
Received August 29, 2020, accepted September 14, 2020, date of publication September 22, 2020, date of current version October 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3025825

CTFTP: A Test Case Generation Strategy for
General Boolean Expressions Based on Ordered
Binary Label-Driven Petri Nets
HONGFANG GONG 1, JUNYI LI2, AND RENFA LI 2, (Senior Member, IEEE)
1School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
2College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China

Corresponding author: Hongfang Gong (ghongfang@126.com)

This work was supported in part by the National Natural Science Foundation of China through the Key Project under Grant 61932010,
in part by the National Natural Science Foundation of China under Grant 61972055, and in part by the Science Research Foundation (SRF)
of Hunan Provincial Education Department of China through the Key Project under Grant 18A145.

ABSTRACT Boolean expression testing requires certain types of tests for each Boolean expression in
program specification or implementation. Fault-based testing essentially uses a subset of the exhaustive test
set to detect certain special types of faults. A fault-based Boolean expression testing strategy called constraint
true and false test point (CTFTP) is proposed. The test consists of two test case generation strategies, namely
a unique constraint true point (UCTP) strategy and a near constraint false point (NCFP) strategy. An ordered
binary label-driven Petri net model is presented to analyze the interaction between Boolean transitions and
Boolean literals and yield the test paths of a singular term for the irredundant disjunctive normal forms
(IDNFs). On the basis of the test paths, we develop a configuration-based IDNF test generation algorithm,
which is employed to obtain the UCTP, NCFP, and CTFTP test sets for the IDNFs. The proposed test
generation algorithm based on literal substitution is applied to extend the CTFTP strategy and generate a
test suite for general Boolean expressions, which are evaluated using TCAS II specifications. Experimental
results show that the CTFTP strategy can detect the same seven types of faults similar to the MUMCUT
strategy when testing IDNFs, but only a subset of the MUMCUT test set is required. Five types of faults of
general Boolean expressions can also be detected using CTFTP strategies.

INDEX TERMS Automatic test cases generation, fault-based testing, general Boolean expression test,
ordered binary label-driven Petri net, path-oriented test criteria.

I. INTRODUCTION
The correctness and validity of Boolean expressions lay the
foundation for the correctness and robustness of those soft-
ware applications. Boolean expression testing requires cer-
tain types of tests for each Boolean expression in program
specification or implementation. Given a Boolean expression
with n variables, an exhaustive testing requires 2n different
test cases, and the test size will grow exponentially as the
number of variables increases [1]. Selecting subsets from all
possible test cases based on the test criteria can yield small
and effective test suites, but their fault detection capabilities
are reduced relative to exhaustive testing [2]. Therefore, new
test strategies need to be introduced in view of ensuring that

The associate editor coordinating the review of this manuscript and

approving it for publication was Shouguang Wang .

a given Boolean expression can be tested thoroughly, thus
maximizing the fault detection capabilities while keeping the
number of test cases as small as possible.

Test case generation strategies for Boolean expressions
have attracted considerable attention over the past two
decades. Tai and Su [3] proposed two test case gener-
ation algorithms to ensure that operator errors could be
detected. Weyuker et al. [4] designed a family of meaningful
impact (MI) strategies that can generate test cases automat-
ically for a given Boolean specification, among which the
MAX-B strategy is the most powerful because it subsumes
all the other strategies in the family. MI strategies have been
applied to the fault detection of the irredundant disjunctive
normal form (IDNF) of Boolean expressions and exhibited
extremely effective detection capabilities. A Boolean expres-
sion in disjunctive normal form is said to be irredundant if

174516 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2618-9174
https://orcid.org/0000-0003-4573-7375
https://orcid.org/0000-0002-8998-0433

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

none of its terms can be omitted from the expression and
none of its literals can be omitted from any term in the
expression [5]. Chen and Lau [6],[7] proposed three test
case selection strategies, namely, multiple unique true point
(MUTP), multiple near false point (MNFP), and the corre-
sponding unique true point (UTP) and near false point (NFP)
pair (CUTPNFP) strategies; in this manner, two types of
faults in the Boolean expressions, namely, literal insertion
faults (LIFs) and literal reference faults (LRFs), can be
detected. The above strategies and the MI strategies can
detect seven types of faults in IDNFs, but the aforementioned
three strategies are more cost-effective than the MAX-B
strategy in detecting faults because the selected test cases
typically form a subset of those cases selected by theMAX-B
strategy [7]. Chen et al. [5] integrated the three strategies
into the MUMCUT strategy, which requires fewer test cases
than the MAX-A and MAX-B strategies when detecting the
same seven types of faults. However, all the aforementioned
strategies are suitable only for testing Boolean expressions
in some restricted forms, such as IDNF, but not the original
expressions. Testing a general form of the Boolean expression
by using IDNF-oriented strategies always results in excessive
test costs and misses the detection of certain faults.

Software practitioners are more likely to write conditions
and logical decisions in general form rather than in IDNF,
but their approach may introduce faults in the general form
context [8]. A single fault in the general Boolean expression
may cause more than one fault in the corresponding equiva-
lent restricted form. Chen et al. [8] confirmed experimentally
that the MUMCUT strategy has high efficiency in detecting
the faults of general Boolean expressions and their mutation
expressions and is more effective in detecting the faults of the
original expressions than those of the mutants. Following the
work of Chen et al. [8], Sun et al. [9] presented the charac-
teristics of undetected faults of general Boolean expressions
and their certainty of being undetected by the MUMCUT,
then they analyzed why a MUMCUT test suite would fail
to detect five undetected mutation patterns by means of for-
ward/reverse MUMCUT experiments for fault-based testing
of general Boolean expressions. However, mutation patterns
may be undetected for each type of fault in a general Boolean
expression. Sun et al. [10] evaluated and compared 18 fault-
based testing strategies by means of a series of experiments,
usingmore than 4000 randomly generated fault-based general
Boolean expressions. Their experiments showed that the fam-
ily of fault-based testing strategies, such as the MUMCUT,
would usually provide the best performance.

Kapoor and Bowen [11] calculated the necessary and suf-
ficient conditions to detect ten different types of fault cate-
gories of general Boolean expressions and proved the fault
hierarchy relationship. However, their study overlooked the
possibility of a mutant of the Boolean specifications as an
equivalent in the testing. Hence, each of the fault relation-
ships was either incorrect or presented an incorrect proof.
Chen et al. [12] used counterexamples to reveal the incorrect
fault relationships and provide new proof to validate fault

relationships. A co-stronger fault relation was introduced to
establish a new fault class hierarchy for general Boolean
specifications. Gargantini and Fraser [13] proposed a test case
generation approach for general Boolean expressions. The
approach was a mutation-based method designed to detect all
the ten types of faults studied in [11] and [12].Wang et al. [14]
proposed the minimal failure-causing schema (MFS) and
probabilistic failure-causing schema (PFS) to describe the
characteristics of the failure test cases for general Boolean
specifications. The experiments results based on TACS II
specifications [15] indicated that the PFS model is more
competitive than the MFS model for the input-level fault
localization scenario. In [16], the fault detection ability of
the combinatorial test was verified to be better than that of
the random test by means of the fault detection experiment of
general Boolean expressions. However, the mutation analysis
technology involved excessive test costs and yielded inaccu-
rate test results [17].

Petri nets are a promising tool for describing and studying
systems that are characterized as concurrent, asynchronous,
distributed, parallel, nondeterministic, and/or stochastic [18].
Gong and Huang [19] proposed a generalized Boolean opera-
tor (BOR)-MI strategy based on predicate driven Petri nets to
generate test cases for general Boolean expressions. However,
the BOR-MI strategy can only detect BOR faults. In this
study, we focus on detecting faults in Boolean expressions by
developing an extended Petri net approach and generating test
cases directly from a given general form of a Boolean expres-
sion. An ordered binary label-driven Petri net (OBLDPN)
is developed to analyze the interaction between Boolean
transitions and Boolean literals and yield test paths of a
singular term for IDNFs. A Boolean transition is an intuitive
representation of the logical relationship between an input
and an output represented as a Boolean expression (Fig.1).
By using OBLDPN, we propose a fault-based test strategy
called the constraint true and false test point (CTFTP) strategy
consisting of two test case generation strategies, namely,
a unique constraint true point (UCTP) strategy and a near
constraint false point (NCFP) strategy. A configuration-based
IDNF test generation algorithm is further proposed to obtain
the UCTP, NCFP, and CTFTP test sets for the IDNFs. The
proposed CTFTP strategy is used to test the IDNF of the
Boolean expressions in view of guaranteeing the detection
of seven types of faults the same as those of the MUMCUT
strategy, but the test set used by the CTFTP strategy is smaller.

Then, the CTFTP strategy is extended to directly test the
general Boolean expressions. A general Boolean expression
can be expressed as a Boolean function in the form of
‘‘sum of products of sums,’’ which is composed of multi-
ple IDNF subexpressions [20]. When the CTFTP strategy is
applied to test a general Boolean expression, a test set of
each sub-expression of the Boolean expression is generated.
Subsequently, an algorithm called general Boolean expres-
sion test generation based on literal substitution is developed
to generate the required test cases for the general Boolean
expressions. We use the TCAS II specifications to evaluate

VOLUME 8, 2020 174517

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

FIGURE 1. The OBLDPN of Boolean expressions involving five variables.

the CTFTP test strategy. The empirical result shows that the
CTFTP strategy can detect five types of faults for a general
form of a Boolean expression.

The rest of this article is organized as follows. In Section II,
the UCTP, NCFP, and CTFTP strategies for generating the
IDNF test cases are proposed. In Section III, we define
an OBLDPN model and describe its dynamic properties by
means of the behavior function. In Section IV, an algorithm
is proposed for generating automatically a CTFTP test set for
the IDNF, and a set of test adequacy criteria is provided for the
path coverage criterion based on the OBLDPN. In Section V,
we extend the CTFTP test strategy to generate test cases
for the general Boolean expression and present a general
Boolean expression test generation algorithm based on literal
substitution. Section VI reports the experimental results on
the basis of the TCAS II specifications. The related works
are described in Section VII. The conclusions are given in
Section VIII.

II. CTFTP TEST STRATEGY
A. NOTATION AND TYPES OF FAULTS
We follow the notation and terminology proposed in [1], [5],
and [21]. In this study, the BORs of AND (or ‘‘∧’’),
OR (‘‘∨’’), and NOT (or ‘‘¬’’) are denoted as ‘‘·’’, ‘‘+’’, and
‘‘−’’, respectively. If the context is clear, then the operator ‘‘·’’
can be omitted. The set of all truth values is represented by
B, that is, B = {0, 1}. The n-dimensional Boolean space is
denoted by Bn. In Boolean expressions, a positive literal or a
negative literal may denote an occurrence of a Boolean vari-
able. For example, b and b represent the positive and negative
literals in the Boolean expression bc+ bd , respectively.

TABLE 1. Test Point and Test Set of (2) in Bn.

A Boolean expression with n variables uniquely defines a
Boolean function f : Bn→ B but not vice versa. We will not
distinguish a Boolean function from a Boolean expression in
this article. Here, suppose a general Boolean function G(Ex)
can be expressed in the form of ‘‘sum of products,’’ that is,

G(Ex) = f1(Ex)+ f2(Ex)+ · · · + fk (Ex), (1)

where the Boolean vector Ex = (x1, x2, · · · , xn) ∈ Bn, k is
the total number of terms, and f (Ex) is the i-th term. In G(Ex),
each term fi(Ex), 1 ≤ i ≤ k may be expressed in the form of
‘‘product of sums,’’ which contains some sub-expressions in
the IDNF.

We first consider the test case generation of IDNFs in
testing the general Boolean expressions. Suppose the IDNF
f (Ex) with n variables is represented as

f (Ex) = p1(Ex)+ p2(Ex)+ · · · + pm(Ex), (2)

where m is the number of terms, and the i-th term pi(Ex), 1 ≤
i ≤ m is a singular term that does not contain the operator
‘‘+’’ and occurs only once for each variable. Let

pi(Ex) = x i1x
i
2 · · · x

i
j · · · x

i
ki , 1 ≤ ki ≤ n, (3)

where ki is the number of literals and expressed as |pi| =
ki, x ij in which the j-th literal occurs, and all literals appear
in lexicographical order. By negating the literal x ij of pi(Ex),
we obtain

pi,j̄(Ex) = x i1x
i
2 · · · x̄

i
j · · · x

i
ki , 1 ≤ j ≤ ki. (4)

For simplicity, we abbreviate the IDNF f (Ex) as f = p1 +
p2 + · · · + pm without ambiguity. A test case (or test point)
Et is a value of the Boolean vector Ex. Let Et = (t1, t2, · · · , tn)
be expressed directly as Et = t1t2 · · · tn, where tj ∈ B and
1 ≤ j ≤ n. Table 1 shows the test point and test
set of (2). In this study, we consider the seven types of
faults detection of IDNFs as reported in [4], [5], and [21].
For Boolean expressions in program specification or imple-
mentation, typical programming errors involve missing or
extra literals/variables and the use of incorrect operators
and operands [8]. These faults include expression nega-
tion fault (ENF), literal negation fault (LNF), term omission
fault (TOF), operator reference fault (ORF), literal omission
fault (LOF), LIF, and LRF.

174518 VOLUME 8, 2020

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

B. CTFTP TEST STRATEGY FOR IDNFS
In this section, we describe the CTFTP test strategy of (2)
containing two test case generation strategies, namely, UCTP
and NCFP strategies.
Definition 1 (UCTP Strategy): The points in test set Ti of

(3) are obtained from the UTP set UTPi(f). For any point in
Ti, if for all variables not occurring in (3), only one variable
has a value of 1 (or 0), and the other variables have a value
of 0 (or 1) in the corresponding position, then Ti is said
to satisfy the UCTP strategy. The test set Ti is called the
UCTP test set and is represented by UCTPi(f). If UCTPi(f)
is an empty set, then whenever possible, a point Eti is selected
from UTPi(f), while a corresponding NFP Eti,j̄ is selected
from each NFPi,j̄(f), j = 1, 2, · · · , ki, in that Eti and Eti,j̄
differ only in the truth value of the j-th literal appearing in
(3). Then, Eti and each Eti,j̄ are added to UCTPi(f) and the
correspondingNCFPi,j̄(f), respectively. The set of all UCTPs

of (2) is denoted as UCTP(f) =
m
∪
i=1

UCTPi(f). The UCTP

test strategy can ensure that faults, such as ENF, LNF, TOF,
ORF, and LIF, are detectable.

In this study, the IDNF example considered for generating
test cases is written as

f0 = abc+ ab̄d + e. (5)

The UTP set of abc in (5) is UTP1(f0) = {11100, 11110},
but the UCTP set of abc is UCTP1(f0) = {11110}.
Definition 2 (NCFP Strategy): The points in test set Tij of

(3) are obtained from the NFP setNFPi,j̄(f), j = 1, 2, · · · , ki.
For any point in Tij, if for all variables not occurring in (3),
only one variable has a value of 1 (or 0), and the other vari-
ables have a value of 0 (or 1) in the corresponding position,
then Tij is said to satisfy the NCFP strategy. The test set Tij
is called the NCFP test set and represented by NCFPi,j̄(f).
IfNCFPi,j̄(f) is an empty set, then whenever possible, a point
Eti,j̄ is selected from NFPi,j̄(f), while a corresponding UTP
Eti is selected from UTPi(f), in that Eti,j̄ and Eti differ only
in the truth value of the j-th literal appearing in (3). Each
Eti,j̄ and Eti are added to the corresponding NCFPi,j̄(f) and
UCTPi(f), respectively. The set of all NCFPs of (3) is given

by NCFPi(f) =
ki
∪
j=1

NCFPi,j̄(f). Similarly, the set of all

NCFPs of (2) is expressed by NCFP(f) =
m
∪
i=1

NCFPi(f). The

NCFP test strategy can ensure that faults, such as ENF, LNF,
ORF, and LOF, are detectable.

For example, for the first, second, and third literals of abc
in (5), the points 01100, 10100, and 11000 are NFPs, but they
are not NCFPs. Points 01110 and 11010 are the NCFPs of
the first literal a and the third literal c of abc, respectively.
However, the NCFP set of the second literal b is an empty set.
Therefore, we select the NFP 10100 from NFP1,2̄(f0) as the
NCFP, that is NCFP1,2̄(f0) = {10100}. A unique truth point
11100 with a different truth value only at the corresponding
position of the second literal is selected fromUTP1(f0) as the
UCTP, in that UCTP1(f0) = {11100, 11110}.

Neither the UCTP strategy nor the NCFP strategy can
detect separately the LRF, but they can detect the LRF when
used in combination. The CTFTP strategy is defined as
follows.
Definition 3 (CTFTP Strategy): Each element in the test

set Ti of (3) is composed of a UCTP Eti and multiple NCFPs
Eti,ī1 ,Eti,ī2 , · · · ,Eti,īr of (3), where Eti ∈ UCTPi(f) and a certain
j exists, and thus, Eti,īh ∈ NCFPi,j̄(f), that is, ih = j. Eti and
each Eti,īh , h = 1, 2, · · · , r differ only in the truth value of the
j-th literal appearing in (3). In this case, Ti is said to meet the
CTFTP strategy. The CTFTP test set of (3) is written as

CTFTPi(f) = {(Eti, [Eti,ī1 ,Eti,ī2 , · · · ,Eti,īr])|Eti ∈ UCTPi,
Eti,īh ∈ NCFPi,j̄, 1 ≤ j, r ≤ ki, h = 1, 2, · · · , r}.

The CTFTP test set of (2) is given by CTFTP(f) =
m
∪
i=1

CTFTPi(f), which guarantees the detection of the LRF.

For abc in (5), we have UTP1(f0) = {11100, 11110},
NFP1,1̄(f0) = {01100, 01110},NFP1,2̄(f0) = {10100}, and
NFP1,3̄(f0) = {11000, 11010}. Moreover, UCTP1(f0) =
{11110}, NCFP1,1̄(f0) = {01110}, NCFP1,2̄(f0) = ∅,
and NCFP1,3̄(f0) = {11010} are not difficult to obtain,
in which ∅ denotes the space set. Hence, we select test
point 10100 from NFP1,2̄(f0) and add it to NCFP1,2̄(f0),
that is, NCFP1,2̄(f0) = {10100}. According to Defini-
tion 2, the point 11100 in UTP1(f0) also needs to be added
to UCTP1(f0). We obtain UCTP1(f0) = {11100, 11110}.
The CTFTP test set of abc is given by CTFTP1(f0) =
{(11100, [10100]), (11110, [01110, 11010])}.

TheMI strategy can detect five types of faults, such as ENF,
LNF, TOF, ORF, and LOF, in IDNFs, but it may not be able
to detect LIF and LRF [5], [21]. In this study, the proposed
CTFTP strategy not only can detect the same five types of
faults, but also LIF in the IDNFs; however, the test case set
used is smaller than that of the MUMCUT strategy. Consider
using the CTFTP strategy to detect LRF. Suppose the j-th
literal x ij of (3) is replaced by the literal x

i
l that does not occur

in (3), that is, x il , x̄
i
l /∈ {x ik1 , x

i
k2
, · · · , x iks}. In CTFTPi(f),

an element whoseUCTP and correspondingNCFP differ only
in the truth value of x ij exists, while the truth value of x il is 0.
Then, LRF can be detected. The following theorem proves
that the CTFTP test set is a non-empty set.
Theorem 1: For any UCTP Et in UCTPi(f) of (3), an NCFP
Et ′ always exists in NCFPi(f), in that Et and Et ′ differ only in the
corresponding truth value of a certain literal of (3) and vice
versa.

Proof: For any UCTP Et of (3), that is, Et ∈ UCTPi(f),
let Et = α1α2 · · ·αj · · ·αn, where αr ∈ B and r = 1, 2, · · · , n.
Let Et ′ = α1α2 · · · ᾱj · · ·αn, where ᾱj is the opposite of αj.
We have pi(Et) = 1 and pi(Et ′) = 0. For any h 6= i, ph(Et) = 0
holds. Consider the following cases:

(1) If the literal x ij (or x̄ ij) does not appear in ph, then
ph(Et ′) = ph(Et) = 0. Thus, f (Et ′) = 0. From (4), we have
pi,j̄(Et

′) = 1. Thus, Et ′ ∈ NCFPi(f).

VOLUME 8, 2020 174519

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

(2) Suppose the literal x ij occurs in ph. From pi(Et) = 1,
pi(Et ′) = 0, the truth value αj of x ij is 1, and the truth value ᾱj
of x̄ ij is 0. Therefore, we obtain ph(Et

′) = 0, that is f (Et ′) = 0.
From (4), we have pi,j̄(Et

′) = 1. Thus, Et ′ ∈ NCFPi(f).
(3) Suppose the literal x̄ ij occurs in ph. If we can select

another literal xhl in ph that differs from x̄ ij , and the literal
xhl appears in (3), then the true value αl of xhl is 1. For
the UCTP Et of (3), let Et ′ = α1α2 · · ·αj · · · ᾱl · · ·αn (or
Et ′ = α1α2 · · · ᾱl · · ·αj · · ·αn), where αl = 1. We obtain
pi(Et ′) = ph(Et ′) = 0 and pi,l̄(Et

′) = 1, and thus f (Et ′) = 0.
Consequently, Et ′ ∈ NCFPi(f). Similarly, if we select another
literal x̄hl in ph that differs from x̄ ij , and the literal x̄hl appears
in (3), and we let Et ′ = α1α2 · · ·αj · · · ᾱl · · ·αn (or Et ′ =
α1α2 · · · ᾱl · · ·αj · · ·αn), where αl = 0. We can also obtain
Et ′ ∈ NCFPi(f). If we cannot find such a literal xhl in ph,
then any literal x iτ in (3) that differs from x ij is selected. The
NCFP Et ′ corresponding to x iτ satisfies pi(Et ′) = ph(Et ′) = 0,
pi,τ̄ (Et ′) = 1. Thus f (Et ′) = 0, that is, Et ′ ∈ NCFPi(f).
Similarly, we can prove that the theorem holds when the

literal x̄ ij occurs in (3).

III. ORDERED BINARY LABEL-DRIVEN PETRI NET
A. DEFINITION OF OBLDPN
A Petri net consists of places, transitions, and arcs that
connect places and transitions [18]. In this study, the basic
Petri net is extended to an OBLDPN model, which is used
to analyze the interaction between Boolean transitions and
Boolean literals, construct test paths, and generate test cases
for Boolean expressions.
Definition 4 (OBLDPN): An OBLDPN of a Boolean

expression in the IDNF is an ordered binary digraph in
which the number of nodes is related only to the num-
ber of variables. The OBLDPN is a 12-tuple 6 =

(P,T ,F, s0, sf ,V ,B,L, δ,E, In,Out).
(1)P is a finite set of literal places used tomodel the system

state.
(2) Let T = {(lchild, rchild, ltag, rtag, sign)| lchild,

rchild ∈ P, ltag, rtag, sign ∈ B} be a set of all transitions,
where ltag, rtag, and sign are the local labels in the transition
t , and (i) lchild and rchild are the left and right children of
t , respectively, indicating the state at which t arrives; (ii) ltag
and rtag are the left and right labels of t , respectively, and
ltag, rtag ∈ L. For the i-th term of a Boolean expression,
if t.lchild ∈ V̄ , or t.lchild = sf , then t.ltag = 1, and
t.ltag = 0 otherwise; if t.rchild ∈ V , or t.rchild = sf , then
t.rtag = 1, and t.rtag = 0 otherwise; and (iii) sign indicates
whether an interaction occurs between the L-subnet and the
R-subnet. If t.sign = 1, then an interaction has occurred;
otherwise, no interaction has occurred.

(3)F is a collection of arcs representing a flow relationship,
and F ⊆ (P× T) ∪ (T × P) and P ∩ T = ∅,P ∪ T 6= ∅.

(4) The initial state s0 represents the starting point of the
search path in 6, where s0 ∈ P.

(5) The final state sf represents the ending point of the
search path in 6, where sf ∈ P.

(6) V represents the positive literal set of a Boolean expres-
sion, while V̄ represents the corresponding negative literal
set, and P = V ∪ V̄ ∪ {s0, sf }.

(7) B = {0, 1} represents a finite set of truth values for the
variables in V .
(8) L = {ltag, rtag, sign, intertag} is the label set, where

intertag is the global label in 6.
(9) δ : L → B is a labeling function.
(10) E is an event set, in which each event denotes a firing

of an enabled transition.
(11) In and Out are the input and output relationship

sets representing the input and output actions related to the
transitions, respectively, and In ⊆ (P ∪ E) × T and Out ⊆
T × (P ∪ E).
An OBLDPN 6 is an ordered binary digraph divided into

a left sub-OBLDPN (L-subnet for short) denoted by6l and a
right sub-OBLDPN (R-subnet for short) denoted by6r . Two
transitions from the left and right subnets may have the same
left and right children. In6l , except for s0 and sf , the literal in
each place is a negative literal. In6r , except for sf , the literal
in each place is a positive literal. All literal places in 6l
and 6r are arranged in lexicographical order from the initial
state s0 to the final state sf . The OBLDPN 6 of the Boolean
expressions involving five variables is shown in Fig. 1. The
dot circle in transition indicates the sign of the transition, that
is, t.sign = 1.

B. DYNAMIC BEHAVIOR OF OBLDPN
Let •t = {p|(p, t) ∈ F ∧ p ∈ P} and t• = {p|(t, p) ∈ F ∧ p ∈
P ∧ (p = t.lchild ∨ p = t.rchild)} in an OBLDPN 6 be the
precursor literal set and the successor literal set of transition t ,
respectively, where the successor literals of t are t.lchild and
t.rchild . Let •p = {t|(t, p) ∈ F∧ t ∈ T ∧p 6= s0∧(t.lchild =
p∨ t.rchild = p)} and p• = {t|(p, t) ∈ F∧ t ∈ T ∧p 6= sf } be
the input transition set and the output transition set of literal p,
respectively. The pre- and post- conditions that fire transition
t are represented by t.pre and t.post , respectively, where
t.pre = (t.ltag, t.rtag, t.sign, intertag) ∈ L, but t.post =
(intertag = 0, t.rchild = 0) /∈ L. The firing condition
of transition t is determined by its pre-conditions and post-
conditions. The behavior of an OBLDPN 6 is achieved by
firing all transitions. The behavior of transition t is described
as follows:

(1) If t.ltag = 0 and t.rtag = 1, then transition t is fired
along its right-child place. At this point, t.rchild is assigned
to 1. If t is in 6l , that is, intertag = 1, then intertag is
assigned to 0. The pre- and post-conditions of transition t are
represented as t.pre = (t.ltag = 0, t.rtag = 1, t.sign =
0, intertag = 1or0) and t.post = (intertag = 0, t.rchild =
1), respectively.

(2) If t.ltag = 1 and t.rtag = 0, then transition t is fired
along its left-child place. The pre- and post- conditions of t
are written by t.pre = (t.ltag = 1, t.rtag = 0, t.sign =
0, intertag = 1or0) and t.post = (intertag = 1, t.rchild =
0), respectively.

174520 VOLUME 8, 2020

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

(3) If t.ltag = 0 and t.rtag = 0, then transition t is
fired, and (i) if t.sign = 1 and intertag = 1, then t is
fired along its right-child place. The right child t.rchild is
assigned to 1 and intertag to 0. Then, we have t.pre =
(t.ltag = 0, t.rtag = 0, t.sign = 1, intertag = 1) and
t.post = (intertag = 0, t.rchild = 1); (ii) If t.sign = 1
and intertag = 0, then t is fired along its left-child place.
The left child t.lchild is assigned to 0 and intertag to 1. Then,
t.pre = (t.ltag = 0, t.rtag = 0, t.sign = 1, intertag = 0)
and t.post = (intertag = 1, t.lchild = 0); (iii) If t.sign = 0
and intertag = 1, then t is fired along its left-child place
and t.lchild is assigned to 0. However, the value of intertag
does not change. Therefore, t.pre = (t.ltag = 0, t.rtag =
0, t.sign = 0, intertag = 1) and t.post = (intertag =
1, t.lchild = 0); and (iv) If t.sign = 0 and intertag =
0, then t is fired along its right-child place and t.rchild is
assigned to 1. However, the value of intertag does not change.
Consequently, t.pre = (t.ltag = 0, t.rtag = 0, t.sign =
0, intertag = 0) and t.post = (intertag = 0, t.rchild = 1)
are obtained.

(4) If t.ltag = 1 and t.rtag = 1, then transition t is
no longer fired, the test path scan ends, and the test path
is obtained. If intertag = 1 and (t.rchild)•.sign = 1 or
intertag = 0 and (t.lchild)•.sign = 1, then the OBLDPN 6
ends. The signs in all transitions of 6l and 6r are alternately
presented, as shown by the dot circles in Fig. 1.

The behavior function ρ of an OBLDPN 6 maps a tran-
sition to all possible sets of the developed scenarios. Let
5 = {π |π : V → B} be a scenario set and the behavior
function ρ be ρ : T → 25, which is expressed as

ρ(ti) = (ti.pre ∧ ti.post) ∧ (∪
j
ρ(tj))|•tj=ti• ,

where •tj = ti• represents •tj = ti.lchild∨•tj = ti.rchild , and
(∪
j
ρ(tj))|•tj=ti• indicates that all Boolean variables and labels

(including all local labels and global labels) have values of 0
or 1 in the scenario set ∪

j
ρ(tj) of the left- and right-child

places of transition ti.
For example, in Fig. 1, the behavior function ρ of the

OBLDPN 6 of the second term ab̄d in (5) can be given by

ρ(t0) = (t0.ltag = 0, t0.rtag = 1, t0.sign = 0, intertag

= 1) ∧ (intertag = 0, a = 1) ∧ ρ(t2)|•t2=t0.rchild ,

ρ(t2) = (t2.ltag = 1, t2.rtag = 0, t2.sign = 0, intertag

= 0) ∧ (intertag = 1, b = 0) ∧ ρ(t3)|•t3=t2.lchild ,

ρ(t3) = (t3.ltag = 0, t3.rtag = 0, t3.sign = 0, intertag

= 1) ∧ (intertag = 1, c = 0) ∧ ρ(t5)|•t5=t3.lchild
∪ (t3.ltag = 0, t3.rtag = 0, t3.sign = 1, intertag

= 1) ∧ (intertag = 0, c = 1) ∧ ρ(t6)|•t6=t3.rchild ,

ρ(t5) = (t5.ltag = 0, t5.rtag = 1, t5.sign = 0, intertag

= 1) ∧ (intertag = 0, d = 1) ∧ ρ(t8)|•t8=t5.rchild ,

ρ(t6) = (t6.ltag = 0, t6.rtag = 1, t6.sign = 0, intertag

= 0) ∧ (intertag = 0, d = 1) ∧ ρ(t8)|•t8=t6.rchild ,

ρ(t8) = (t8.ltag = 0, t8.rtag = 0, t8.sign = 1, intertag

= 0) ∧ (intertag = 1, e = 0) ∧ ρ(t9)|•t9=t8.lchild
∪ (t8.ltag = 0, t8.rtag = 0, t8.sign = 0, intertag

= 0) ∧ (intertag = 0, e = 1) ∧ ρ(t10)|•t10=t8.rchild .

In an OBLDPN, if the precursor literal •t of a transition t
obtains a token, then transition t is called enabled. If a tran-
sition is enabled, then its precursor literal contains a token;
otherwise, it does not contain any token. An enabled tran-
sition that meets its pre- and post-conditions is called a fired
transition, which is also called a label-driven transition.When
a transition t fires, it removes the token from its precursor
literal •t and adds a token to the successor literal t• it outputs,
thereby changing the system state. The behavior function ρ
of the above OBLDPN 6 provides the label of each enable
transition. When s0 obtains the token, these transitions will
be fired one by one in accordance with the label sequence
starting from transition t0, thereby yielding the test paths
of (3).

Definition 5. (test path) Given a label sequence
L ′ =< l0, li1 , li2 · · · , lin >, the transition sequence
T ′ =< t0, ti1 , ti2 , · · · , tin > can be fired successively
with respect to L ′, where n is the number of all vari-
ables in a Boolean expression. A test path (TPH) of
(3) based on the OBLDPN 6 is defined as TPH =<

s0, li1/ti1/xi1 , li2/ti2/xi2 , · · · , lin/tin/xin , lin+1/tin+1/sf >,
where lj/tj/xj, j = i1, i2, · · · , in indicating that the transition
tj satisfying its pre-condition tj.pre and post-condition tj.post
under the label lj can be fired. Thus, the value of the left child
(or right child) xj is equal to 0 (or 1), where xj = tj.lchild (or
tj.rchild).
A test case or test point of (2) under a TPH is described

as TC =< xi1 = αi1 , xi2 = αi2 , · · · , xin = αin >, which
is abbreviated as TC = αi1αi2 · · ·αin , where αij ∈ B and
αi1αi2 · · ·αin ∈ UCTP(f) ∪ NCFP(f) ⊂ Bn. A test suite (TS)
is a subset of n-dimensional Boolean space Bn and TS =
{TC|TC ∈ UCTP(f) ∪ NCFP(f)} ⊂ Bn.
Definition 6 (Configuration): In the TPH of (3), the vari-

able sequence θ =< xi1xi2 · · · xin−ki > composed of variables
not occurring in (3) is called the complement of (3), in which
the variables in θ are sorted in lexicographic order. An assign-
ment θ (η) =< xi1 = αi1 , xi2 = αi2 , · · · , xin−ki = αin−ki >

of a variable sequence θ of (3) is called a complementary
value or a configuration of (3), where η = αi1αi2 · · ·αin−ki
and αij ∈ B, 1 ≤ j ≤ n − ki. The configuration length |η| is

represented as |η| =
n−ki∑
j=1

αij .

Definition 7 (Constraint True (or False) Point): In the
OBLDPN 6 of (2), a true point test path (TPTPH) of (3) is a
TPH satisfying pi(TC) = 1. A false point test path (FPTPH)
for (3) is generated by negating the j-th literal in the TPTPH
of (3) in that pi(TC) = 0, but pi,j̄(TC) = 1. A constraint
TPTPH (or constraint FPTPH) of (3) is a TPTPH (or FPTPH)
that satisfies |η| = 1 or |η| = n − ki − 1, where η ⊂ TC .
We call TC = α1α2 · · ·αn a constraint true point (CTP) (or

VOLUME 8, 2020 174521

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

constraint false point (CFP)). The CTP set and CFP set of (3)
are expressed as follows, respectively.

CTPi(f) = {TC|pi(TC) = 1, η ⊂ TC,

|η| = 1orn− ki − 1, |pi| = ki},

CFPi,j̄(f) = {TC|pi(TC) = 0, pi,j̄(TC) = 1, η ⊂ TC,

|η| = 1orn− ki − 1, |pi| = ki, 1 ≤ j ≤ ki}.

The UCTP set UCTPi(f) (or NCFP set NCFPi,j̄(f)) of (3) is
the set of test points in CTPi(f) (or CFPi,j̄(f)) that satisfy
Definition 1 (or Definition 2).

For example, the variable sequence θ =< ce > is a com-
plement of the second term ab̄d in (5). ab̄d has four configu-
rations, namely, η= 00, 01, 10, and 11, and the configuration
lengths are η = 0, 1, 1, and 2, respectively. According to
the OBLDPN 6, ab̄d has four TPTPHs, namely, tp1 =<
s0, l0/t0/a, l2/t2/b̄, l3/t3/c̄, l5/t5/d, l8/t8/ē, l9/t9/sf >,
tp2 =< s0, l0/t0/a, l2/t2/b̄, l3/t3/c̄, l5/t5/d, l8/t8/e, l10
/t10/sf >, tp3 =< s0, l0/t0/a, l2/t2/b̄, l3/t3/c, l6/t6/d,
l8/t8/ē, l9/t9/sf >, and tp4 =< s0, l0/t0/a, l2/t2/b̄, l3
/t3/c, l6/t6/d, l8/t8/e, l10/t10/sf >. However, only tp2 and
tp3 are two constraint TPTPHs of ab̄d . We can obtain
CTP2(f0) = {10011, 10110}. Similarly, CTP2,j̄(f0) can be
obtained, in which 1 ≤ j ≤ 3.

IV. GENERATING AUTOMATICALLY THE CTFTP TEST SET
A. CTFTP TEST SET GENERATION ALGORITHM
According to OBLDPN, developing a test suite auto-
generation algorithm for Boolean expressions is essential.
We consider testing (3) and develop an algorithm called
configuration-based IDNF test generation that generates
automatically the test set UCTPi(f) and NCFPi,j̄(f) of (3).
The algorithm first generates the TPTPH of (3) to obtain the
sets TPi(f) and CTPi(f). By negating the j-th literal in the
TPTPH of (3), ki FPTPHs are derived to obtain sets FPi,j̄(f)
and CFPi,j̄(f), where 1 ≤ j ≤ ki. Finally, the set CTFTPi(f)
is constructed. The configuration-based IDNF test generation
algorithm that generates the setsUCTPi(f) andNCFPi,j̄(f) is
proposed as Algorithm 1.

In Algorithm 1, the transitions in the OBLDPN 6 satisfy-
ing the pre- and post-conditions are fired to obtain the TPTPH
set and corresponding truth point test case set of (3). The
2n−ki configurations are obtained for each TPTPH. A CTP is
obtained when the corresponding configuration length is 1 or
n−ki−1. The corresponding ki CFPs are obtained by negating
the j-th literal occurring in (3). Repeat Steps 1 to 4 to generate
test sets TPi(f), CTPi(f), FPi,j̄(f), and CFPi,j̄(f), and then
generate test sets UCTPi(f), NCFPi,j̄(f), and CTFTPi(f)
of (3), where j = 1, 2, · · · , ki. Algorithm 1 can be terminated.
Its time complexity is O(2n−ki).
Example 1: Consider (2) that can be written as a general

Boolean expression, that is,

G0 = a(bc+ b̄d)+ e. (6)

Algorithm 1 Configuration-Based IDNF Test Generation
Algorithm
Input: OBLDPN 6 of (2) with n variables.
Output: UCTPi(f), NCFPi,j̄(f), and CTFTPi(f).
1: Initialize the sets TPi(f), UTPi(f), FPi,j̄(f), NFPi,j̄(f),
CTPi(f), CFPi,j̄(f), UCTPi(f), and UCFPi,j̄(f) to the
empty set ∅.

2: In 6, any transition tij that satisfies its pre-condition
tij .pre and post-condition tij .post will be fired.
If all transitions satisfy their pre- and post-
conditions, then these transitions will be fired in
turn from the initial state s0 to the final state sf .
A TPTPH path of (3) is generated. Let TPTPi =<
s0, li1/ti1/xi1 , li2/ti2/xi2 , · · · , lin/tin/xin , lin+1/tin+1
/sf >. The corresponding test case TCi = αi1αi2 · · · αin
can also be obtained, where αij ∈ B and 1 ≤ j ≤ n.

3: Suppose θj is the complement of (3). Let θj = ∅. In 6,
if tij .pre = (tij .ltag = 0, tij .rtag = 0, tij .sign =
1or0, intertag = 1or0) and tij .post = (intertag =
0, tij .rchild = 1), then θj = θj ∪ {xij}; if tij .pre =
(tij .ltag = 0, tij .rtag = 0, tij .sign = 0or1, intertag =
1or0) and tij .post = (intertag = 1, t.lchild = 0), then
θj = θj ∪ {x̄ij}. The complement θj =< xj1xj2 · · · xjn−ki >
and 2n−ki configuration ηj of (3) can be obtained, that is,
ηj = αj1αj2 · · ·αjn−ki , where αjk ∈ B, 1 ≤ j ≤ 2n−ki , and
1 ≤ k ≤ n− ki.

4: A set {TCi} involving 2n−ki test cases is generated by
assigning the truth values of xjk in θj contained in TPTPi
by using all configurations of (3). For each tci ∈ {TCi},
if tci /∈ TPi(f), then TPi(f) = TPi(f) ∪ {tci}; if the
corresponding configuration length

∣∣ηj∣∣ is 1 or n− ki− 1
and tci /∈ CTPi(f), then CTPi(f) = CTPi(f) ∪ {tci}.
Similarly, we can derive the ki FPTPHs of (3) by negating
the j-th literal appearing in (3) in the above TPTPH,
thereby obtaining sets FPi,j̄(f) and CFPi,j̄(f), where 1 ≤
j ≤ ki.

5: For each term ph of (2), where h = 1, 2, · · · ,m, repeat
Steps 1 to 4 to generate TPh(f), CTPh(f), FPh,j̄(f), and
CFPh,j̄(f).

6: Let UCTPi(f) = CTPi(f) − ∪
j6=i
TPj(f) and UTPi(f)

= TPi(f) − ∪
j 6=i
TPj(f). For each j, NCFPi,j̄(f) =

CFPi,j̄(f) −
m
∪
k=1

TPk (f) and NFPi,j̄(f) = FPi,j̄(f) −
m
∪
k=1

TPk (f).

7: If UCTPi(f) = ∅ or NCFPi,j̄(f) = ∅, then select a
point Et from UTPi(f) and a point Et ′ from each NFPi,j̄(f),
j = 1, 2, · · · , ki, in that Et and Et ′ differ only from the truth
value of the j-th literal appearing in (3).

8: Select the test cases in NCFPi,j̄(f) corresponding to the
elements in UCTPi(f) to construct CTFTPi(f).

9: return UCTPi(f), NCFPi,j̄(f), and CTFTPi(f).

174522 VOLUME 8, 2020

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

By calling Algorithm 1, the test cases of the subexpression
(7) are generated.

g = bc+ b̄d . (7)

For the first term bc of (7), the sets CTP1(g), CFP1,1̄(g),
and CFP1,2̄(g) are calculated as

CTP1(g) = {01101, 01110, 01111, 11100, 11101, 11110},

CFP1,1̄(g) = {00101, 00110, 00111, 10100, 10101, 10110},

CFP1,2̄(g) = {01001, 01010, 01011, 11000, 11001, 11010}.

For the second term b̄d of (7), the sets CTP2(g),
CFP2,1̄(g), and CFP2,2̄(g) are computed as

CTP2(g) = {00011, 00110, 00111, 10010, 10011, 10110},
CFP2,1̄(g) = {01011, 01110, 01111, 11010, 11011, 11110},
CFP2,2̄(g) = {00001, 00100, 00101, 10000, 10001, 10100}.

We can obtain the sets UCTPi(g) and NCFPi,j̄(g), where
i, j = 1, 2. Here,

UCTP1(g) = CTP1(g), UCTP2(g) = CTP2(g),

NCFP1,2̄(g) = CFP1,2̄(g), NCFP2,2̄(g) = CFP2,2̄(g),

NCFP1,1̄(g) = {00101, 10100, 10101},

NCFP2,1̄(g) = {01011, 11010, 11011}.

From Algorithm 1, we have

CTFTP1(g) = {(01101, [00101, 01001])} ,

CTFTP2(g) = {(00110, [00100])} .

Algorithm 1 can generate automatically a test suite for
a given IDNF. This test suite can detect LRF effectively.
Therefore, by using fewer test cases, the CTFTP strategy can
detect the same seven types of faults similar to those of the
MUMCUT strategy.

B. TEST-ADEQUACY CRITERIA
The adequacy of a test set is measured against a finite set
of elements. Depending on the adequacy criteria of interest,
the elements can be derived from the OBLDPN 6 of the
tested Boolean expression. If the corresponding coverage
domain depends only on the internal structure of the source
code, then the criterion is a white-box test adequacy criterion,
in which the execution of the program statements can be
detected through branches, loops, and paths [22]. If a path
is a sub-path of at least one of the transition paths of the test
case TC from the initial position to the end position, then the
path is covered by the test case TC . For each path, at least
one test case TC can be used to cover the path called the path
coverage criterion [23]. Here, we consider a path coverage
criterion based on the OBLDPN.
Path Coverage Criterion: The CTFTP test set T is con-

sidered adequate in relation to the OBLDPN 6 if, for each
element of T , each constraint TPTPH and the corresponding
constraint FPTPHs from the initial state s0 to the final state
sf are executed at least once.

The set TS(f) = {UCTP(f),NCFP(f),CTFTP(f)} of (2)
is considered adequate if

(1) each term ph of (2) is covered,
(2) each literal appearing in ph is given a truth value of 1

and 0, and
(3) each test point in TS(f) affects independently the result

of (2) [24].
Example 2: Consider the first term abc of (5). The vari-

able sequence θ1 =< de > is a complement of abc.
Then, four TPTPHs for abc are generated as tp1 =<
s0, l0/t0/a, l2/t2/b, l4/t4/c, l6/t6/d̄, l7/t7/ē, l9/t9/sf >,
tp2 =< s0, l0/t0/a, l2/t2/b, l4/t4/c, l6/t6/d̄, l7/t7/e, l10
/t10/sf >, tp3 =< s0, l0/t0/a, l2/t2/b, l4/t4/c, l6/t6/d,
l8/t8/ē, l9/t9/sf >, and tp4 =< s0, l0/t0/a, l2/t2/b, l4
/t4/c, l6/t6/d, l8/t8/e, l10/t10/sf >. However, only tp1 and
tp3 are two unique TPTPHs, and tp3 is a unique constraint
TPTPH. The sequence of transitions fired by tp3 is Ttp3 =<
t0, t2, t4, t6, t8, t9 >.
On the basis of Definition 7, we can obtain the corre-

sponding constraint FPTPHs fp31, fp32, and fp33 of tp3; the
corresponding transition sequences fired by the constraint
FPTPHs are denoted as Tfp31 =< t0, t1, t4, t6, t8, t9 >,
Tfp32 =< t0, t2, t3, t6, t8, t9 >, and Tfp33 =< t0, t2, t4, t5,
t8, t9 >, respectively. The transition t10 is not covered.
We select the TPTPH tp2 as the constraint TPTPH, and
its transition sequence is Ttp2 =< t0, t2, t4, t6, t7, t10 >.
The transition sequences of the corresponding constraint
FPTPHs fp21, fp22, and fp23 are denoted as Tfp21 =<
t0, t1, t4, t6, t7, t10 >, Tfp22 =< t0, t2, t3, t6, t7, t10 >, and
Tfp23 =< t0, t2, t4, t5, t7, t10 >, respectively. Therefore,
t10 is covered. Then, the test suite of abc is given by
TS1(f0) = {UCTP1(f0),NCFP1,1̄(f0),NCFP1,2̄(f0),
NCFP1,3̄(f0), CTFTP1(f0)}, which meets the path coverage
criteria.

V. GENERATING AUTOMATICALLY TEST SETS FOR
GENERAL BOOLEAN EXPRESSIONS
We extend the proposed CTFTP strategy to generate a test
suite of general Boolean expressions, such as (1). Suppose
the i-th term fi(Ex) of (1) is written as

fi(Ex) = gi1g
i
2 · · · g

i
τi
, 1 ≤ i ≤ k, (8)

where τi is the number of factors consisting of literals and
subexpressions and gij, 1 ≤ j ≤ τi is a literal or a
sub-expression in the IDNF. For example, in (6), the first
term a(bc + b̄d) contains a single literal a and a subexpres-
sion bc + b̄d , but the second term consists only of a single
literal e.

We consider the test generation of (8), which contains the
subexpressions gij1 , g

i
j2
, · · · , gijv , where 1 ≤ j1, j2, · · · , jν ≤

τi, in the form of IDNF. After replacing the subexpressions
gij1 , g

i
j2
, · · · , gijv with the literals x

i
j1
, x ij2 , · · · , x

i
jv occurring in

gij1 , g
i
j2
, · · · , gijv , respectively, Eq. (8) is transformed into a

new simple conjunctive form as

qi(Ex) = gi1g
i
2 · · · g

i
j1−1x

i
j1g

i
j1+1 · · ·

gij2−1x
i
j2g

i
j2+1 · · · g

i
jν−1x

i
jνg

i
jν+1 · · · g

i
τi
, (9)

VOLUME 8, 2020 174523

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

Algorithm 2 General Boolean Expression Test Generation
Algorithm Based on Literal Substitution
Input: OBLDPN 6 of (1).
Output: UCTPi(G), NCFPi,j̄(G), and CTFTPi(G).
1: Replace the subexpressions in (8) with the corresponding

literals to obtain (9).
2: In (8), suppose the subexpression gijh contains ku items,

where the u-th item yjhu involves kw literals. For yjhu ,
call Algorithm 1 to generate the sets UCTPu(gijh) and
NCFPu,w̄(gijh), where w represents the sequence number

of the literals appearing in yjhu and 1 ≤ u ≤ ku and
1 ≤ w ≤ kw. On the basis of Definitions 1 and 2,
the UCTP set UCTPjh (g

i
jh) and NCFP set NCFPi,j̄h (g

i
jh)

for gijh are given by UCTPjh (g
i
jh) =

ku
∪
u=1

UCTPu(gijh) and

NCFPi,j̄h (g
i
jh) =

ku
∪
u=1

kw
∪
w=1

NCFPu,w̄(gijh), respectively.

3: For (9), use Algorithm 1 to generate the sets
UCTPi(qi) and NCFPi,j̄(qi), where j = 1, 2, · · · ,
j1, j2, · · · , jv, · · · , τi.

4: The set UCTPi(G) for (8) is given by

UCTPi(G) = UCTPi(qi) ∩ (
v
∪
h=1

UCTPjh (g
i
jh)).

5: If gij represents the literal occurring in (8), then the set
NCFPi,j̄(G) is written by

NCFPi,j̄(G) = NCFPi,j̄(qi) ∩ (
v
∪
h=1

UCTPjh (g
i
jh)),

where j 6= j1, j2, · · · , jv. If gij represents the subexpres-
sion gijh appearing in (8), then the set NCFPi,j̄(G) is
written by

NCFPi,j̄(G) = NCFPi,j̄h (qi) ∩ (NCFPi,j̄h (g
i
jh)

∪ (
h−1
∪
z=1

UCTPjz (g
i
jz)) ∪ (

v
∪

z=h+1
UCTPjz (g

i
jz))),

whereUCTPjz (g
i
jz) =

kσ
∪
σ=1

UCTPσ (gijz), kσ is the number

of terms in gijz , and j = j1, j2, · · · , jv.
6: The test cases in NCFPi,j̄(G) corresponding to the

elements in UCTPi(G) are selected to construct
CTFTPi(G).

7: return UCTPi(G), NCFPi,j̄(G), and CTFTPi(G).

where the literal x ijh , h = 1, 2, · · · , ν, is the last literal that
appears in the subexpression gijh in lexicographic order, but its
negated literal x̄ ijh does not occur in g

i
jh . If x

i
jh and x̄

i
jh occur in

gijh , then the previous literal x ijh−1 occurring in gijh is selected
in lexicographic order. However, x ijh−1 cannot appear in gijh ,
and so on. Subsequently, we present an algorithm called the
general Boolean expression test generation algorithm based
on literal substitution to generate automatically the test suite
for general Boolean expressions. The proposed algorithm is
described as Algorithm 2.

In Algorithm 2, for each subexpression in (8), We replace
the subexpression with the last literal appearing in (8) to
obtain (9). For (9), we call Algorithm 1 to determine the
UCTP set UCTPi(qi) and the NCFP set NCFPi,j̄(qi). Algo-
rithm 1 is used for each term of each subexpression gijh in
(8) to generate the sets UCTPjh (g

i
jh) and NCFPi,j̄h (g

i
jh). The

intersection of the set UCTPi(qi) and the sets UCTPjh (g
i
jh)

of the v subexpressions gijh yields UCTPi(G) for (8). If (8)
contains no subexpressions, then the intersection of the set
NCFPi,j̄(qi) and the set UCTPjh (g

i
jh) of the v subexpressions

gijh is generated. If (8) contains subexpressions, then the
intersection of the sets NCFPi,j̄(qi) and the union of all sets
NCFPi,j̄h (g

i
jh) and UCTPjz (g

i
jz) of the v − 1 sub-expressions

gijz other than the jh-th sub-expression gijh , which denotes the
set NCFPi,j̄(G) of the j-th literal or subexpression appearing
in (8), is obtained.

Algorithm 2 can be terminated and its time complexity is
O((k − µ) · 2n−ki + µ · ν · ku · 22n−τi−kw), where µ is the
number of terms containing at least one subexpression in (1).
For the µ-th terms, the test cases for v subexpressions need to
be generated, and thus, the time complexity isO(µ ·ν ·2n−τi).
For the subexpression gijh involving the ku term, the test cases
are generated for the term containing kw literals, and thus,
the time complexity is O(ku · 2n−kw). Therefore, the total
complexity of the test case generation of µ items in (1) is
O(µ · ν · ku · 22n−τi−kw).
Example 3: Consider the test generation of (6). We replace

the subexpression with the last literal d in the subexpression
g = bc+ b̄d and obtain

G̃0 = ad + e. (10)

Algorithm 2 is used to generate the UCTP set UCTP1(G̃0),
and the corresponding NCFP sets NCFP1,1̄(G̃0) and
NCFP1,2̄(G̃0) for the first term ad of (10). We have

UCTP1(G̃0) = {10110, 11010, 10010, 11110},

NCFP1,1̄(G̃0) = {00110, 01010, 00010, 01110},

NCFP1,2̄(G̃0) = {10100, 11000, 10000, 11100}.

In Example 1, the set UCTPi(g) and NCFPi,j̄(g), where
i, j = 1, 2, are yielded. Then, the sets UCTP1(G0),
NCFP1,1̄(G0), and NCFP1,2̄(G0) of (6) are computed as

UCTP1(G0) = UCTP1(G̃0) ∩ (UCTP1(g)

∪ UCTP2(g)) = {10110, 10010, 11110},

NCFP1,1̄(G0) = NCFP1,1̄(G̃0) ∩ (UCTP1(g)

∪ UCTP2(g)) = {00110, 01110},

NCFP1,2̄(G0) = NCFP1,2̄(G̃0) ∩ (NCFP1,1̄(g)

∪ NCTP1,2̄(g) ∪ NCTP2,1̄(g) ∪ NCTP2,2̄(g))

= {10100, 10000, 11000}.

The sets UCTP2(G0) and NCFP2,1̄(G0) for the second
term e of (6) are given by

UCTP2(G0) = {00011, 00101, 01001, 01111, 10001},

174524 VOLUME 8, 2020

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

TABLE 2. Comparison of Different Test Strategies for the TCAS II Expressions.

NCFP2,1̄(G0) = {00010, 00100, 01000, 01110, 10000}.

Then, we obtain

CTFTP1(G0) = {(10110, [00110, 10100]), (11110,

[01110, 11100])},

CTFTP2(G0) = {(00011, [00010]), (01111, [01110])}.

Algorithm 2 can generate automatically test cases for a
given general Boolean expression. The CTFTP strategy can
detect five types of faults, that is, ENF, LNF, TOF, ORF, and
LOF, of general Boolean expressions. However, LIF and LRF
cannot always be detected.

VI. EMPIRICAL RESULTS
We report an empirical study on the CTFTP testing strategy
in this section. We use the same 20 Boolean expressions as
in [4], which originated from the TCAS II specification of
the aircraft collision avoidance system [15], to facilitate the
comparison of results as those in [2] and [21]. We transform
each TCAS II expression into an equivalent expression in
the form of IDNF. The CTFTP test set of the IDNFs can be
generated using Algorithm 1. Table 2 presents a comparison
of the sizes of the four test sets, namely, CTFTP, MUMCUT,
MAX-A, and MAX-B test sets, of the IDNF expressions.
In Table 2, the CTFTP test set and the MAX-A and MAX-B
test sets are generated by Algorithm 1 and the percentage of
the size of the test sets relative to the size of the exhaustive test
set is exhibited. For comparison, we list the MUMCUT test
set generated by the G-CUN and G-UCNmethods, which are
two greedy incremental expansion methods, and reproduce
the MAX-A and MAX-B test sets from Table 2 presented
in [21].

In Table 2, Columns 2-4 list the number of variables in the
expression, the length of the expression, and the weighted
average of the number of literals that do not appear in
all terms. The percentage of the CTFTP test set for the
20 Boolean expressions ranges from 0.70% to 35.57%, with
an average value of 11.60%. The average percentage of
the CTFTP test set is smaller than the average percentage
of the MUMCUT test set generated by the G-CUN and
G-UCN methods (11.86% and 11.96%, respectively). The
size of the CTFTP test set is only slightly larger for the
MUMCUT test set generated by the G-CUN and G-UCN
methods in the two Boolean expressions of Specs. T01 and
T19; however, the two test sets have the same size for
Specs. T09, T10, T11, and T12. For the remaining Boolean
expressions, the size of the CTFTP test set is relatively
small.

As shown in Table 2, by using Algorithm 1, the percentage
of the MAX-A test set of the 20 Boolean expressions ranges
from 2.9% to 87.5%, with an average of 37.41%, while
the percentage of the MAX-B test set ranges from 3.14%
to 93.75%, with an average of 39.91%. For the MAX-A
and MAX-B test strategies, the average percentages of the
two test sets generated by Algorithm 1 are smaller than the
average percentages of the two test sets generated in [21]
(40.66% and 48.22%, respectively). For (3), we only select
test points in which the configuration length |η| of (3) satisfies
|η| = 1 or |η| = n − ki − 1. Theoretically, the maximum
numbers of test points in the UCTPi(f) test set and the
NCFPi,j̄(f) test set of (3) are 2(n − ki) and 2ki(n − ki),
respectively. However, for the MAX-A test strategy, the max-
imum numbers of test points in the UTPi(f) test set and the
NFPi,j̄(f) test set of (3) are theoretically 2n−ki and ki · 2n−ki ,
respectively.

VOLUME 8, 2020 174525

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

TABLE 3. CTFTP Test Suites of Several Boolean Expressions.

Weyuker et al. [4] reported that the MAX-A test set con-
tains all UTPs and all NFPs associated with each term. When
constructing the MAX-B test set, in addition to selecting
all the elements in the MAX-A set test, one needs to select
dn− kie points from the set of overlapping true points of
size 2n−ki and dn− kie points from the set of remaining false
points of size 2n−ki . Theoretically, the percentage is smaller
when the Boolean expression contains more variables [21].
However, the size of a Boolean expression test set is related
to the following factors: (1) the number of variables, (2)
the length of the expression, and (3) the maximum and
minimum number of literals that do not occur in all items.
The maximum and minimum numbers are represented by
the weighted average (i.e., mathematical expectation) of the
number of literals that do not appear in all items. The size of
a Boolean expression is determined by the expression length
and the number of variables, in which the expression length
is determined by the number of literals appearing in all terms
and the number of terms. Table 2 shows the effect of the
abovementioned three factors on the size of the four test sets.

(1) In general, when the number of variables is the same,
the longer is the length, the more instances in which the four
test cases are required, but there are exceptions. For Specs.
T03, T13, and T16 with 12 variables, T03 has the largest test
set. However, for Specs. T08 and T19 with eight variables,
the length of T19 is smaller than that of T08, but the average
number of non-appearing literals in T19 is larger than that in
T08. Thus, the T19 test set is larger than the T08 test set.

(2) For the CTFTP and MUMCUT strategies, when
the length of the Boolean expression is nearly the same,
the higher is the number of variables, the smaller is the
percentage of the test cases. This trend is consistent with the
conclusion in [21]. For Specs. T01, T05, T08, and T17, Spec.
T17 contains the most variables. Thus, the percentage of the
CTFTP and MUMCUT test cases for T17 is the smallest.

(3) In the case of the same number of variables, if the length
does not change excessively, then the larger is the average
number of literals that do not appear in all terms, the larger
are the four test sets. For Specs. T09 and T20 with seven
variables, the length of T20 is slightly smaller than that of
T09, but more literals that do not appear on the average in
T20 than in T09. Thus, the four test sets of T20 are larger
than those of T09. Specs. T08 and T19 are similar.

In this experiment, we present the CTFTP test suites of
several Boolean expressions, as shown in Table 3. The expres-
sion S3 represents Spec. T04, while S4 corresponds to (5). The
expression S2 is a general form of S1. The following results
can be deduced from Table 3:

(1) The size of the CTFTP test set of a Boolean expres-
sion is related to the maximum and minimum numbers of
literals that do not appear in all sub-expressions. The larger
is the average number of literals that do not occur in the
subexpressions of a Boolean expression, the smaller is the
CTFTP test set of the expression. S3 and S4 have the same
three factors abovementioned, but the average number of
literals that do not occur in their subexpressions is different,
which leads to different numbers of test cases. In S3 and S4,
the average number of non-appearing literals of the respective
sub-expressions b̄+ c̄ and bc+ b̄d are 4 and 3, respectively.
Therefore, the CTFTP test set of S4 is smaller than S3.
(2) The CTFTP test set of a general Boolean expression

is larger than its corresponding IDNF test set. For example,
the CTFTP test set of S2 is larger than that of S1. In Example 3,
the CTFTP test set of (6) contains 16 test cases, which is
larger than the test set of S4.

VII. RELATED WORK
Several strategies are used for the fault detection and anal-
ysis of Boolean expressions. Tai [25] extended the work
in [3] to detect faults including BORs, Boolean and rela-
tional operators (BRO), and Boolean and relational expres-
sions (BRE), and devised BOR-, BRO-, and BRE-adequacy
testing strategies to generate the corresponding test cases.
Yu et al. [21] extended and complemented the theoretical
work in [7] to evaluate the cost-effectiveness of testing exper-
imentally the IDNF by means of the MUMCUT test strategy.
Their experimental results showed that the greedy CUN and
UCN methods are better than other methods in generating
smaller test sets, and the test set sizes are linearly correlated
with the length of IDNFs. Chen et al. [26] developed a
web-based Boolean expression fault-based test case genera-
tion tool called BEAT by using the MUMCUT test strategy.
Kaminski et al. [27] extended the work in [7] to cover term
insertion fault, term negation fault, semantic test criteria, and
MUTP/NFP test criteria. Kaminski and Ammann [28] pre-
sented a new logic criterion called the Minimal-MUMCUT

174526 VOLUME 8, 2020

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

criterion to reduce the MUMCUT test set size in minimum
DNF. The experimental study that used the TCAS II spec-
ifications determined that if feasibility is not considered,
then Minimal-MUMCUT will reduce the test set size to a
few percentages of the required test set size without sacri-
ficing fault detection. However, those efforts focused only
on improving the existing test adequacy criteria to reduce
test set size and ignored the randomness and repeatability
of selecting MUMCUT test cases. By contrast, the proposed
CTFTP strategy in the present work is used to test the IDNF
of Boolean expressions and ensure that the same seven types
of faults similar to those of the MUMCUT strategy can be
detected, but the CTFTP test set is smaller. Our experimental
results show that the average size of the CTFTP test set is
1.7 and 2.5 percentage points smaller than those of G-CUN
and G-UCN, respectively.

Researchers have explored in recent years some test gen-
eration techniques for Boolean expressions. Feng et al. [29]
explored the application of four test strategies (partition
strategy, decision table-based test, basic MI strategy, and
fault-based test) in table-based specifications. They com-
pared the four test strategies on a mathematical basis by
means of a formal and precise definition of the subsumption
relationship and showed in most cases that the basic MI
strategy was the strongest whereas the partition strategy was
the weakest. Kalaee and Rafe [30] proposed a new method
to test Boolean specifications based on cause-effect graphs to
generate pairwise tests. Their method used a reduced ordered
binary decision diagram to reduce the Boolean specification
and utilized a particle swarm optimization algorithm to select
the optimal test suite, which lowered the test cost and test
time. Li et al. [31] proposed an SMT-based MI strategy with
high spatiotemporal performance to improve the automatic
testing technology of large Boolean expressions in the field
of interlocking systems. Brida and Scilingo [32] proposed
a Boolean expression expander to evaluate the adequacy of
a test suite. Their proposed expander was a novel mutation
operator focusing on Boolean expressions, and it operated by
strengthening and weakening such expressions. An overview
of the research efforts regarding software combination testing
with binary inputs is presented in [33]. However, those studies
were used mainly for the fault detection of special Boolean
expressions but could not generate directly the test suites
for general Boolean expressions. On the basis of the CTFTP
strategy, we propose in the present work an algorithm called
general Boolean expression test generation algorithm based
on literal substitution that generates automatically a test suite
of general Boolean expressions.

Paul et al. [34] proposed a singular true position cov-
erage strategy to detect LIFs in general Boolean expres-
sions by using approximately half of the test cases with
the modified condition/decision coverage (MC/DC) strategy.
The MC/DC strategy, a structural code coverage metric, was
originally defined in the DO-178B standard and intended
to be an efficient coverage metric for evaluating software
testing processes that incorporate decisions with complex

Boolean expressions [35]. By considering the MC/DC crite-
rion, Jones and Harrold [36] proposed two new algorithms
for reducing test suites, break-down reduction and build-up
reduction algorithms, and a new algorithm for test-suite
prioritization. The experimental studies that used TCAS II
specifications indicated that the proposed test suite reduc-
tion techniques could reduce effectively the test suites while
providing acceptable performance. Gay et al. [37] used
four real-world avionics systems to explore the effects of
an implementation structure on the efficiency of test suites
meeting the MC/DC criterion. Their experimental results
demonstrated that the test suites that achieved MC/DC over
implementations with structurally complex Boolean expres-
sions were generally larger and more effective than the test
suites that achieved MC/DC over functionally equivalent but
structurally simpler implementations. Ayav [38] proposed
a Fourier analysis-based prioritization method for MC/DC
test suites. Under certain fault hypotheses, the strict negative
correlation between the fault exposure potentials of the test
cases and the influence values of their associated input con-
ditions allowed for easy the ordering of the test cases without
extensive mutation analysis. Kitamura et al. [39] developed
an algorithm based on SAT solving to generate a minimum
MC/DC test suite of Boolean expressions within a reasonable
time. However, the MC/DC strategy has weak fault detection
capabilities. Finding fault types in complex Boolean expres-
sions is not easy, and it requires an important amount of time.
Yu and Lau [24] compared MC/DC, MUMCUT, and several
other related coverage criteria for logical decisions by means
of formal and empirical analysis. Their results showed the
MC/DC test sets were effective, but some faults might still be
missed even if they can almost always be detected by a test
set that meets the MUMCUT criterion. In the present study,
the CTFTP test suite has the same fault detection capabilities
similar to the MUMCUT strategy. The CTFTP strategy can
be used to generate automatically the IDNF and general
Boolean expression test cases, and it is suitable for the test
case generation of complex Boolean expressions. The time
complexities of the two proposed test generation algorithms
are O(2n−ki) and O((k − µ) · 2n−ki + µ · ν · ku · 22n−τi−kw).

Petri net and its extended models, such as stochastic
timed Petri net, generalized connected self-loop free Petri
net (S4PR), logic and threshold Petri net, Petri net with
data operations, etc., are widely used in the modeling and
analysis of discrete event scenarios. These models have been
applied to the development of simulation engines for resource
optimal provisioning analysis in emergency healthcare sys-
tems [18], the calculation of emptiable minimal siphon [40],
the design of web service discovery strategy based on user
requirements [41], and data-flow error detection in business
processes [42]. Ding et al. [43] proposed a systematic strategy
with specific algorithms to construct an interactive control
model based on Petri net for human-computer interaction
systems to analyze and control mobile robots. However, those
Petri net models did not involve the expression of Boolean
logic operation characteristics and thus could not be directly

VOLUME 8, 2020 174527

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

applied to Boolean expression test case generation. In the
present study, the OBLDPNmodel is proposed to analyze the
interaction between Boolean transitions and Boolean literals
and generate the test paths for Boolean expressions in view
of obtaining the CTFTP test suite.

VIII. CONCLUSION
In this study, we propose a novel Boolean expression test
generation strategy called the CTFTP strategy, which is based
on a new OBLDPN model, to generate automatically certain
test cases. By using a smaller test set, the CTFTP strategy can
detect the same seven types of faults similar to those of the
MUMCUT strategy. The number of places in the proposed
OBLDPN model is only related to the number of variables
in the Boolean expression and does not require the number
of terms in the Boolean expression and the number of literals
in each term. We specify the structure and characteristics of
OBLDPN and describe its dynamic behavior. The CTFTP
strategy is further extended to generate a test suite for general
Boolean expressions, and a general Boolean expression test
case generation algorithm based on literal substitution is pro-
posed. The algorithm can detect five types of faults of general
Boolean expressions, but the LIF and LRF cannot always be
detected.

The technologies proposed in this study are valid, and the
samples provided are representative; thus, the threats to inter-
nal validity will not likely exist. We provide logical and math-
ematical representations of the extended Petri net method
and Boolean expression testing technology and apply the
proposed OBLDPN model to Boolean expression testing by
means of detailed explanations and illustrations. For example,
the study has investigated the relationship between the logi-
cal faults and topological changes of Boolean expressions,
the relationship between path coverage and Boolean expres-
sion topology, the relationship between test path constraints
and logic fault detection, and the relationship between label
and behavior of then OBLDPN. All of these techniques have
been tested and verified by many experiments. The results
have been manually evaluated to ensure the correctness of
the experiments. However, the problem of test generation of
general Boolean expressions involving nested subexpressions
is not considered in this study. Further work is necessary
to extend the CTFTP strategy onto more particular or wider
Boolean specifications taken from real programs and evaluate
the adequacy of testing for general Boolean expressions.
The Boolean expressions may involve nested subexpressions,
implication operators, equivalent operators, and so on. Due to
the complexity of the algorithm, we also need to simplify the
OBLDPN model. Some alternative approaches to generate
efficiently a CTFTP test suite are being investigated to reduce
test costs.

REFERENCES
[1] L. Yu and W.-T. Tsai, ‘‘Test case generation for Boolean expressions

by cell covering,’’ IEEE Trans. Softw. Eng., vol. 44, no. 1, pp. 70–99,
Jan. 2018.

[2] G. Fraser and A. Gargantini, ‘‘Generating minimal fault detecting test
suites for Boolean expressions,’’ in Proc. 3rd Int. Conf. Softw. Test., Veri-
fication, Validation Workshops, Paris, France, Apr. 2010, pp. 37–45.

[3] K. C. Tai and H. K. Su, ‘‘Test generation for Boolean expressions,’’ inProc.
11th Annu. Int. Comput. Softw. Appl. Conf. (COMPSAC), Tokyo, Japan,
Oct. 1987, pp. 278–284.

[4] E. Weyuker, T. Goradia, and A. Singh, ‘‘Automatically generating test data
from a Boolean specification,’’ IEEE Trans. Softw. Eng., vol. 20, no. 5,
pp. 353–363, May 1994.

[5] T. Y. Chen, M. F. Lau, and Y. T. Yu, ‘‘MUMCUT: A fault-based strategy
for testing Boolean specifications,’’ in Proc. 6th Asia–Pacific Softw. Eng.
Conf. (ASPEC), Takamatsu, Japan, Dec. 1999, pp. 606–613.

[6] T. Y. Chen and M. F. Lau, ‘‘Two test data selection strategies towards
testing of Boolean specifications,’’ in Proc. 21st Annu. Int. Comput.
Softw. Appl. Conf. (COMPSAC), Washington, DC, USA, Aug. 1997,
pp. 608–611.

[7] T. Y. Chen and M. F. Lau, ‘‘Test case selection strategies based on Boolean
specifications,’’ Softw. Test., Verification Rel., vol. 11, no. 3, pp. 165–180,
Sep. 2001.

[8] T. Y. Chen, M. F. Lau, K. Y. Sim, and C. A. Sun, ‘‘On detecting faults
for Boolean expressions,’’ Softw. Qual. J., vol. 17, no. 3, pp. 245–261,
Sep. 2009.

[9] C.-A. Sun, Y. Dong, R. Lai, K. Y. Sim, and T. Y. Chen, ‘‘Analyzing and
extending MUMCUT for fault-based testing of general Boolean expres-
sions,’’ in Proc. 6th IEEE Int. Conf. Comput. Inf. Technol. (CIT), Seoul,
South Korea, Sep. 2006, pp. 184–189.

[10] C.-A. Sun, Y. Zai, and H. Liu, ‘‘Evaluating and comparing fault-based test-
ing strategies for general Boolean specifications: A series of experiments,’’
Comput. J., vol. 58, no. 5, pp. 1199–1213, May 2015.

[11] K. Kapoor and J. P. Bowen, ‘‘Test conditions for fault classes in Boolean
specifications,’’ ACM Trans. Softw. Eng. Methodol., vol. 16, no. 3,
Jul. 2007, Art. no. 10.

[12] Z. Chen, T. Y. Chen, and B. Xu, ‘‘A revisit of fault class hierarchies
in general Boolean specifications,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 20, no. 3, Aug. 2011, Art. no. 13.

[13] A. Gargantini and G. Fraser, ‘‘Generating minimal fault detecting test
suites for general Boolean specifications,’’ Inf. Softw. Technol., vol. 53,
no. 11, pp. 1263–1273, Nov. 2011.

[14] Z. Wang, X. Li, Y. Li, and Y. Dai, ‘‘Comparing minimal failure-causing
schema and probabilistic failure-causing schema on Boolean specifi-
cations,’’ Int. J. Performability Eng., vol. 15, no. 10, pp. 2709–2717,
Oct. 2019.

[15] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese, ‘‘Require-
ments specification for process-control systems,’’ IEEE Trans. Softw. Eng.,
vol. 20, no. 9, pp. 684–707, Sep. 1994.

[16] Z. Wang, Y. Li, X. Gu, X. Zheng, and M. Yu, ‘‘Fault detection capabilities
of combinatorial testing and random testing for Boolean-specifications,’’
Int. J. Performability Eng., vol. 15, no. 11, pp. 2952–2961, Nov. 2019.

[17] R. A. Silva, S. D. R. S. De Souza, and P. S. L. de Souza, ‘‘A systematic
review on search based mutation testing,’’ Inf. Softw. Technol., vol. 81,
pp. 19–35, Jan. 2017.

[18] J. Zhou, J. Wang, and J. Wang, ‘‘A simulation engine for stochastic timed
Petri nets and application to emergency healthcare systems,’’ IEEE/CAA J.
Autom. Sinica, vol. 6, no. 4, pp. 969–980, Jul. 2019.

[19] H. Gong and C. Huang, ‘‘Automatic test case generation for general form
Boolean expressions based on predicate-driven Petri nets,’’ Int. J. Adv.
Comput. Technol., vol. 3, no. 8, pp. 146–153, Sep. 2011.

[20] A. Paradkar and K. C. Tai, ‘‘Test generation for Boolean expressions,’’ in
Proc. 6th Int. Symp. Softw. Rel. Eng. (ISSRE), Toulouse, France, Oct. 1995,
pp. 106–115.

[21] Y. T. Yu, M. F. Lau, and T. Y. Chen, ‘‘Automatic generation of test cases
from Boolean specifications using theMUMCUT strategy,’’ J. Syst. Softw.,
vol. 79, no. 6, pp. 820–840, Jun. 2006.

[22] J. Sziray, ‘‘Evaluation of Boolean graphs in software testing,’’ in Proc.
IEEE 9th Int. Conf. Comput. Cybern. (ICCC), Tihany, Hungary, Jul. 2013,
pp. 225–230.

[23] A. Moraes, W. L. Andrade, and P. D. L. Machado, ‘‘A family of test selec-
tion criteria for timed input-output symbolic transition system models,’’
Sci. Comput. Program., vol. 126, pp. 52–72, Sep. 2016.

[24] Y. T. Yu andM. F. Lau, ‘‘A comparison of MC/DC, MUMCUT and several
other coverage criteria for logical decisions,’’ J. Syst. Softw., vol. 79, no. 5,
pp. 577–590, May 2006.

[25] K.-C. Tai, ‘‘Theory of fault-based predicate testing for computer pro-
grams,’’ IEEE Trans. Softw. Eng., vol. 22, no. 8, pp. 552–562, Aug. 1996.

174528 VOLUME 8, 2020

H. Gong et al.: CTFTP: A Test Case Generation Strategy for General Boolean Expressions Based on OBLDPNs

[26] T. Y. Chen, D. D. Grant, M. F. Lau, S. P. Ng, and V. R. Vasa, ‘‘BEAT:
A Web-based Boolean expression fault-based test case generation tool,’’
Int. J. Distance Educ. Technol., vol. 4, no. 2, pp. 44–56, Apr. 2006.

[27] G. Kaminski, G. Williams, and P. Ammann, ‘‘Reconciling perspectives of
logic testing for software,’’ Softw. Test. Verification Rel., vol. 18, no. 3,
pp. 149–188, Sep. 2008.

[28] G. K. Kaminski and P. Ammann, ‘‘Using logic criterion feasibility to
reduce test set size while guaranteeing fault detection,’’ in Proc. Int.
Conf. Softw. Test. Verification Validation, Denver, CO, USA, Apr. 2009,
pp. 356–365.

[29] X. Feng, D. L. Parnas, T. H. Tse, and T. O’Callaghan, ‘‘A comparison
of tabular expression-based testing strategies,’’ IEEE Trans. Softw. Eng.,
vol. 37, no. 5, pp. 616–634, Sep. 2011.

[30] A. Kalaee and V. Rafe, ‘‘An optimal solution for test case generation using
ROBDD graph and PSO algorithm,’’ Qual. Rel. Eng. Int., vol. 32, no. 7,
pp. 2263–2279, Nov. 2016.

[31] Z. Li, J. Liu, H. Sun, T. Zhou, and J. Sun, ‘‘Automatic test generation
of large Boolean expressions in computer based interlocking system,’’
in Proc. 24th Asia–Pacific Softw. Eng. Conf. (APSEC), Nanjing, China,
Dec. 2017, pp. 513–520.

[32] S. G. Brida and G. Scilingo, ‘‘Boolean expression extender—A mutation
operator for strengthening and weakening Boolean expression,’’ in Proc.
43rd Latin Amer. Comput. Conf. (CLEI), Cordoba, Argentina, Sep. 2017,
pp. 1–10.

[33] S. Vilkomir, ‘‘Combinatorial testing of software with binary inputs:
A state-of-the-art review,’’ inProc. IEEE Int. Conf. Softw. Qual., Rel. Secur.
Companion (QRS-C), Vienna, Austria, Aug. 2016, pp. 55–60.

[34] T. K. Paul, M. F. Lau, and S. Ng, ‘‘On a new detecting technique for
conjunctive literal insertion fault in Boolean expressions,’’ in Proc. 14th
Int. Conf. Qual. Softw., Dallas, TX, USA, Oct. 2014, pp. 266–275.

[35] S. Kandl and S. Chandrashekar, ‘‘Reasonability of MC/DC for safety-
relevant software implemented in programming languages with short-
circuit evaluation,’’ Computing, vol. 97, no. 3, pp. 261–279, Mar. 2015.

[36] J. A. Jones and M. J. Harrold, ‘‘Test-suite reduction and prioritization for
modified condition/decision coverage,’’ IEEE Trans. Softw. Eng., vol. 29,
no. 3, pp. 195–209, Mar. 2003.

[37] G. Gay, A. Rajan, M. Staats, M. Whalen, and M. P. E. Heimdahl,
‘‘The effect of program andmodel structure on the effectiveness ofMC/DC
test adequacy coverage,’’ ACMTrans. Softw. Eng. Methodol., vol. 25, no. 3,
Aug. 2016, Art. no. 25.

[38] T. Ayav, ‘‘Prioritizing MCDC test cases by spectral analysis of Boolean
functions,’’ Softw. Test. Verification Rel., vol. 27, pp. 1–18, Aug. 2017.

[39] T. Kitamura, Q. Maissonneuve, E.-H. Choi, C. Artho, and A. Gargantini,
‘‘Optimal test suite generation for modified condition decision coverage
using SAT solving,’’ in Proc. 37th Int. Conf. Comput. Saf., Rel., Secur.
(SAFECOMP), Vasteras, Sweden, Sep. 2018, pp. 123–138.

[40] S. Wang, W. Duo, X. Guo, X. Jiang, D. You, K. Barkaoui, and M. Zhou,
‘‘Computation of an emptiable minimal siphon in a subclass of Petri nets
using mixed-integer programming,’’ IEEE/CAA J. Autom. Sinica, early
access, Jun. 2, 2020, doi: 10.1109/JAS.2020.1003210.

[41] J. Sha, Y. Du, and L. Qi, ‘‘A user requirement oriented Web service
discovery approach based on logic and threshold Petri net,’’ IEEE/CAA
J. Autom. Sinica, vol. 6, no. 6, pp. 1528–1542, Nov. 2019.

[42] D. Xiang, G. Liu, C. Yan, and C. Jiang, ‘‘Detecting data-flow errors based
on Petri nets with data operations,’’ IEEE/CAA J. Autom. Sinica, vol. 5,
no. 1, pp. 251–260, Jan. 2018.

[43] Z. Ding, H. Qiu, R. Yang, C. Jiang, and M. Zhou, ‘‘Interactive-control-
model for human–computer interactive system based on Petri nets,’’ IEEE
Trans. Autom. Sci. Eng., vol. 16, no. 4, pp. 1800–1813, Oct. 2019.

HONGFANG GONG received the B.S. degree
in mathematics from the Changsha University
of Science and Technology, Changsha, China,
in 1991, and the M.E. degree in computer appli-
cation and the Ph.D. degree in computer science
and technology from Hunan University, China,
in 2004 and 2018, respectively. He is currently an
Associate Professor of information science with
the Changsha University of Science and Technol-
ogy. His research interests include software test,

cyber-physical systems (CPSs), and embedded computing systems.

JUNYI LI received the B.S., M.S., and Ph.D.
degrees in computer application from Hunan Uni-
versity, China, in 1993, 2001, and 2008, respec-
tively. He has been an Associate Professor with
Hunan University, since 2005. From 2009 to
2010, he was a Visiting Researcher with Lake-
head University, Canada. His research interests
include big data analysis, software engineering,
and autonomous driving.

RENFA LI (Senior Member, IEEE) is cur-
rently a Full Professor with the College of
Computer Science and Electronic Engineering.
He is also the Director of the Key Labora-
tory for Embedded and Network Computing of
Hunan Province, Changsha, China. He is also
an Expert Committee Member of the National
Supercomputing Center, Changsha. His research
interests include computer architecture, embed-
ded computing systems, cyber-physical systems

(CPSs), and the Internet of Things. He is a Senior Member of ACM and
a member of the Council of China Computer Federation.

VOLUME 8, 2020 174529

http://dx.doi.org/10.1109/JAS.2020.1003210

