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ABSTRACT Capacity prediction of lithium-ion batteries represents an important function of battery man-
agement systems. Conventional machine learning-based methods for capacity prediction are inefficient to
learn long-term dependencies during capacity degradations. This paper investigates the deep learningmethod
for lithium-ion battery’s capacity prediction based on long short-term memory recurrent neural network,
which is employed to capture the latent long-term dependence of degraded capacity. The neural network
is adaptively optimized by the Adam optimization algorithm, and the dropout technique is exploited to
prevent overfitting. Based on the offline cycling aging data of batteries, the capacity prediction performance
is validated and evaluated. The experimental results demonstrate that the proposed algorithm can accurately
track the nonlinear degradation trend of capacity within the whole lifespan with a maximum error of only
2.84%.

INDEX TERMS Lithium-ion batteries, capacity prediction, aging factors, long short-termmemory (LSTM).

NOMENCLATURE
A. ABBREVIATIONS
EVs electric vehicles
EOL end of life
BMS battery management system
SOC state of charge
SOH state of health
GPR Gaussian process regression
ECM equivalent circuit model
OCV open circuit voltage
KF Kalman filter
PF particle filter
RC resistance-capacitance
RLS recursive least squares
IC incremental capacity
RUL remaining useful life
SVM support vector machine
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HFs healthy features
RNN recurrent neural networks
LSTM long short-term memory
LOOCV leave-one-out cross validation
IR internal resistance
SEI solid electrolyte interphase
CEI cathode electrolyte interface
DIC discharge incremental capacity
GRA grey relational analysis
MAE maximum absolute error
MSE mean square error
RMSE root mean square error

B. SYMBOLS
F1 the internal resistance of battery
F2 the average temperature of battery in a

charging and discharging cycle
Xi the aging factors dataset in the training set

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 172783

https://orcid.org/0000-0002-1634-7231
https://orcid.org/0000-0002-9916-6750
https://orcid.org/0000-0002-3612-1045
https://orcid.org/0000-0003-4739-4812
https://orcid.org/0000-0001-5563-8480
https://orcid.org/0000-0003-1853-0782
https://orcid.org/0000-0003-0816-6016


Z. Chen et al.: Capacity Prediction and Validation of Lithium-Ion Batteries

X∗
i

the aging factors dataset in the test set
ŷi the predicted value of capacity
y∗
i

the observed value of capacity in the test set
ht−1 the last output of cell state in the LSTM-

RNN architecture
xt the current cell input
ft the outputs of forget gate
σ the sigmoid function
Wf the weight matrix of forget gate
bf the bias of forget gate
it the sigmoid layer of input gate
at the output of tanh layer for the input gate
Wi the weight matrix of sigmoid layer of input

gate
Wc the weight matrix of tanh layer of input gate
bi the bias of sigmoid layer of input gate
bc the bias of tanh layer of input gate
ct the current cell state
ht the output of LSTM-RNN at current

moment t
Wo the weight matrix of the output layer
bo the bias of output layer
ot the sigmoid layer of output gate
J (θ ) the objective function with θ
gt the gradient with parameter θt−1
mt the exponential moving average of gradient
vt the exponential moving average of squared

gradient
β1 the exponential decay factors accounting for

weight distribution
β2 the exponential decay factors that controls

the influence incurred by squared gradient
m̂t the modified values of mt
v̂t the modified values of vt
α the learning rate of Adam algorithm
ε a smooth coefficient
p the probability of dropout for the neuron
XCi the complete features dataset of ith cell
R2 goodness-of-fit
n the total sample number
ȳi the sampling average value

I. INTRODUCTION
Lithium-ion batteries have been widely deployed in electric
vehicles (EVs) and energy storage systems of power grids
due to their high energy/power density, no memory effect
and long lifespan [1]. However, with the cyclic charging and
discharging operations, battery’s capacity degradation and
electrical performance deterioration can influence vehicle
operation performance and safety. In particular, when the
capacity decreases below 80% of its initial value, lithium-
ion batteries turn to be unstable and degrade faster than
before, implying that they reach end of life (EOL) [2], and the
continued operation of batteries may lead to irreversible dam-
age. As such, accurate diagnosis for battery health condition

becomes an indispensable task [3]. In practice, a serviceable
battery management system (BMS) is essential to ensure
operating efficacy and battery safety [4]. One main function
of BMS is to conduct inner status estimation of batteries,
such as state of charge (SOC) and state of health (SOH) [5].
Accurate capacity information can supply an important foun-
dation for SOC and SOH estimation, and also provide valu-
able indexes to end-users and battery manufactures [6].

To now, extensive research has been conducted to improve
capacity prediction accuracy of batteries. The conventional
capacity estimation methods can be categorized into two
types: model-based methods and data-driven methods [7].
Reference [8] proposes a two-stage scheme for battery capac-
ity estimation according to the variation of thermal dynamics.
In the first stage, the estimation for battery core temperature
and heat generation is implemented, and then a joint estima-
tion for both SOC and capacity are exerted in the following
stage. Reference [9] builds a capacity fading model based
on the sample entropy, which is employed to calculate the
battery surface temperature in the charging process. Through
considering the influence of heat generation on capacity
attenuation, the particle filter (PF) is exploited to estimate the
battery remaining capacity. Reference [10] presents a data-
driven diagnostic technique for capacity estimation based on
Gaussian process regression (GPR), in which the voltage
measurement over a short period of galvanostatic phase is
considered as the model input. In [11], considering the con-
sistency among cells connected in series, the variation char-
acteristics of voltage are extracted from two different cycles
by conducting the dynamic time warping algorithm. Based
on the extracted feature, a three-step capacity estimation
method with the theoretical foundation of shape invariance
of the charging voltage is proposed to calculate the capacity
difference between two adjacent cells. In these mentioned
prediction methods, the estimated capacity value is severed
as an intermediary for other state estimation. Considering the
coupling relationship, joint estimation of capacity with other
battery states, such as co-estimation of capacity and SOC, are
usually carried out sequentially.

For the co-estimation of capacity and SOC, some joint
algorithms become attracted due to their satisfactory preci-
sion and robustness [12]. Based on effective electrical mod-
els such as equivalent circuit model (ECM), a number of
advanced filter algorithms (such as Kalman filter (KF) and
PF) can then be adopted to conduct the joint estimation of
battery status and model parameters [13]. In [14], a second-
order resistance-capacitance (RC) ECM is established, and
the square root cubature KF is employed to estimate the
SOC. Meanwhile, the capacity, as one of the key parame-
ters of model, is identified by the genetic algorithm (GA).
Reference [15] proposes a multiscale dual H-infinity filter
to estimate the SOC and capacity of battery in real time
with different timescales for reaction to slow varying bat-
tery capacity and fast varying battery state. To address the
different variation rates of model parameters, [16] presents
a joint algorithm integrated by KF and the recursive least
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square (RLS) method to estimate SOC and capacity, in which
the model parameters are adaptively updated by a vector-
type RLS. For the sake of enhancing the estimation precision.
Reference [17] constructs a serially connected battery pack
model based on a second-order RC ECM of cell. Then,
amultiscale extendedKF algorithm is employed to accurately
estimate SOC, model parameter and capacity of single cell in
battery packs.

In addition to SOC, accurate estimation of capacity,
as mentioned above, is also of importance for health diag-
nosis of battery. As an indicator of assessing the battery
degradation status, SOH is usually indexed by the ratio of
current maximum useful capacity over the rated value [18].
In [19], a fusion method incorporating partial incremental
capacity (IC) analysis and a dual GPR model is proposed to
estimate the SOH of lithium-ion batteries. To improve the
SOH estimation accuracy and reliability, [20] extracts four
feature vectors representing the degradation status of battery
from the charging voltage curves. Consequently, the SOH
prediction is attained via the well-tuned GPR model with the
extracted features as the inputs. By incorporating the critical
features derived from battery operation data set, [21] pro-
poses a real-time estimator for remaining useful life (RUL)
prediction based on the SVM model. In [22], the SVM
model is constructed with a radial basis function kernel,
and the feature variables are extracted from partial charging
voltage curves to construct the training dataset. In addition,
the kernel parameters of SVM model are optimized by the
grid search method. Reference [23] leverages the conjugate
gradient method and multi-island GA to optimize the hyper
parameters of GPR model, and the characteristic parameters
of constant-current charging process are extracted as the
healthy features by the IC analysis method. On this basis, the
SOH estimation is attained by combing the extracted features
and the optimized GPR model. In short, all of these data-
driven methods need healthy features to establish a mapping
relationship between SOH and feature variables. In other
words, a reliable SOH estimation strongly requires proper
feature extraction to perform qualified SOH diagnosis [24].
However, lithium-ion battery degradation is consecutive and
generally involves hundreds to thousands of cycles, and the
later degradation evolution is highly related with the former
degradation information throughout these cycle operations.
Moreover, the healthy features extracted from the charg-
ing and discharging profiles also show a specific variation
trend with the aging. These variables can be regarded as a
time series signal, of which the current values may exhibit
long-term dependencies with historical values. Nevertheless,
the conventional data-driven methods, such as SVM and
GPR, are inefficient to learn the long-term dependencies, thus
it remains challenging to maintain high estimation accuracy
for long-term capacity prediction [25].

Presently, deep learning network has receivedwidely atten-
tion and has been progressively applied in the language
modeling [26] and image recognition [27]. As a kind of
deep learning network, long short-term memory recurrent

neural network (LSTM-RNN) is employed to solve the prob-
lem with long-term dependences. LSTM-RNN can reserve
the key information from the degradation data via effec-
tive learning of long-term dependence based on the specific
gate [28]. Given long-term characteristic of battery degrada-
tion, LSTM-RNNmay be a suitable solution to learn the long-
term degradation trend of capacity variation. Reference [29]
exploits the LSTM-RNN to learn the long-term dependence
of degraded capacity of supercapacitor, and the experimen-
tal results show that the LSTM-RNN can predict the RUL
of the supercapacitor on the rest testing data with 2.61%
root mean square error (RMSE). Reference [30] employs
the LSTM-RNN to predict RUL of lithium-ion batteries.
The elastic mean squared back-propagation algorithm and
Monte Carlo simulation are respectively applied to adaptively
optimize the network and generate a probabilistic RUL pre-
diction. However, the LSTM-RNN in [29], [30] is trained
based on the historical capacity degradation data, and then
one- and multi-step forward RUL prediction is performed.
In addition, [29] reveals that the capacity degradation tra-
jectory of lithium-ion batteries is approximate to the linear
degradation, thus the decline rate of capacity under the whole
cycle life is similar. Nonetheless, the degradation rate of
battery is significantly different in the beginning and ending
stage of whole lifespan. Therefore, the prediction accuracy
of capacity based on only partial degradation data for model
training needs to be further analyzed. Furthermore, when
incomplete offline data is available, whether the LSTM-RNN
can also accurately predict the battery remaining capac-
ity in the whole lifespan still needs to be investigated and
validated.

Motivated by this, the capacity prediction of lithium-ion
batteries based on the LSTM-RNN is carefully conducted.
Firstly, the LSTM-RNN is optimized based on the Adam opti-
mization algorithm, and the dropout technology is employed
to prevent the network from overfitting. Then, the optimized
LSTM-RNN is exploited to achieve the capacity prediction
of lithium-ion batteries. Whereupon, this paper conducts the
validation and comparison of capacity prediction effective-
ness of LSTM-RNN for the lithium-ion batteries from the
following four aspects. (1) The influence of aging factors
on the performance of capacity prediction for lithium-ion
batteries based on LSTM-RNN is discussed. (2) The capacity
prediction results based on the LSTM-RNN are compared
with the prediction results of SVM, GPR and Elman NN.
(3) Through one battery’s whole cycle life data for model
training, others battery’s data are validated to examine the
prediction performance of the built LSTM-RNN model.
(4) The leave-one-out cross validation (LOOCV) method is
applied to evaluate the performance of the LSTM-RNN with
the aging factors as model inputs.

The remainder of this paper is structured as follows. The
battery life cycle test is introduced, and the experimental data
are analyzed in Section II. Section III illustrates the detailed
capacity prediction process of lithium-ion batteries based on
LSTM-RNN. The validation and comparison of prediction
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FIGURE 1. Capacity degradation curves of Cells 1 to 4.

results are elaborated in Section IV, and Section V concludes
the study.

II. BATTERY AGING EXPERIMENTAL
AND DATA ANALYSIS
In this section, the cycle life experimental and the degrada-
tion data acquired from a huge cycling data repository are
introduced. Based on the cycling data, the aging factors are
extracted to represent the battery capacity variation. After
that, the framework and process of capacity prediction are
illustrated in a schematic diagram.

A. BATTERY AGING EXPERIMENTAL AND CAPACITY
DEGRADATION DATA
In this study, the cyclic aging data of lithium-ion batter-
ies are obtained from an open source experimental data
repository [31], which collects the cyclic life tests of a
variety of commercial LFP/graphite batteries (nominal capac-
ity of 1.1 Ah and rated voltage of 3.3 V). The upper and lower
cut-off voltages of the battery are 3.6 V and 2.0 V, respec-
tively. The charging policy follows a form of C1(Q1)-C2
mode, where C1 and C2 denote the first and second constant
current stage, and Q1 denotes the SOC at which the current
changes. The second current step ends at 80% SOC, after that
the cell is charged with 1C (C denotes the rate capacity value,
i.e., 1.1) constant current (CC)-constant voltage (CV) mode,
and the cells are discharged with 4C current. During the
experiment, the surface temperature and internal resistance
are measured and recorded. Note that the internal resistance
measurement is conducted during charging at 80% SOC
by imposing 10 pulses of ±3.6C current with the duration
of 33 ms [31]. Seven cells’ data (labeled as Cells 1 to 7)
are selected from this dataset to investigate the performance
and effectiveness of the LSTM-RNN model for capacity
prediction.

The curves of degradation capacity are shown in Fig. 1,
which highlight that the degradation trajectories of four
cells remain almost the same, indicating that the degradation

FIGURE 2. The variation curves of internal resistance with cycle numbers
for Cells 1 to 4.

mechanism is nearly consistent for the same type of lithium-
ion batteries. The cycle life experiments for all batteries are
terminated when the batteries reached 80% of nominal capac-
ity, i.e., 0.88 Ah. It can also be found that the degradation
slope is relatively flat before 90% SOH. However, when the
SOH drops less than 90%, the capacity degradation shows
an exponential decline trend with faster dropping speed.
Besides, the electric characteristics will gradually deteriorate
during the aging process, the thermal characteristics of bat-
teries will also vary with aging [32]. Next, the aging factors
will be extracted from electric and thermal characteristics
variation of the battery.

B. AGING FACTORS EXTRACTION AND ANALYSIS
From the perspective of electric characteristics, one main
change during degradation is that the internal resistance (IR)
will gradually increase. During the battery aging process,
the formation and thickening of the SEI film, the cathode
electrolyte interface (CEI) formation and the internal struc-
ture disordering can lead to the increase of IR. However,
the aforementioned issues cannot be measured directly; and
by contrast, the measured IR, as a representative variable,
will vary in a nonlinear manner relating to the capacity
degradation [32]. As can be seen from Fig. 2, significant
variation of IR does not obviously appear in the cycle of
[1, 800] but with an exponential variation trend after cycle
800. The IR increase represents the capacity degradation to
some extent with the form of inverse proportional function.
In other words, the more obviously IR increases, the faster
the capacity declines. Therefore, the battery IR, denoted by
F1, can be selected as an aging factor.

Considering the battery’s thermal characteristics, the sur-
face temperature at each moment is recorded during the
experiment. Due to the IR increase and active materials loss
of contact caused by the current collector corrosion, binder
decomposition and electrolyte loss, the generation of ohmic
heat and the heat distribution inside battery differ greatly
under the same charge/discharge C-rate when the battery
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FIGURE 3. The temperature variation curves of Cell 1 at different cycles.

FIGURE 4. The evolution trend of average temperature with cycle
numbers for Cells 1-4.

ages [33]. Fig. 3 shows the temperature variation curves of
Cell 1 at different cycles. It can be seen that the temperature
shows an augmented trend with the increase of cycle number.
Intuitively, the average temperature of each cycle is calcu-
lated to analyze the thermal characteristics of battery. The
variation of average temperature with different cycle times
is shown in Fig. 4. It is clearly observed that the average tem-
perature increases progressively with the cycle experiment.
Based on the variation relationship of capacity and aver-
age temperature with the cycle number, it can be concluded
that the average temperature can also represent the capacity
degradation. Consequently, the average temperature of each
cycle can be selected as another aging factor, denoted by F2.
Except for the IR and temperature, the aging factors can
also be extracted from the charge/discharge voltage profiles.
Since the experimental battery in this study is discharged with
constant current, the incremental capacity analysis during the
discharging process is conducted. The discharging incremen-
tal capacity (DIC) curves at different cycles for Cell 1 are

FIGURE 5. The variation curves of discharge incremental capacity at
different cycle numbers for Cells 1.

FIGURE 6. The evolution trend of max DIC value with cycle numbers for
Cells 1-4.

shown in Fig. 5. In addition, Fig. 6 shows the variation curves
of peak absolute value with cycle numbers for Cells 1 to 4.
As can be seen, the absolute value of peak decreases gradually
with the increase of cycle number, implying that the absolute
value of DIC peak point can effectively characterize the bat-
tery degradation. Hence, the absolute value of DIC peak can
also be considered as one aging factor, called F3. Next step,
the implied relationships between aging factors and capacity
will be analyzed.

C. CORRELATION ANALYSIS OF AGING
FACTORS BASED ON GRA
As discussed previously, the IR, average temperature and
the absolute value of DIC peak, denoted as F1, F2 and F3,
are selected as the aging factors to characterize the capac-
ity degradation. To further analyze the relationship between
aging factors and capacity, we took cell 1 as an example,
and the variation relationships between the aging factors and
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FIGURE 7. The variation relationship between capacity and F1 and F2
with cycle numbers of Cell 1.

FIGURE 8. The variation relationship between capacity and F3 with cycle
numbers of Cell 1.

capacity with respect to cycle life are shown in Fig. 7 and
Fig. 8, where the color scale represents the cycle life. As can
be found, F1 and F2 increase and F3 decreases with the
capacity degradation. Additionally, in the early and middle
phases of cycle life (1 to 800 cycles), the capacity degrades
with a slow speed, and F1 remains almost unchanged; and in
contrast, F2 increases obviously and F3 gradually decreases
with the increase of cycle numbers. Comparatively, in the
ending phase of cycle life (800 to 1100), the capacity degra-
dation and the increase of F1 are faster, and the increase rate
of F2 becomes slower and more stabilized; however, F3 still
decreases obviously. It can be concluded that the change ofF1
is not obvious, whereas the variation of F2 is relative larger in
the early cycle life. In the later cycle life stage, the changes of
F1 and F2 are opposite to that of the early stage. Furthermore,
there exists obvious change in F3 throughout the whole cycle
life. To sum up, a kind of mapping relationship between
the aging factors and capacity really exists in different cycle
life phases. In this study, the correlation between the aging
factors and battery capacity is further evaluated by grey rela-
tional analysis (GRA). As a crucial method based on the

TABLE 1. Grey relational grades between features and capacity.

FIGURE 9. The framework and flowchart of capacity prediction.

grey system theory, GRA evaluates the correlation among
the elements according to the similarity and dissimilarity
of their variation trend. The quantitative analysis based on
the GRA is to obtain the correlations between reference and
comparative sequences, as detailed in [34]. Through GRA,
the correlation grades between aging factors and capacity
of each cell are acquired, as shown in Table 1. Particularly,
the correlation grade of F2 is greater than 0.75 for all the
cells, which means the selection of aging factors is feasible
for capacity estimation.

D. THE FRAMEWORK AND FLOWCHART FOR
CAPACITY PREDICTION
Fig. 9 shows the framework and flowchart of capacity pre-
diction based on the LSTM-RNN model. As can be seen,
the whole prediction process contains the experimental data
processing, the model construction and the capacity predic-
tionmodules. In the data processingmodule, the aging factors
data set Xi = [F1i,F2i,F3i], where the subscript i represents
the cycle number, is structured based on the extracted charac-
teristic features from the aging experimental data. The sample
set is divided into the training set and the test set. In the model
construction and optimization module, the architecture and
network layers of LSTM-RNN is firstly designed, and the
model parameters are initialized. Then, the aging factors data
set Xi and the corresponding capacity value yi in the training
set are considered as the LSTM-RNN model’s input and out-
put, respectively. The optimal model parameters are searched
via test and cross validation. In the capacity prediction and
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FIGURE 10. The network architecture of LSTM.

error analysis module, similarly, the aging factors data set X∗i
in the test set is inputted into the well-tuned model, and then
the output ŷi is collected as the prediction value of battery
capacity. By calculating evaluation criteria and comparing the
predicted value ŷi with the observed value y∗i , the prediction
effectiveness of LSTM-RNN model is assessed.

III. METHODOLOGIES
This section elaborates the mechanism and derivation of
related model and algorithms applied for the capacity pre-
diction, including the LSTM-RNN, the Adam optimization
algorithm and the dropout technique. In addition, the evalu-
ation criteria and LOOCV method are addressed to evaluate
the performance of LSTM-RNN based capacity estimation
algorithm.

A. THE ARCHITECTURE OF LSTM-RNN
LSTM-RNN is a kind of specialized RNN for solving vanish-
ing gradient problems and gradient explosion problems with
long-term dependency [35]. Compared with the simple RNN,
the LSTM-RNN adds a state c in the hidden layer to keep the
long-term state, and this newly added state c is called the cell
state [29]. The structure of LSTM-RNN is shown in Fig. 10.
Note that the subscript t of each vector represents the moment
state, which denotes the generality of LSTM-RNN applica-
tions. For the capacity prediction of lithium-ion batteries,
the moment state means the cycle number. At moment t , there
are three inputs for the LSTM-RNN: the input variable xt of
the current time network, the output value ht−1 and the cell
state ct−1 in the previous step. Meanwhile, the LSTM-RNN
has two outputs: the output value ht and cell state ct at current
moment t .
Similar with classic RNNs, LSTM-RNN is composed of

the input layer, hidden layer and output layer. However,
the hidden layer in LSTM-RNN is with a specialized memory
mechanism, instead of a general neuron. The internal state of
LSTM-RNN at moment t is called ct , which is critical to the
network and locates at the heart of each neuron that is linearly
activated. The internal state can be regarded as a carrier,
to which the information has been added or from which has
been removed. This information processing can be carefully

regulated by the so-called gate [30]. The gate is a distinctive
feature of LSTM-RNN, which actually denotes the fully con-
nected layers. There are three gates, namely, the input gate,
forget gate and output gate, in a LSTM-RNN architecture.
Any read or modification operation can be achieved through
controlling of these three gates. Additionally, the information
selection of gate is mainly conducted by the sigmoid function,
tanh function or matrix multiplication [24].

It can be seen from Fig. 10 that the first step of applying
the LSTM-RNN is to decide what information should be
discarded by the forget gate, which reads ht−1 and xt , and
outputs a value ft between 0 and 1, where the upper bound
1 indicates that the information should be totally kept; and by
contrast, the lower bound 0means that it should be thoroughly
discarded. The next step is to determine what information
should be stored in the memory gate. One part of the input
gate it , called the sigmoid layer, decides what information
should be updated, and another part, called the tanh layer,
creates the candidate vector at , which is added to the current
cell state. Finally, by means of the updated cell state ct and
the value ot of output gate, the output of LSTM-RNN can be
calculated. Based on the previous moment output ht−1 and
the input of current moment xt , the state values of three gates
and the candidate vector at can be formulated as:

ft = σ (Wf · [ht−1, xt ]+ bf )
it = σ (Wi · [ht−1, xt ]+ bi)
at = tanh(Wc · [ht−1, xt ]+ bc)
ot = σ (Wo · [ht−1, xt ]+ bo)

(1)

where ht−1 is the last output of cell state, xt is the current cell
input, σ represents the sigmoid function, Wf is the weight
matrix of forget gate, and bf is the bias of forget gate;
Wi and Wc denote the weight matrix of sigmoid layer and
tanh layer of input gate, respectively; bi and bc represent the
bias of sigmoid layer and tanh layer of input gate;Wo and bo
denote the weight matrix and bias of the output layer. When
the state values of each gate are determined, the current cell
state ct and the output of LSTM-RNN can be calculated, as:{

ct = ft × ct−1 + it × at
ht = ot × tanh(ct )

(2)

Based on the above discussion, LSTM-RNN can reach the
purpose of learning the long-term dependences of capac-
ity degradation and performing one- or multi-step forward
prediction. Next, the training algorithm will be detailed to
search the optimal weight matrices and biases for capacity
prediction.

B. OPTIMIZATION TRAINING FOR LSTM-RNN
In this study, the Adam optimization algorithm is employed
to optimize the parameters of LSTM-RNN. The Adam algo-
rithm is a first-order gradient optimization method that
mainly accounts for optimizing the gradient of stochastic
objective function based on adaptive estimates of lower-
order moments. Compared with traditional random gradient
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descent algorithms, it advances higher computational effi-
ciency, lower RAM occupation, less turning labor and
better dominance in solving large-scale parameter opti-
mization. Reference [36] experimentally validates that the
Adam algorithm is more efficient in solving deep learning
problems, compared with the RMSprop [37] and AdaGrad
algorithm [38]. The parameter updating process of Adam
algorithm is detailed as follows. Firstly, at step t , the gradient
of optimization objective is calculated, as:

gt = ∇θJ (θt−1) (3)

where J (θ ) represents the objective function with θ , gt
denotes the gradient with θt−1. At step t , the exponential
moving average value of both gradient and squared gradient
mt and vt , are respectively calculated, as:{

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t

(4)

where β1 and β2 denote the exponential decay factors for
weight distribution and influence incurred by squared gradi-
ent. In general, the initial value of m0 and v0 is set to zero,
mt and vt are adjusted to zero in the initial stage of training
process. Thus, a modification will be applied to reduce the
training error, as: {

m̂t = mt/(1− β1)
v̂t = vt/(1− β2)

(5)

where m̂t and v̂t denote the modified values ofmt and vt . The
parameters are updated as:

θt = θt−1 − α × m̂t/(
√
v̂t + ε) (6)

where α denotes the learning rate, and ε expresses the smooth
coefficient for avoiding the denominator from zero. The
remaining parameters of Adam algorithm are set to β1 = 0.9,
β2 = 0.999, α = 0.001, and ε = 10−8.

C. DROPOUT TECHNOLOGY TO PREVENT LSTM-RNN
FROM OVERFITTING
Overfitting refers to the model’s ability of fitting the training
data set well but showing inferior fitting effect in the test
data set [29]. To address this issue, the dropout technique is
employed to prevent the LSTM-RNN from overfitting [39].
Generally, the error back-propagation method is applied to
iteratively adjust the parameters for each Mini-Batch in the
RNN training process. The key idea of dropout technique is
that it removes the neurons from the layers of RNN during
the training process to prevent the model from overfitting.
The neurons along with all its connections are temporarily
discarded from the network, as shown in Fig. 11. It is essen-
tially a random process during which one stochastic neuron is
selected to remove. Therefore, each neuron will be retained
with a fixed probability p, which is set to 0.4 in this paper.
It can be seen from Fig. 11 (b) that the NN model after
applying the dropout technique is equivalent to sampling a
condensed network from it. The condensed network consists

FIGURE 11. The schematic diagram of dropout neural network model.
(a) standard neural network with 1 hidden layer; (b) neural network after
applying Dropout technology.

FIGURE 12. The schematic of leave-one-out cross validation process.

of all remaining neurons and their connections after removing
the discarded neurons. Hence, training a neural network with
dropout can be regarded as training many condensed net-
works with extensive weight sharing, where each condensed
network is trained rarely [30]. By this manner, the network
becomes less sensitive to the specific weights of neurons,
which in turn results in that the network is with the better
generalization capability.

D. LEAVE-ONE-OUT CROSS VALIDATION
In this paper, the LOOCV method is employed to verify the
performance of the LSTM-RNN for capacity prediction [40].
The schematic diagram of LOOCV applied in this study is
illustrated in Fig. 12. The complete feature data set contains
four subsets XC1, XC2, XC3 and XC4 which are combined
with four cells’ aging factors extracted from the experimen-
tal data. Each subset is composed of three features vectors
{F1,F2,F3}, namely IR, average temperature and absolute
value of DIC peak. As illustrated in Fig. 1, the degradation
curves of four cells are similar, indicating the degradation
mechanism is coincident for one type batteries. Therefore,
it is feasible to train model with one cell’s data and test with
others cells’ data for validating the prediction effectiveness of
the proposed LSTM-RNN model. In this work, we suppose
one cell’s data as the test dataset and compile other three cells’
data together as the training dataset, as shown in Fig. 12.
Since the validation datasets are not imported in the training
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process, the trained model can provide an approximately
unbiased estimation [13]. The training and test process is
repeated four times, and thus each battery cell is used as
the test dataset, and we can conclude that it is equivalent to
perform a 4-fold cross validation for the LSTM-RNN model.
After each iteration, the prediction error and evaluation cri-
teria are calculated to assess the model performance. Next,
the evaluation criteria applied in this study are introduced.

E. THE PERFORMANCE EVALUATION CRITERIA
To assess the prediction performance, the maximum abso-
lute error (MAE), mean square error (MSE), RMSE and
goodness-of-fit R2 are considered as the evaluation crite-
ria. MAE, MSE and RMSE evaluate the average predic-
tion performance, of which the smaller value implies better
prediction precision. By contrast, R2, varying within [0, 1],
evaluates the correctness of trained model, and the higher
value (closer to 1) of R2 indicates more similar prediction
result, compared to the real attribution. These four criterions
are formulated as:

MAE = max |yi − ŷi|

MSE =
1
m

m∑
i=1

(yi − ŷi)2

RMSE =

√√√√ 1
m

m∑
i=1

(yi − ŷi)2

R2 = 1−
m∑
i=1

(yi − ŷi)2/
m∑
i=1

(yi − ȳi)2

(7)

where n represents the total sample number; yi and ŷi are the
real value and predicted value of target variable for the ith
sample, respectively; and ȳi represents the average value.
In the next step, a series of validations are conducted,

followed by the detailed comparison and discussions.

IV. RESULTS AND DISCUSSION
In this study, four cells’ data are employed to validate the
effectiveness of the proposed LSTM-RNNmodel for capacity
prediction. The capacity prediction results under different
conditions are discussed, including the influence of aging
factors for model inputs, the comparisons of LSTM-RNN
with traditional SVM, GPR and Elman NN, as well as the
prediction results in terms of different cells’ data for training.

A. INFLUENCE WITH AGING FETURES AS MODEL INPUT
ON THE PREDICTION PERFORMANCE
To analyze the influence on the LSTM-RNN model caused
by the aging factors as model inputs, the historical capacity
degradation data and extracted aging factors are respectively
employed as the inputs for model training. When considering
the historical capacity data asmodel inputs during the training
process, the model output is the observed capacity value
of the next cycle corresponding to the current input cycle.
In contrast, the observed capacity value of current cycle is
regarded as model output while taking the aging factors as

FIGURE 13. The capacity prediction results of Cell 1 with different model
input and conditions for state updating of network.

model input. Therefore, the data length of prediction results
has one cycle difference with different model input. To make
the prediction results of different features as model input
are consistent, the prediction with historical capacity data as
model input starts from the last cycle of training set. In addi-
tion, when the LSTM-RNN model executes one- or multi-
step forward prediction with historical capacity data as model
input, it will obtain different predicted values with disparate
variables for state update of the network. For comparison,
the observed value and the predicted value of current cycle
are respectively exploited to update the network state for next
cycle’s prediction. The prediction results of taking observed
value and predicted value to update state are synchronously
compared with the prediction results with the aging factors as
model input.

Taking Cell 1 as an example, 60% of cycle life data is
employed for model training, and the rest 40% is utilized for
test. The predicted results and corresponding errors are shown
in Figs. 13 and 14. We can find that when the predicted value
is employed to update the network state, all the predicted
results remain almost the same, indicating that the model
cannot identify the degradation pattern in this case. When
the observed value is employed to update the network state,
the predicted results show a slight degradation trend in the
global view but distinctly deviate from the observed capacity
degradation trajectory. When the aging factors are taken as
the model input, the capacity degradation trend can be well
tracked by the LSTM-RNNmodel, and the maximum predic-
tion error is less than 2%, as show in Fig. 14. Note that the
battery degradation can be divided into two stages according
to the capacity decline rate in this study. One stage is a linear
degradation with a slower decline rate, e.g., the cycle range
[1, 800], and the other stage is an exponential degradation
with a faster decline rate, such as cycles 800 to 1100. The
experimental results show that when the degradation rate
of capacity is distinctly different in the early and later of
cycle life period, the LSTM-RNN cannot identify the battery
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FIGURE 14. The capacity prediction errors of Cell 1. (a) The predicted
errors with predicted value for state update; (b) the predicted errors with
observed value for state update; (c) the predicted errors with aging
factors as model input.

FIGURE 15. The capacity prediction of Cell 1 with different aging factors
as model input.

degradation pattern with the historical capacity data as the
model input. However, as long as some effective aging factors
such as the IR and temperature of battery can be extracted as
the input for model training, the LSTM-RNN can predict the
remaining capacity of battery with preferable accuracy and
strong robustness.

To further analyze the influence of aging factors on
the capacity prediction, the absolute value of DIC peak is
extracted as one aging factor, namely, F3. The prediction
results of Cell 1 with different aging factors as the model
input are shown in Figs. 15 and 16, respectively. As can be
seen, all the prediction values with different aging factors
as the model inputs can well track the capacity degradation

FIGURE 16. The capacity prediction errors of Cell 1. (a) The predicted
errors with F1 and F2 as model input; (b) The predicted errors with F1, F2
and F3 as model input; (c) The predicted errors with only F3 as model
input.

trajectory. As can be obviously seen from Fig. 16 (b), when
F3 is added as the model input, the maximum prediction error
is 1.78%, which does not decrease much, compared with the
maximum error with only F1 and F2 as the model inputs.
Moreover, when the model input is only F3, the maximum
prediction error reach 3.02%, as shown in Fig. 16 (c). Note
that the extraction of F3 requires differential and interpo-
lation calculation, significantly increasing the computation
burden and the algorithm’s complexity. Furthermore, con-
stant current charging/discharging operations are difficult to
encounter in practical applications. Compared with F1 and
F2 that can be directly measured, the extraction of F3 is more
complex. To sum up, the subsequent discussion of capacity
prediction in this study is based on only F1 and F2 as the
model inputs hereinafter.

B. COMPARISON OF PREDICTION RESULTS WITH
DIFFERENT METHODS
To further evaluate the performance of LSTM-RNN model,
the single GPR, SVM and Elman NN algorithms are
respectively applied for the capacity prediction of Cell 2.
For the sake of fair comparison, 60% of the cycle data
(1 to 686 cycles) are utilized to train the model, and the
remaining 40% data (687 to 1144 cycles) are employed to
verify the precision. The aging factors are taken as the model
inputs, and the predicted results and errors are shown in
Figs. 17-18 and Table 2. It can be seen from Fig. 17 that the
LSTM-RNN can precisely track the degradation trajectory of
capacity in the whole test dataset and can achieve the prefer-
able prediction accuracy. Although the other three methods
can roughly reflect the variation trend of capacity, the pre-
diction errors are far more than that of LSTM-RNN. From
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FIGURE 17. The prediction results for Cell 2 with different methods.

FIGURE 18. The prediction errors for Cell 2 with different methods.

Table 2, we can find that the MAE of GPR, SVM and Elman
NN are respectively 6.85%, 5.86% and 4.81%, in contrast to
that of LSTM-RNN with 1.95%. Meanwhile, the MSE and
RMSE of GPR, SVM and Elman NN are one order magni-
tude more than that of LSTM-RNN. From the perspective
of prediction errors and accuracy, the LSTM-RNN algorithm
outperforms GPR, SVM and Elman NN algorithms.

During the model training and optimization process,
the consumption time for each iteration is recorded. The aver-
age consumption time of each method in the model training
is calculated, as show in Table 2. As can be seen, the time
cost of Elman NN is shortest, which is 32.93 s, followed by
the LSTM-RNN, which lasts 56.46 s. Owing to the calcula-
tion of kernel functions and optimization of complex hyper-
parameters, the SVM and GPR respectively cost 193.55 s
and 153.56 s for model training, which are much longer
than that of LSTM-RNN. It is worth noting that the capacity
degradation rate gradually increases with the cycling exper-
iment, and the prediction errors of GPR, SVM and Elman
NN also gradually increase, as show in Fig. 18. The results

TABLE 2. Capacity prediction errors for cell 2 with different methods.

TABLE 3. Capacity prediction errors for cells 5 to 7.

indicate that the GPR, SVM and Elman NN are not qualified
for the time series prediction with large sample data and
long-term dependence. To sum up, the proposed LSTM-RNN
algorithm not only exhibits higher prediction accuracy and
faster operation, but also shows more robustness in predicting
capacity degradation with long-term dependence.

C. CAPACITY PREDICTION WITH SINGLE BATTERY DATA
To further validate the performance of LSTM-RNN for
capacity prediction, the experimental data of another three
cells, i.e., Cells 5, 6, and 7, are analyzed. Similarly, 60% cycle
data are employed to train themodel for each single battery; in
other words, the prediction of Cells 5 to 7 starts at cycle 617,
554 and 564, respectively. Note that the aging factors, which
are exploited for the LSTM-RNNmodel input, are only the IR
and average temperature. The prediction results and errors of
Cells 5 to 7 are shown in Figs. 19 to 21 and listed in TABLE 3.
As can be seen, the maximum prediction error of these three
batteries is 2.54%, which is acceptable for capacity predic-
tion. It can also be seen from Figs. 19 to 21 that the prediction
error gradually increases with the increment of capacity
degradation but declines quickly at the EOL of battery. The
prediction error reveals that the LSTM-RNN can better pre-
dict the battery capacity in the whole cycle lifespan with
the aging factors as the model inputs. In addition, the MSE
and RMSE for these three cells are 1.29 × 10−4, 5.24 ×
10−5, 2.22 × 10−4, and 1.14%, 0.72%, 1.49%, respectively;
manifesting that the proposed LSTM-RNN model leads to
preferable prediction performance. The R2 of Cells 5 to 7
are respectively 0.9704, 0.9797 and 0.9241, which illustrate
the prediction value is holistically consistent with the real
capacity. To sum up, by using the aging factors as the model
inputs, the LSTM-RNN can predict the battery capacity with
preferable accuracy.

D. CAPACITY PREDICTION WITH MULTIPLE BATTERY DATA
To analyze the capability of degradation mechanism identi-
fication for the same type battery based on the LSTM-RNN
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FIGURE 19. The capacity prediction of Cell 5. (a) The capacity prediction results; (b) The prediction error.

FIGURE 20. The capacity prediction of Cell 6. (a) The capacity prediction results; (b) The prediction error.

FIGURE 21. The capacity prediction of Cell 7. (a) The capacity prediction results; (b) The prediction error.

model, we employed the whole cycle life data of Cell 1 as
the training data and the other cell’s data for test. Fig. 22 and

Table 4 sketch the prediction results and corresponding errors.
As shown in Fig. 22, the capacity degradation trajectories of
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FIGURE 22. The capacity prediction results and error of Cells 2 to 4 with data of cell 1 for training. (a)-(b) the prediction results and error of
Cell 2; (c)-(d) the prediction results and error of Cell 3; (e)-(f) the prediction results and error of Cell 4.

TABLE 4. Capacity prediction errors for cells 2 to 4.

Cells 2 to 4 are well tracked by the LSTM-RNN model. The
MAE is 1.56%, 2.00% and 1.01%, respectively. FromTable 4,
we can find that the MSE and RMSE of Cell 3 estimation
are the largest, i.e., 3.61 × 10−5 and 0.60%; whereas the
R2 is least, which is 0.9690. It can be obviously seen from
Fig. 2 that the IR value of Cell 3 is the most among the
four cells when reaching its EOL, and its value is about
0.001 ohm larger than that of the other three cells. It can
also be found from Fig. 4 that the average temperature of
Cell 3 is the least at every cycle. The slight difference in the
aging factors results in larger capacity prediction error of Cell
3 than those of Cells 2 and 4. Nevertheless, the prediction
errors of Cells 2 and 4 are mostly less than 1%, except some
individual points where the error is relative larger. The MSE
and RMSE of Cells 2 and 4 are less than 2.70 × 10−5 and
0.51%, which can be regarded as a preferable accuracy for
capacity prediction. Moreover, the R2 of Cells 2 and 4 are
0.9872 and 0.9835, demonstrating that the predicted values
are highly consistent with the observed values. In summary,
the experimental results manifest that even only the complete
cycle life data of one cell are employed to train the model, the
LSTM-RNN can still accurately predict the capacity of other
batteries with the same type.

E. THE VALIDATION OF CAPACITY PREDICTION
BASED ON LOOCV
According to the LOOCV principle shown in Fig. 12, the data
of four cells are randomly combined into one group, and thus
they are divided into four data group, each of which contains
a training dataset and a test dataset. In this study, the training
dataset is assembled from three cells’ data, and the remain-
ing cell’s data is utilized for test. This validation process is
repeated for four times until each cell is employed for test in
turn. Therefore, a 4-fold cross validation is performed for the
LSTM-RNN model.

The validation results of capacity prediction are shown
in Fig. 23, and the corresponding errors are illustrated in
the Fig. 24 and Table 5. As can be seen from Fig. 24, the
maximum prediction errors of Cells 1, 2 and 4 are lower
than 2%, whereas that of cell 3 reaches 2.84%. The MSE,
RMSE and R2of Cell 3 are 2.84 × 10.5, 0.50% and 0.9787,
respectively. It is worth noting that the prediction error of
Cell 3 is the largest among those of the four cells. This
prediction results are in line with the previous conclusion that
the slight difference in the aging factors can lead to larger
prediction error, as drawn in Section 4.4. Compared with
the prediction results of Cell 3 with only the data of Cell 1
for model training, when the data of Cells 1, 2 and 4 are
employed for training, the prediction accuracy is not signifi-
cantly improved, as shown in Fig. 24 (c) and Table 5. It can
be therefore concluded that increasing the amount of train-
ing data cannot distinctly improve the prediction accuracy.
Furthermore, the experimental results indicate that when the
prediction model is fixed, the capacity prediction accuracy is
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FIGURE 23. The capacity prediction results of Cells 1 to 4 based on LOOCV. (a) the prediction results of cell 1 with data of Cells 2, 3 and
4 for training; (b) the prediction results of Cell 2 with data of Cells 1, 3 and 4 for training; (c) the prediction results of Cell 3 with data of
Cells 1, 2 and 4 for training; (d) the prediction results of Cell 4 with data of Cells 1, 2 and 3 for training.

FIGURE 24. The capacity prediction error of cells 1 to 4 based on LOOCV. (a)-(d) the prediction errors of cells 1 to 4.

not much related to the amount of training data but depends
on the effectiveness of the extracted aging factors. It can be
seen from Fig. 23 that the LSTM-RNN model can accurately
predict the global trend of capacity degradation, whereas
the predicted values fluctuate in the vicinity of the observed
values. In addition, the R2of Cells 1, 2, and 4 are 0.9957,
0.9955 and 0.9960, which are quite close to 1, highlighting

that the predicted values are very similar to the observed
values. It can be noted that the capacity prediction for
Cells 1 to 4 is attained based on different datasets for model
training, and the maximum prediction error is less than 3%,
highlighting that the proposed model is stable and reliable.
To sum up, the experimental results manifest that when the
effective aging factors are extracted for model training, the
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TABLE 5. Capacity prediction errors for cells 2 to 4.

LSTM-RNN model can precisely learn the degradation pat-
tern of battery and predict the battery capacity with preferable
accuracy.

V. CONCLUSION
The key challenge of capacity prediction for lithium-ion
batteries based on data-driven methods lies in effective
extraction of key aging factors and accurate modeling of
the long-term dependences of capacity degradation. In this
paper, the LSTM-RNN algorithm is employed to construct
the data driven-based capacity prediction for lithium-ion bat-
teries. To improve the prediction performance of LSTM-RNN
model, the Adam optimization algorithm is leveraged to find
the optimal model parameters, and the dropout technique is
exploited to prevent the network from overfitting. The relia-
bility and robustness of LSTM-RNN for capacity prediction
is validated based on the leave-one-out cross validation. The
experimental results validate the LSTM-RNNmodel can well
track the nonlinear capacity degradation trajectory. Mean-
while, even when only one battery data is employed for model
training, the capacity prediction error of other cells is still
less than 2%. Moreover, two conclusions can be drawn based
on the leave-one-out cross validation. Firstly, when differ-
ent training and test dataset are employed, the LSTM-RNN
model can accurately predict the battery capacity with a max-
imum error of 2.84%, manifesting that the proposed method
has preferable prediction accuracy and strong robustness.
Secondly, when the model can learn the capacity degradation
pattern in the whole lifespan of battery, increasing the amount
of training data does not distinctly reduce the prediction error.
The prediction accuracymainly depends on the reliability and
validity of the extracted aging factors. This work highlights
the feasibility of applying the LSTM-RNN to predict capacity
of lithium-ion batteries.
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