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ABSTRACT This paper proposes new average model based control strategies for a 5-level Packed U-cell
(PUC5) inverter in both standalone and grid-connected modes of operation. First, a simple feedforward
controller (FFC) is designed, using only two pulse width modulation (PWM) carrier signals, for the
PUC5 inverter operating in standalone mode. This proposed control technique ensures self-balanced
operation with high steady-state performance. Moreover, the employment of the proposed FFC leads to a
decrease in the capacitor’s value as well as the minimization of the Total Harmonic Distortion (THD). Then,
a feedback linearizing control technique is designed to improve the transient and steady-state performances.
In grid-connectedmode, a reduced-sensor technique based on the FFC and the state feedback (FC) techniques
was applied. Simulations and experimental results are presented to prove the high performance of the
proposed solutions for standalone and grid-connected operating modes.

INDEX TERMS Packed U-cell inverter, PUC5, self-balancing, average model, feedback linearizing,
feedforward control, power quality.

I. INTRODUCTION
Recently, multilevel inverters (MLIs) have become very
popular in renewable energy applications due to their high
conversion performance and low harmonics content [1]–[5].
This growth is mainly due to the latest developments of power
semiconductors such as silicon carbide (SiC) and gallium
nitride (GaN) that are enabling a new generation of power
semiconductor devices [6]. Several topologies have been
proposed to achieve a good compromise between system
performance and complexity. Themostly usedMLIs in the lit-
erature are cascaded H-bridge (CHB), neutral point clamped
(NPC), and flying capacitors (FC) inverters [7]–[11]. The
performance of these inverters is directly related to the num-
ber of generated output voltage levels. However, the increase
of output voltage levels is generally associated with the
increase in components count, which leads to a higher cost
and implementation complexity.

Recently, the Packed U-cell (PUC) inverter has emerged as
an alternative MLI topology showing additional advantages
compared to the existing topologies, such as allowing the
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generation of higher numbers of output voltage levels with a
relatively reduced number of components. The PUC topology
consists of cascaded power cells, where each cell is composed
of two bidirectional switches and one capacitor.

The PUC was firstly introduced with its 7-level version
(PUC7), where the 7-level output voltage could be achieved
by regulating the capacitor voltage at one-third of the DC
source voltage (Vc = E/3) [12]–[14]. However, this
configuration lacks of redundant switching states resulting
in a loss of capacitor voltage controllability [15], [16]. This
limitation could be overcome with the introduction of the
5-level version of the inverter (PUC5) in [16], [17], where the
capacitor voltage is regulated at half of the DC source voltage
Vc = E/2. Though this new configuration allows generating
only five levels of output voltage, it gives the converter
full controllability by taking advantage of the switching
redundancies and proper control.

Several methodologies have been proposed in the literature
to control the PUC5 inverter. Some of the proposed
techniques have achieved the balancing of the capacitor
voltage without the use of feedback loop (feedforward
techniques). The first solution was proposed in [16]
by applying a phase disposition pulse width modulation
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(PDPWM). This technique uses four level-shifted carriers
and switching state table. However, this trend shows a major
drawback because it requires a large capacitor in order to
stabilize the voltage across the capacitor. The reason is that
the charge and discharge cycles of the PUC5 capacitor in [16]
depend on the fundamental frequency. To overcome this
problem, another control strategy was proposed in [18]. This
strategy uses only two level-shifted triangular carriers and
six logic gates. The charging and discharging cycles of the
capacitor depend on the switching frequency, which helped
to reduce the size of the capacitor. However, this technique is
characterized with high complexity and rise of computational
burden. To the best of authors’ knowledge, the idea to control
both capacitor voltage and output current using state feedback
through the average model of the PUC5 inverter has not been
discussed yet in the literature.

Thus, this paper proposes a solution with new average
model based control strategies for the PUC5 inverter
operating in standalone and grid-connected modes. First,
a simple feedforward control (FFC) technique using only
two phase-shifted PWM carriers is applied to achieve the
balancing of the capacitor voltage [19]–[21]. The proposed
control strategy is characterized by its simplicity, significant
effect on the decrease of the capacitor size, and contribution in
improving the output power quality (lower THD). In addition,
the proposed controller shows a noticeable improvement
in the output current spectrum resulting in a decrease of
the filter size compared to the control strategy proposed
in [16], [18]. The presented results are characterized by
a high-quality steady-state tracking and slow transient
dynamics. Thus, a nonlinear feedback controller (FC) is
proposed to improve the transient performance (fast capacitor
voltage charging/discharging) and the tracking of the desired
values.

This paper in organized as follows. In Section II,
the PUC5 topology is introduced and the modeling steps are
detailed. In Section III, an FFC strategy is developed based
on the average model of the PUC5 inverter. In Section IV,
a FC design is presented. The simulation and experimental
results are reported in Section V. Finally, the conclusions and
themain contributions of this work are outlined in Section VI.

II. PUC5 TOPOLOGY AND MODELING
A. TOPOLOGY OVERVIEW
The single-phase PUC5 converter topology is depicted in
Fig. 1. This converter is composed of three cells: DC source
cell (E, S1, S̄1), the capacitor cell (C, S2, S̄2), and a third cell
consisting of two packing switches Sp, S̄p having the role of
alternating between the positive and negative signals of the
output voltage. The switching function is defined by:

Si =

{
1 if Si is open
0 if Si is closed

(1)

where i ∈ (p, 1, 2). Eight switching state patterns could
be identified from this topology. The corresponding output
voltages for each state are listed in Table 1. At first glance,

FIGURE 1. The PUC inverter topology.

TABLE 1. Output voltage levels and capacitor voltage dynamics for the
8 switching states.

it can be noticed that the PUC topology shown is capable
of generating a seven-level output voltage. This can be
achieved by regulating the capacitor voltage at E/3. This
configuration will maximize the output voltage levels (7-
levels, namely ±E,±2E/3,±E/3, and0), where 0 is a
redundant state. However, the 7-level configuration suffers
from uncontrollability issues (the controllability can be lost
in some configurations where the capacitors are bypassed).
On the other hand, if the capacitor voltage is regulated at E/2,
the PUC inverter will generate 5-levels (±E,±E/2, and 0),
where both 0 and ±E/2 are redundant switching states.
These redundant states have an important effect on the full
controllability of the inverter as it can be seen by the dynamics
of the capacitor voltage 1Vc given in Table 1, where +, −,
and 0 represent the charging, discharging and bypass of the
capacitor C , respectively.

B. MATHEMATICAL MODELING
The PUC5 converter is classified as a Variable Structure
System (VSS) where the control input signals are binary. The
average model of the PUC5 inverter is used in this paper by
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considering the averaged control signals. Therefore, if the
actual control signal is s(t), its T-average is given by:

u(t) =
1
T

∫ T

t−T
s(τ )dτ (2)

where T is the averaging period. The switching signal s(t) can
be generated from u(t) by Pulse Width Modulation (PWM).
Applying the Kirchhoff’s laws, the average dynamical model
of the PUC5 inverter is expressed by:

C
dVc(t)
dt
= io(t)(u2 − u1)

Vo = E(up − u1)+ Vc(t)(u1 − u2)

L
dio(t)
dt
= Vo − Vx (3)

where
E : DC voltage
Vc: capacitor voltage
Vo: output voltage
io: output current
L: grid/load inductor
C : cell capacitor

where u1, u2 and up are the T-average inputs, which stand for
the duty cycles of the switches s1, s2 and sp. Vx represents the
R ∗ io voltage in the standalone case and the grid voltage Vg
in the grid-connected case.

III. FEEDFORWARD CONTROL DESIGN
In this section, an FFC technique is proposed for the
PUC5 inverter. The aim is to generate adequate switching
patterns in order to track a given output voltage reference
while ensuring the balancing of the capacitor voltage. The
proposed design is depicted in Fig. 2. It’s worth noting that
the proposed FFC does not require any feedback. Based on
the average model of the PUC5 inverter, the control strategy
is designed by the application of only two phase-shifted
triangular carriers. From Table 3, it can be noticed that the
switch Sp toggles between 1 and 0 according to the sign of
the output voltage reference V ∗o . Therefore, up is equivalent
to Sp and expressed by:

up =

{
1 V ∗o ≥ 0
0 V ∗o < 0

(4)

At steady-state, dVcdt = 0, and Vo = V ∗o . Thus:

io(t)(u2 − u1) = 0

E(up − u1)+ Vc(t)(u1 − u2) = V ∗o (5)

This yields to:

u1 = u2 = up −
V ∗o
E

(6)

where V ∗o
E = MIsin(ωt) andMI is the modulation index.

It is worth noting that the above equation will only
conserve the initial capacitor voltage and is not sufficient
to control Vc and Vo to their references. However, by using

FIGURE 2. Synoptic of the proposed feedforward control.

two triangular carriers phase-shifted by π between u1 and
u2, Vc can be regulated to its reference E/2 from any
initial condition. The natural balancing mechanism of the
PUC5 inverter can be proved by the first-harmonic model of
the inverter, which is similar to the multi-cell neutral balance
analytic presented in [22].

IV. FEEDBACK CONTROL DESIGN
The motivation of the FC is to design a stabilizing control law
that combines the PWM control technique (optimal steady-
state) and a linearizing PI control strategy (fast transient,
robustness). To achieve this goal, a feedback function that
controls both Vc and io to their references is designed through
a dual-loop concept. The first loop generates the output
voltage reference V ∗o through the measurement of the output
current io and its reference i∗o. The role of the second loop is
used to calculate the control inputs u1 and u2 in terms of the
actual value of the capacitor voltage Vc, the reference V ∗c , and
the output voltage reference V ∗o generated by the first loop.

A. FIRST LOOP
From 3-(c), and using the actual and reference values of
the output current, the reference of the output voltage V ∗o is
determined by:

dio
dt
=
V ∗o
L
−
Vx
L
= ω1 (7)

which yields

V ∗o = Vx + Lω1 (8)

where ω1 is a Proportional-Integral (PI) action of the form

ω1 =
di∗o
dt
+ Kp(i∗o − io)+ Ki

∫
(i∗o − io)dt (9)

Hence, the inclusion of the derivative of the current reference
di∗o
dt in the PI controller will help to increase the convergence
speed to any current amplitude reference.

B. SECOND LOOP
Here, the control input signals u1 and u2 are defined by
controlling the variable Vc and Vo. As the system is square
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(number of controls equals to the number of states). The
system can be linearized through the state feedback as
follows:

dVc
dt
=
io
C
(u2 − u1) = ω2

(up − u1)E + vc(u1 − u2) = V ∗o (10)

where ω2 is a PI controller of the form

ω2 = Kp(V ∗c − Vc)+ Ki

∫
(V ∗c − Vc)dt (11)

u1 and u2 are deduced from (10) and calculated in terms of
V ∗o and ω2 as follows:[

u1
u2

]
=

[
−
io
C

io
C

vc − E −vc

]−1 [
ω2

V ∗o + Eup

]
(12)

The synoptic of the proposed FC strategy is depicted
in Fig. 3.

FIGURE 3. The proposed feedback control.

C. CONTROL PARAMETERS DESIGN
Substituting ω1 and ω2 in (7) and (10) by their respective
expressions given by (9) and (11) yields to:

ė+ Kpe+ Ki

∫
e dt = 0 (13)

where e represents the vector composed of the output current
and the capacitor voltage errors. The Laplace transformation
of (13) leads to a second-order system characterized by Kp
and Ki, where the designed parameters are as follows:

Kp = 2ξωn
Ki = w2

n (14)

where ξ is the damping ratio equal to 0.707 and ωn is the
natural frequency which satisfies the 2ωn < ωs constraint,
ωn is chosen equal to ωn =

ωs
5 , where ωs is the PWM angular

frequency in rad/s.

V. SIMULATION AND EXPERIMENTAL RESULTS
The proposed FFC and FC schemes are presented in Fig. 2
and Fig. 3 respectively. In order to prove the performance of
the proposed techniques, simulation and experimental vali-
dations have been performed throughMATLAB/SIMULINK
environment and using a dSPACE 1103 platform as depicted
in Fig. 4. The system parameters are listed in Table 2.

FIGURE 4. Experimental setup of the PUC5 inverter.

TABLE 2. System parameters.

FIGURE 5. Simulation results showing the transient and steady-state
performance of the FFC in standalone mode: (a). Capacitor voltage, (b).
Output voltage, (c). Load current.

A. STANDALONE MODE VALIDATION
1) FEEDFORWARD CONTROL
The proposed FFC scheme presented in Fig. 2, is validated
through simulation and experimental investigations on the
studied PUC5 inverter.
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TABLE 3. Comparative study between the ffc scheme and existing techniques.

FIGURE 6. Simulated FFT analysis: (a). Output voltage, (b). Load current.

FIGURE 7. Experimental results showing the steady-state performance of
the FFC in standalone mode.

a: SIMULATION RESULTS
Fig. 5 shows the transient and steady state waveform of the
capacitor voltage, output voltage, and load current. It is clear
that the self-balancing of the capacitor voltage is achieved

FIGURE 8. Experimental results showing the transient and steady-state
performance of the FFC in standalone mode.

FIGURE 9. Experimental results showing the dynamic performance of the
FFC in standalone mode under load resistor change.

with small ripples (±3V ). This is due to the dependence
between the charging and discharging cycles of the capacitor
voltage and the switching frequency. The FFT analysis of the
output voltageVo and output current io are presented in Fig. 6.
The load current THD is 3.39%while the output voltage THD
is 25.61%.

A comparative study between the proposed FFC scheme
and three existing control techniques, which were used to
achieve the self-balanced operation of the PUC5 inverter,
is reported in Table 3 (the same parameters listed in Table 2
have been used for all modulation techniques). The controller
1 reported in [16] uses four level-shifted carriers and a switch-
ing state table. Controller 2 uses four phase-shifted carriers
in [23]. The third controller was proposed in [18] and uses two
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FIGURE 10. Experimental results showing the dynamic performance of
the FFC in standalone mode under DC source voltage change.

FIGURE 11. Experimental results showing the dynamic performance of
the FFC in standalone mode for MI = 0.9.

FIGURE 12. Experimental results showing the dynamic performance of
the FFC in standalone mode for MI = 0.5.

level-shifted carriers and logic gates. According to Table 3,
the proposed strategy shows higher performance in terms of
capacitor voltage ripples, load current THD, and controller
complexity compared to [16] and [23]. Moreover, though
the method presented in [18] shows a similar performance,
it suffers from higher computational burden and system
complexity.

b: EXPERIMENTAL RESULTS
Fig. 7 shows the experimental steady-state results of the
proposed FFC. Similar to the simulation results, the capacitor

FIGURE 13. Simulation results showing the transient and steady-state
performance of the FC in standalone mode.

FIGURE 14. Experimental results showing the transient and steady-state
performance of the FC in standalone mode.

FIGURE 15. Experimental results showing the dynamic performance of
the FC under DC source voltage change.

voltage self-balancing is achieved with very small ripples.
The load current tracks its reference with low harmonic
content. The FFT analysis using the power analyzer shows
high quality harmonic spectrum with a current THD of
1.1%. Fig. 8 shows the transient of the PUC5 inverter.
In order to further assess the dynamic performance of the
proposed FFC, two dynamic tests have been performed.
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FIGURE 16. Grid-connected PUC5 converter controllers.

FIGURE 17. Experimental results showing the steady-state performance
of the reduced-sensor control in grid-connected mode.

FIGURE 18. Experimental results showing the dynamic performance of
the reduced-sensor control in grid-connected mode and under DC source
voltage change.

The first test is performed with varying the load resistor
(load current variation) as depicted in Fig. 9. The second

one is performed with applying a step up/down change
on the DC source voltage (E) as shown in Fig. 10. It is
clear that the capacitor voltage keeps tracking its reference
E/2 in both cases in a stable manner (although with
no feedback). Moreover, a performance evaluation of the
proposed FFC technique was performed under different oper-
ating conditions. Fig. 11 and Fig. 12 present the performance
results under modulation index MI = 0.9 and MI =
0.5, respectively. One can notice that the self-balancing of
the capacitor voltage can be obtained at a wide range of
modulation indexes, by simply performing an appropriate
phase-shift of the two carrier signals.

2) FEEDBACK CONTROL
a: SIMULATION RESULTS
Fig. 13 depicts the transient and steady-state performances
of the capacitor voltage, output voltage, and load current.
It is worth noting that the capacitor voltage is reaching its
reference value of E/2, from the zero initial condition, in a
very short time compared to the results shown in Fig. 5 for
the FFC.

b: EXPERIMENTAL RESULTS
Fig. 14 illustrates the experimental results showing the tran-
sient and steady-state performance of the FC in controlling
the PUC5 inverter in standalone mode. From the presented
results it is clear that the capacitor voltage converges from the
zero initial condition to its reference in a short time without
any overshot andwith low steady-state error. Another test was
made by applying a step-down/up change on the DC source
voltage (Fig. 15). This figure shows that the capacitor voltage
re-tracks rapidly its reference E/2. These results prove the
high dynamic performance of the proposed FC in standalone
mode.
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FIGURE 19. Experimental results showing the steady-state performance
of the FC in grid-connected mode.

B. GRID-CONNECTED MODE
1) REDUCED-SENSOR CONTROL
The reduced-sensor control strategy is illustrated in
Fig. 16-(a). The controller combines the first loop of the FC
with FFC controller using only the measurement of the grid
current and a phase-locked loop (PLL) in order ensure the grid
synchronization. Fig. 17 presents the experimental results
showing the performance of the proposed reduced-sensor
strategy in controlling the PUC5 inverter in grid-connected
mode. The upper part of the figure shows the capacitor
voltage tracking around the reference value. The middle
part shows the 5 voltage levels generated at the output
terminal, whereas the lower part of the figure shows the
synchronization of the grid current with the grid voltage
(θg = 0). Moreover, an additional test was performed by
applying a DC voltage change. As it can be seen in Fig. 18,
the capacitor voltage keeps tracking the new reference values
using the reduced-sensor technique. However, even though
the reduced-sensor approach seems to be more attractive in
terms of cost due to the fact that it uses less sensors, Fig. 18
presents an erratic oscillation on the capacitor voltage. This
is due to the active nature of the grid (exchange of energy
with the grid). Therefore, the performance of the FC will
be investigated in the following subsection for comparison
purposes.

2) FEEDBACK CONTROL
The synoptic of the proposed FC scheme is shown
in Fig. 16-(b). Fig. 19 illustrates the capacitor voltage, output
voltage and the injected grid current. As it can be seen,
the injected current waveform is kept in phase with grid
voltage (unity power factor) while maintaining the capacitor
voltage around its reference value. The FFT analysis of
the injected current shows a low THD of 2.9%. Moreover,
a DC source voltage change was applied to verify the
performance of the proposed FC controller in tracking the
voltage reference of the capacitor. As illustrated in Fig. 20,
the capacitor voltage tracks its reference of E/2 with high
accuracy and fast response. From Fig. 20, it can be clearly

FIGURE 20. Experimental results showing the dynamic performance of
the FC in grid-connected mode and under DC source voltage variation.

FIGURE 21. Experimental results showing the dynamic performance of FC
in grid-connected mode during active power change.

seen that the capacitor voltage ripples are lower compared to
the reduced-sensor control while the erratic behavior shown
in Fig. 18 has vanished using the proposed FC. An additional
test was performed by varying the injected active power
as illustrated in Fig. 21. The presented results prove the
effectiveness of the proposed FC in balancing the capacitor
voltage and injecting a sine-wave current to the grid with low
THD.

VI. CONCLUSION
This work presented novel control strategies for the PUC5
inverter operating in both standalone and grid-connected
modes. At a first stage, feed-forward control (FFC) was used
to provide self-balancing operation of the PUC5 inverter
by an appropriate selection of phase-shift between two
carrier signals. The obtained current and voltage wave-
forms are characterized by a high-quality steady-state and
slow dynamic tracking. Therefore, a nonlinear feedback
control (FC) was designed to improve the transient and
steady-state performances. Simulations and experimental
results were provided to validate the proposed techniques.
The presented results clearly show the effectiveness of both
methods in maintaining a balanced capacitor voltage with
high performance in tracking the reference current.
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