With the software designed for each smartwatch platform,
the initial target of our study was to understand how the
motion and wearing patterns of smartwatches impact the heart
rate measurement quality. For capturing ground truth heart
rate data (for comparisons), we use the Zephyr BioHarness
device, which is an FDA-approved chest-strap device for
physiological signal measurements. Given its form-factor,
the BioHarness devices is more robust towards user motions
and thus, has been applied to many previous healthcare appli-
cations [23]-[25]. With the smartwatches and the BioHarness
device, we recruit four volunteers (3 male, 1 female; avg.
age 24) and ask them to make natural walking behaviors in
two different environments: (i) hallway under florescent light
and (ii) an open field under natural day-light. The participants
were wearing the BioHarness device on their chest and dif-
ferent smartwatch devices were worn over multiple test runs.
We note that while the walking speeds of each participant was
not fixed and we intentionally did not guide the participants to
move their arms in specific ways, the walking speeds were in
the ranges of 1.2-1.8 m/s, and there were no cases in which the
arm postures were fixed. We do so to capture natural walking
conditions from the participants, rather than generating an
artificially configured dataset. Note that the participants wore
each watch twice: once comfortably loose on their wrist
(natural wearing pattern) and in the second turn, very tightly.
Fig. 2 presents a sample trace of heart rate measurements
from each smartwatch device with the corresponding BioHar-
ness heart rate readings. Here we present traces for the loosly
worn and the tightly worn cases. We also plot the readings
from the 3-axis accelerometer and for the Samsung Gear S2,
we additional plot the PPG sensor-observed light intensity
readings (normalized on [0:100] scale). The plots in Fig. 2
are for a single participant and we point out that the results
from other participants showed similar trends.
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The plots in Fig. 2 suggests some interesting points.
First, we notice that when the user tightly wears the watch,
the smartwatch readings are highly correlated with the
ground-truth. Quantitatively, the error (or the average dif-
ference with the ground-truth) is 3.4 bpm. This implies that
with proper adjustments, the smartwatch’s heart rate readings
can be very accurate. On the other hand, second, when the
watch is worn loosely, we see a much higher error (avg.
18.4 bpm difference from the ground truth; Apple Watch—
8.73, Urbane—17.78, and Gear S2-28.69). This suggests that
human motion itself is only a critical factor that reduces
the accuracy of heart rate measurements when the wearing
conditions of the watch is not tightly attached to the human
skin. Our discussions with physicians at hospitals and the
ANSI/AAMI EC13 standards indicate that heart rate reading
errors of +5 bpm or £10% bpm is tolerable for clinical
use [26]. Third, we noticed that the accelerometer patterns
were not sufficient enough to distinguish between the cases
in which the watch was worn tightly or loosely, or in other
words, it could not be an effective indicator on the potential
accuracy of the heart rate readings. Quantitatively, by com-
paring the cases in which the watch was worn tightly and
loosely (with lag adjustments), the accelerometer readings
showed a mean cross-correlation coefficient of 0.77. Such
finding suggests that using the accelerometer (alone) cannot
be a good indicator of the heart rate measurement accuracy.
Lastly, we can notice from plots in Fig. 2 (c) and (f), that
the light intensity readings show noticeably different patterns
for the tightly worn and loosely worn cases. This can be an
indicator that the light intensity readings can be an effective
feature for determining between the two cases and the smart-
watch’s heart rate reading accuracy.

Based on this preliminary findings, we present results from
additional experiments designed to validate the impact of
different factors that affect the smartwatch PPG sensor’s light
intensity measurement, which in turn, impacts the accuracy
of heart rate readings. In Fig. 4 we present four different
types of 3D printed rings that are designed to fit between the
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smartwatch and the wrist. Specifically, these four rings were
designed to validate the impact of distance changes from the
PPG sensor with the human skin, thus, the absolute value dif-
ferences of light intensity (i.e., first three rings with different
heights), and also to validate the impact of external light with
the same distance (i.e., Smm ring with and without holes) by
introduce externally impacted variance. For the absolute light
intensity experiment, referring back to Equation 1, given the
added distance of 3, 5, and 7 mm between the sensor and the
skin, the distance of reflective light path, d will be impacted
through these changes.

In Fig. 3 we compare the heart rate readings errors
observed from the three watches of our interest. We can see
from Fig. 3 (a) that when standing still, the errors for all cases
were kept low (less than 10 bpm for all test cases). Never-
theless, we can see a higher error (for the LG Urbane) when
the distance from the skin to the sensor increases to 7mm or
when holes in the intermediate ring introduces external light
variations. Still, these results suggest that the smartwatch can
produce reliable sensor readings when the participant in still
regardless of the wearing posture of the watch.

Next in Fig. 3 (b), the heart rate error values for when
the user was actively moving, we can notice that motion
artifacts, do impact the heart rate measurement errors. Even
for the 3mm and Smm cases, we see a slight increase in
error compared to Fig. 3 (a). With a further distance of 7mm,
the error increases even more, however, the situation gets
worse for the test cases in which we introduce holes to the
Smm ring. Comparing the plots for the ‘Smm’ case and the
‘Smm with holes’ case, we can see see that there is a dramatic
increase in error by as small as 2x and as much as 6x. These
results suggest the following: The frequent distance change
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from the skin to the PPG sensor affects the quality of the
PPG-based heart rate measurements, but the variance in light
conditions caused for human arm motion is a more significant
factor affecting the heart rate measurement quality. Based on
this observation, in the following section we present a filter
design which exploits such findings to identify the reliability
of individual heart rate measurements on the smartwatch.

V. APPLICATION DESIGN

In this section, we discuss how to design a filter for
determining the reliability of heart rate measurements on
a smartwatch. We present the design goal of the filter and
present the design of an HMM-based machine learning
model. We conduct preliminary evaluations of the filter and
we show how the performance of the filter can be improved by
applying additional smoothing techniques. Finally, we show
an application-level implementation of our filter on a
smartwatch platform.

A. DESIGN GOALS

The following are the design goals we focused on when
designing a filter for classifying accurate heart rate measure-
ments on smartwatches.

« Maintaining low false positive rates: For the sake of
potentially applying our filter to clinical applications,
the filter should maintain a low false positive rate.
Achieving a low false positive rate means that the filter
can well classify inaccurate measurements as inaccu-
rate. False positive rates can differ depending on the
threshold which determines whether the measurement
is accurate or not. Thus, if the threshold is lenient (e.g.,
3 bpm), the false positive rate naturally decrease because
the model conservatively classifies the sample data as
accurate, but, in turn, the true negative rate can increase.
This is a trade-off that should be taken into account when
designing specific parameters for the filter.

o On-device operation: The goal of this work is oper-
ating the proposed filter on a smartwatch. To achieve
this goal, we should consider three issues: energy effi-
ciency, real-time operations, and low computation over-
head. If the filter requires complicated algorithms as
in previous heart rate estimation work we have dis-
cussed in Section 111, it is difficult to meet such resource
constraints. For example, signal decomposition and
reconstruction algorithms for eliminating motion artifact
induced noise can require approximately 1 second to
estimate heart rate from 8 point of PPG signal data [11].
Moreover, if a series of PPG signal is transmitted
directly to the server for detailed estimation, the latency
will inevitably increase due to the transmission over-
head. Thus, the filter’s decision-making process should
consist of a light-weight machine learning algorithm.

« Easy integration with healthcare apps: Our proposed
filter should be easily used by healthcare application
developers. We believe that an easy-to-use API should
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be offered so that linking our filter to an application
is made simple. For now, the only feedback that the
heart rate sensors offer to the application is whether the
sensor is currently connected to the user’s skin or not.
The proposed filter should offer additional information
on the accuracy of the heart rate measurements to the
application.

B. FILTER DESIGN

Results from our preliminary results suggest that we can
potentially design a filter that classifies a smartwatch’s heart
rate reading accuracy by understanding and analyzing the
light intensity variance patterns of the PPG sensor. A simple
approach to do so would be to configure a threshold on the
variance measurements, but based on our (failed) efforts,
the changes between consecutive readings were overly rig-
orous and setting a static threshold was difficult to achieve.

The filter design is based on the Viterbi algorithm to seek
the most possible sets of hidden states. In our application,
we consider the sensing data quality as the hidden states in
the Viterbi algorithm. Specifically, we identify the Viterbi
path that outputs a sequence of observed events. We select
to use such an approach given that the PPG sensor’s light
intensity measurements are captured as the observations for
the algorithm.

We start describing the design of our filter by presenting
its HMM structure. A typical HMM structure consists of
states, observations and probabilities. The state is hidden to
the observer and only can be estimated by using computed
probabilities. Fig. 5 depicts our HMM filter design.

State St = {Good, Bad}
Observation O = 01, O3, ..., Oy

In our filter design, we define two different states: reliable
sample (Good) and non-reliable (Bad) sample. The initial
state is determined based on the start probability (solid lines
in Fig. 5). The state transition probability (rounded dotted
lines in Fig. 5) is a probability to which a state St; in time £,

Observation

11

FIGURE 5. HMM model with two states and 11 observations. Each line
depicts probabilities, where the solid, dashed, and dotted lines indicate
the start probability, transition probability, and emission probability,
respectively.
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transits to a state S#; in time #,41. The emission probabil-
ity (downwards dotted lines in Fig. 5) is a probability that
observation O, will be observed in each state St. Since the
initial HMM states are critical in the decision making of accu-
rate estimations, the HMM is trained using the Baum-Welch
expectation maximization algorithm via a sequence of sam-
ples with different light intensity measurements. The output
is selected by the state based on observations. Observations
are used to compute the corresponding path at each point of
time.

An observation is generated by flooring the change of light
intensity over step size. For both of training and testing,
multiple observations are fed into initial and trained model
to identify the current state. Note that the data collected
from the Samsung Gear S2 watch presented in Fig. 2 shows
that as the heart rate readings diverge from the ground truth
readings, we see more variations in the light intensity mea-
surements. Based on such an observations, we define the
set of measurement differences among two consecutive light
intensity measurements for a time window [¢f : ¢ + w] as
AL:1+w). We also denote the absolute maximum value in
this set as max(|AL:.14+w)l). In our algorithm, we start by
dividing max(|AL:14w)|) With Ng, the number of possible
observations to extract Syep, the step size.

max(|AL:iw)!)

No @

Sstep =

We configure Np by analyzing the light intensity variance
traces. Based on the data we collected, we noticed that a
difference of more than 6000 units for the light intensity
caused significant variations in heart rate measurements. The
min-max ranges of the PPG sensor light intensity suggests
that for our data set Np should be set to 11. We plan to
design algorithms to adaptively configure such parameters
with respect to the input data as part of our future work
since the number of possible observations can impact the
granularity and responsiveness of the system.

Notice that we maintain two states in the HMM, one for
declaring an accurate reading and the other for identifying
inaccurate measurements. At each time instance in which we
compute the heart rate measurement accuracy, we compute
an observation Oy, (e.g., HMM input) as the following.

|AL(t:t+w)| ]

0, =
" L Sslep

3)

Fig. 6 plots a time-series of a sample collected from the
Samsung Gear S2 and the BioHarness (ground-truth device)
with comfortable (loose) tightness. In the experiment, the
user started with 3-5 minutes of “not moving” followed by
~10 minutes of actively moving. The study participants and
movement conditions were kept identical to the experiments
in Section IV-B. As expected, as the user starts to move, the
accuracy of the smartwatch readings start to diverge from
the Bio-Harness. The black regions in this figure represent
the time instances when the ground-truth and the smartwatch
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FIGURE 6. Sample time-series on classification results of the proposed
filter. Black regions represent points where differences between the
Gear S2 and BioHarness is >5 bpm. Blue regions represents the samples
classified as ‘inaccurate sample’.

readings differ by more than 5 bpm and the blue region
presents our filter’s classification result classified as an ‘inac-
curate sample’ at a given time. Thus, ideally, the black region
and the blue region should show identical patterns if the
proposed filter functions perfectly. We can notice that for
the majority of the cases, our proposed filter properly makes
predictions on the accuracy of the smartwatch’s heart rate
sensor. Nevertheless, a small number of false predictions still
persist. Quantitatively, in this sample experiment, the accu-
racy of detecting samples with differences of more than 5 bpm
by our proposed scheme was ~90%. A deeper look into the
light intensity readings from the PPG sensor suggest that
their measurements cannot be perfectly reliable. Since the
fundamentals of our filter relies on the light intensity value
variations, such noise can lead to mis-understanding of the
data.

We address such limitations by focusing on the fact that
physiologically, heart rate measurements show slow changing
patterns given that the the measurements themselves are an
average value over a minute. Thus, we apply a moving aver-
age on the input samples to smoothen the impact of outliers
and use this value as the observation input. As Fig. 7 shows,
the modified filter design effectively suppresses wrong classi-
fication results when the measurements from the smartwatch
diverge from the ground truth. Quantitatively, the accuracy

140{ —— BioHarness A e
N
1201 ====- Samsung Gear S2 ./
,~

Heart rate (bpm)

o

1

500 600 700

00 200 300 400
difference > 5 bpm ‘ .IH ‘I

0 100 200 300 400 5

Time Stamp (sec)

Classified as |
inaccurate sample

00 700

FIGURE 7. Sample time-series on the classification results of the
proposed scheme with moving average. Compared to Fig. 6, this scheme
reduces the number of false accurate predictions.
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of predicting samples that are inaccurate (with more than
5 bpm difference from the ground truth) is increased to ~92%
for this sample trace when adding moving averages to our
scheme.

C. APPLICATION IMPLEMENTATION

The implementation of our heart rate measurement accu-
racy filtering module is to output two different values for
the applications to exploit. First, the heart rate measure-
ments from the smartwatch, and second, the reliability
level of the current measurement. In Fig. 8 we present
the functional diagram and a simplified code implemen-
tation of our filter. Here, the main function of our filter
reliable_heart_rate_reading creates a queue Q
to store a time window W number of light intensity mea-
surements. Once W light intensity measurements are cap-
tured in @, our model outputs an observation using the
observation function. This function is essentially an
implementation of Equation (3) for computing an observa-
tion O as an input of the HMM model. This observation is
fed as input to the HMMfilter function, which operates
the HMM model and returns the reliability of the current
observation O. By outputting both the heart rate value and
the measurement reliability, applications that connect to our
filter can selectively use heart rate measurements based on
the expected accuracy of the samples.

Output

PPG sensor
light intensity
reliability

iy Heart rate . b | Heartrate
' estimation measurement

reliable_heart_rate_reading(threshold, time_window, *HR, *reliability)

Calculate
observation

= =

Heart rate
measurement

-

HMM Filter

(a) Function design

W « time_window
Q « Create a W size of queue
T « threshold
while (stop):
estimated_HR « read heart rate from the system API
light_intensity « read light intensity from the system API
ENQUEUE(Q, light_intensity)
if Q is full:
0 « observation(Q)
*HR « estimated_HR
*reliability « HMMfilter(0, T)
DEQUEUE(Q)
else:
*HR « estimated_HR

*reliability « not determined
continue

(b) Simplified implementation

FIGURE 8. Functional diagram and a simplified code implementation for
the proposed filter.

Notethat reliable_heart_rate_readingtakesin
a threshold value as its parameter. This threshold represents
the tolerance value in which the measured heart rate value
can differ from the ground truth. The threshold parameter
represents the tolerance value of the difference between the
ground truth and Samsung Gear S2 measurements when
training the model. Thus, we train for models with different
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threshold values and apply the proper filter when in operation.
Specifically, a low threshold suggests that the filter strictly
determines that the heart rate measurement is reliable only
when the measurements are very accurate. However, such
a low threshold filter may return fewer heart rate measure-
ments marked as ‘“reliable” given that many samples can
be classified as ‘““unreliable”. If the application developer
determines that the application requires highly reliable heart
rate measurements, the a low threshold can be configured.
On the other hand, if the application does not require highly
reliable heart rate measurements, a high threshold can be set
and samples that are not too different from the ground truth
will be offered to the application.

VI. EVALUATION

We now evaluate the proposed filter design in two aspects:
(1) performance of filtering unreliable heart rate measure-
ments, and (2) latency and battery consumption with respect
to the filter operations. We use the Samsung Gear S2 smart-
watch platform for our experiments which is the only plat-
form that supports PPG sensor’s light intensity recordings
among the devices of our interest. We point out that the HMM
model training is done on a PC class device and implanted the
HMM model to the smartwatch.

A. FILTER PERFORMANCE

Figure 9 shows the overall classification results of our pro-
posed filter design for varying target accuracy thresholds
(e.g., an accurate estimation determined if the observed sam-
ple has less than 3, 5, 7, 10 bpm difference from the ground-
truth!). Here, we use a 100 minute data set (25 minutes
of data for each of the four volunteers) which included a
mixture of walking and still data. Results in Figure 9 indicate
that the rate of properly classifying “‘accurate” samples as
“accurate” (i.e., true-positive) is >90% for all cases in which
the accuracy threshold exceeds 5 bpm. The false-positive
cases, which is the ratio of incorrectly classifying accurate
samples as inaccurate, can be kept low in such cases. As
a system to be used in healthcare applications, it is more
important to properly prevent inaccurate samples from being
used as system-level inputs. Thus, it is important to minimize
the false positive rates. Our system, with proper accuracy

I'While no definite values exist, our partnering physicians suggested an
accuracy threshold of 10 bpm and related standards suggest a threshold
between 5 bpm or £10% bpm [26].

100

<3 bpm
<5 bpm
<7 bpm
<10 bpm

80

60

40

Rate (%)

20

True False True False
Negative Positive Positive Negative

FIGURE 9. Overall classification results of our proposed filter on
100 minute data set with different accuracy thresholds.
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threshold configurations, show a low false positive rate
(8% when with a 5 bpm threshold and 4% with 3 bpm
threshold), making it suitable for real application use.

Overall, our system design and evaluation results, suggest
that we can accurately classify the accuracy of a smartwatch’s
heart rate measurements with the complexity that can operate
on the smartwatch internally.

B. LATENCY AND ENERGY CONSUMPTION

While being an effective back-end system for improving the
application quality, we should make sure that the utilizing
our filter does not negatively affect the system performance.
Given that the algorithm operates on severely resource limited
platforms, observing the system-level performance impact is
even more important. For this, in this section, we present
the latency and battery consumption of using our filter on a
smartwatch. Specifically, we measure the elapsed time and
power usage overhead for operating the filter on the Samsung
Gear S2 smartwatch, which is equipped with a Exynos 2 Dual
3250 CPU (7.2 GFLOPS). The filter operation is consists of
reading heart rate measurements using the system API, com-
puting the observation from the HMM model, and operating
the filter to retrieve the current state of PPG sensor’s output
value.

Using 1,500 samples output from the filter, we were able to
notice that the average latency for computing the output of a
sample is 0.2 msec (£0.08 msec). Given that the smartwatch
offers heart rate measurements of 1 Hz [27], we see this
latency acceptable for practical applications [28].

For measuring the battery usage we use the Dynamic
Analyzer offered by the TIZEN developers group [29] and
measure the average current draw in mA units for three
minutes. For references, we also test for cases in which heart
rate monitoring does not take place, and also for a case where
the PPG sensor takes heart rate measurements, but with no
filter operations. Fig. 10 plots the results from these two cases
along with the case when our filter is used. Notice there that
the baseline current draw (when not using the PPG sensor
with the app turned on) is 0.18 mA (£0.03). Enabling the
PPG sensor itself adds a significant amount of current draw
overhead to consume 2.74 mA (£0.58) on average. Finally,
applying our filter added an additional 1 mA by resulting
in 3.71 mA (£0.43). Note that these numbers are only for
the application that we designed implemented for testing and

IS

w

Average LPU
Power Estimation (mA)

e

0
Before starting
monitoring

HR monitoring
w/o filter

HR monitoring
w/ filter

FIGURE 10. Average CPU power estimation of HR monitoring application
implemented on target device Samsung Gear S2.
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does not include the current draw caused from other sys-
tem components, which as the OS, display, networking, etc.
We note that the system’s baseline current draw is ~42.8 mA
when running an idle app. Therefore, the 1 mA increase due
to the use of our filter translates to only 2.3% of the entire
system’s current draw.

VII. CONCLUSION

Wearable devices have become more and more prevalent
and can provide the potential to enable various healthcare
applications by tracking and recording a user’s daily health
status-related information. In spite of the such promising
potential of enabling important applications, we noticed that
the performance of heart rate measurements on wearable plat-
forms may not be reliable due to unavoidable motion artifacts.
In this paper, we focus on the fact that such motion artifacts
heavily (and negatively) impact the heart rate measurements
that are collected from PPG sensing units. Based on prelim-
inary studies, we show that there are significant variations
on the PPG sensor’s light intensity readings when mixed
with external motion artifacts: leading to inaccurate heart rate
measurements. To resolve this issue, we propose a Hidden
Markov Model-based filter design to determine the reliability
of each heart rate reading. Our evaluations with the proposed
filter shows a classification accuracy of 98%. Especially we
noticed that the false positive rate which can potentially cause
negative implications on healthcare or clinical decisions is
only ~8% when configuring 5 bpm as the threshold for
determining accurate measurements. Finally, using the pro-
posed filter, we implement a heart rate monitoring application
on a COTS wearable device. Our application computes the
reliability of the current PPG sensor with minimal latency and
with 2% overhead in current draw.
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