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ABSTRACT Profiting from its remarkable maneuverability and efficiency, the four-wheeled autonomous
mobile robot (FAMR) is appealing for intelligent manufacturing and automation applications. However,
the suppression of unknown disturbances and system uncertainties remains a challenge for formulating a
precise trajectory-tracking control scheme. This paper achieves the anti-disturbance direct yaw moment
control of a developed FAMR by proposing a robust super-twisting sliding mode controller (RSSMC)
to enhance the dynamic tracking and disturbance rejection property simultaneously. One of the major
contributions is that the presented RSSMC method is constructed with a novel reaching law to eliminate the
matched perturbations and time-varying lumped disturbances. As another distinguishing feature, this method
is capable of driving the resultant FAMR trajectory into a bounded switching region andmaintaining it therein
for subsequent periods in finite time. To guarantee the closed-loop stability and finite-time convergence, new
sufficient conditions for specifying the variable gains are determined utilizing Lyapunov functions. Finally,
under the direct yaw moment control framework, simulation experiments of a developed FAMR system are
offered to verify the practicability of the RSSMC scheme.

INDEX TERMS Direct yawmoment control, four-wheeled autonomous mobile robot, super-twisting sliding
mode controller, anti-disturbance.

I. INTRODUCTION
Compared to other automation technologies, which require
more time and effort to retrofitting and renovating, mobile
robots can be flexibly switched to perform new tasks with
relative ease [1]–[3]. With all-wheel independently steer-
ing and actuating features, the four-wheeled autonomous
mobile robot (FAMR) is able to dynamically optimize its
efficient pathways to achieve flexible and agile automation
[4], [5]. As shown in Figure 1, a practical FAMR is potential
for transferring the workpieces between different machin-
ing units in manufacturing factories or mobile processing
of large complex parts [6], [7]. Equipped with mecanum or
omni wheels, the traditional FAMR ensures the wheels and
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rollers an active rotation to enable superb moving capabil-
ity in arbitrary directions [8]. However, mecanum wheels
have rigid requirements for the ground flatness, which is not
applicable to rough terrains or greasy surfaces. However, this
normally occurs in typical manufacturing scenarios [9], [10].
To address these limitations, a FAMR with a car-wheeled
structure can be independently actuated by in-wheel-driven
motors, thus maintaining its free orientation regulation of
the four-wheeled actuation system while offering better tol-
erance to surface irregularity and higher durability of tires
[11]–[13]. In this regard, it achieves higher maneuverability
and adaptability when applying to uneven or confined oper-
ating environments.

To enhance the existing industrial solutions of FAMR,
some prior researches have been developed to stabilize the
FAMR systems via advanced control strategies [14], [15].
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FIGURE 1. The typical the manufacturing scenario.

As a primary step, a kinematic model or dynamic model
is needed to be identified for formulating a kinematic
or dynamic control scheme, respectively [16]–[18]. It is
well known that a kinematic design retains the control
simplicity and accuracy concurrently [19]. However, the
achieved performance may be mitigated since the dynam-
ics and actuation forces are not considered when deriving
a control law for complex operating environments (e.g.,
non-idealized ground/wheel interactions). In comparison,
the chassis dynamic control of the FAMR can reach a precise
direct yaw moment regulation, leading to improved tracking
features concerning asymptotical convergence and stability
[20], [21]. Up to now, various studies have been presented,
focusing on the direct yaw moment control of mobile robots.
For optimizing the desired yaw moment and active steer-
ing angle, a multi-objective model predictive controller is
designed to allocate the four-wheel torques with guaranteed
closed-loop stability [22]. By utilizing a robust control frame-
work, Hu et al. address the motion stabilization issue of
four-wheel electric vehicles subject to model uncertainties,
external disturbances, and parameter variations [23]. To opti-
mize the yaw moment distribution, a hierarchical strategy is
proposed by integrating an overlook controller and a servo-
loop controller to resolve the yaw moment and torque distri-
bution, separately [24].

It is noted that sliding mode control (SMC) can achieve
superior advantages of insensitivity to system uncertain-
ties, quick tracking response and easy to implement
[25]–[29]. There have been some interesting SMC solu-
tions for the existing control issues, such as the systems
subject to randomly occurring mixed time-delays under
uncertain occurrence probabilities [26], [29]. Till now,
SMC has been incorporated into direct yaw moment con-
trol systems over recent years. For instance, Ding et al.
optimize the yaw moment adaption law by combining
the sliding mode mechanism and disturbance observer
technology [30]; An integral SMC solution is pro-
posed to achieve a torque-vectoring regulation scheme
for electric vehicles with practical demonstrations [31].
Indeed, the promising SMC solutions can enhance the control
capabilities from both uncertain and time-varying disturbance
alleviation and asymptotical stability. However, there exist
some synthesis problems remain to be resolved for direct yaw
moment control of an in-wheel-driven FAMR:

1) Multiple allocations of four-wheeled configuration. It
should be mentioned that the concerned FAMR system

with the four independently in-wheel-driven ability can
be operated in various single-track dynamic modes.
The typical modes include Ackerman mode (the
traditional car-like mode), double-Ackerman mode,
diagonal-move mode and zero-radius steer mode, etc
[32]–[34]. Given this context, the alternative FAMR
can be further employed for various applications due
to the enhanced practicability in clustered spaces and
confined scenes [19]. However, most of the existing
direct yawmoment control schemes are only applicable
to car-like electric vehicles [14], [35]–[37], implying
that only the traditional Ackerman mode is applicable
for real-world implementations. Naturally, a question is
raised here: How can we derive a more universal lateral
motion control framework for the FAMR with variable
configurable modes?

2) Chattering-free disturbances suppression issue. Non-
ignorable high chattering activities will be resulted
from the discontinuous control mechanism of tradi-
tional sliding mode mechanism. A possible way to
mitigate the undesirable chattering is to revise the
enforcement law through designing a specialized func-
tion related to the desired sliding surfaces, such as the
boundary layer or some smoother terms [12]. How-
ever, a trade-off between enhancing the tracking per-
formance and strengthening the system robustness is
imposed on optimizing a practical smooth reaching
law [10], [38], [39]. Although the traditional constant
proportional rate law can obtain a fast response, its
limited stability implies that it is not suitable for a
disturbed system [40]; the power rate reaching law is
able to improve the resultant robustness because of
the natural lessening property of its employed expo-
nential term [41]. For a practical SMC design, the
disturbance rejection capacity should be considered
during the derivation of enforcement laws to enhance
the dynamic control precision. To this end, the related
control parameters may be overestimated to handle
the unknown disturbances and uncertainties, leading
to anabatic chattering phenomena. Up to now, explor-
ing an optimal solution with chattering-free dynamic
tracking and disturbance rejection abilities is of great
significance to achieve well-pleasing control effects for
the potential industrial applications of the FAMR.

Based on the previous discussions, this paper presents a
robust super-twisting sliding-mode controller (RSSMC) to
derive the direct yaw moment control framework of the con-
sidered FAMR, realizing simultaneous dynamic tracking and
disturbance rejection. Compared to the existing studies, major
contributions can be reflected in:

1) In contrast to traditional control designs of FAMR,
the presented method is more universal in two aspects:
a. The optional multi-mode of the chassis motion can
be configured to achieve flexible torque distribution,
gaining more adaptivity in a complex environment; b.
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the unknown disturbances and uncertainties are consid-
ered simultaneously, including the unmodelled dynam-
ics and time-varying parametric vibrations.

2) A novel anti-disturbance mechanism is proposed,
which is capable of handling the time-varying per-
turbations and the discontinuity chattering. Given this
context, the chattering phenomenon in traditional solu-
tions can be effectively handled with the derived reach-
ing law, and sufficient conditions for the multivariable
gains are formulated to ensure the lateral motion con-
trol stability and finite-time convergence.

3) The presented RSSMC method is easy for practical
implementation. Comparison simulation experiments
are carried out in real-world scenarios, validating the
benefits and superior abilities of the proposed method.

The rest is constructed as follows. The system mod-
elling and problem statement are clarified in Section 2.
Section 3 gives the proposed RSSMC framework with guar-
anteed stability and finite-time convergence. Section 4 pro-
vides the validation results and analysis while Section 5 offers
the research conclusions and future working directions.

II. PROBLEM STATEMENT
A. SYSTEM MODELLING
With interconnected variables, the dynamic states of the
developed FAMR can be formulated as a nonlinear multiple-
input multiple-output system. Figure 2 shows the two-degree-
of-freedom planar model of the considered FAMR system.
Specially, for the yaw plane representation, the nonlinear
four-wheel formulations of the concerned FAMR can be
expressed by

mυx(β̇ + γ ) =
2∑
i=1

(Fxi sin δf + F
y
i cos δf )

+

4∑
i=3

(Fyi cos δr − F
x
i sin δr ) (1)

Izγ̇ =
2∑
i=1

lf (Fxi sin δf + F
y
i cos δf )

−

4∑
i=3

lr (F
y
i cos δr − F

x
i sin δr )+Mω (2)

where m denotes the total mass of the FAMR, υx denotes the
longitudinal speed at the centre of gravity (CG),Fxi andF

y
i are

the longitudinal and lateral tire forces at ith tire, respectively,
β and γ denote the sideslip angle and yaw rate, separately,
Iz is the inertia moment, lf and lr denote the distances from
the front and rear axles, respectively, δf and δr are the virtual
front wheel and rear wheel angles, respectively, Mω denotes
the yaw moment generated by the traction moment of four
wheels, i.e.,

Mω = 0.5d(Fxrr − F
x
rl) cos δr + 0.5d(Fxfr − F

x
fl ) cos δf (3)

FIGURE 2. The two-degree-of-freedom planar model of the considered
FAMR system. (a) Four-wheel presentation; (b) Single-track presentation.

where d denotes the track width, Fxrr ,F
x
rl , F

x
fr and F

x
fl denote

the longitudinal tire forces acting on the rear-left tire, rear-left
tire, front-right tire, and front-left tire, respectively.

In practice, we can directly measure or estimate Fxrr , F
x
rl ,

Fxfr and Fxfl using observer techniques [35]. Note that for
a general system, we can describe the δr use δr = kδf ,
where k is a user-defined coefficient that can be used for
operating model configuration. For example, by specifying
k = 1, the turning radius under double-Ackerman mode can
be decreased by 35%, enhancing the practicability and supe-
riority for desired profiles with distinct curvature vibrations
[36]. Without loss of generality, we define

k =


0 Ackerman mode
1 Double-Ackerman mode
−1 Diagnal-move steer mode
(0, 1) Variable Ackerman mode

(4)

As shown in Figure 2(b), for the dynamic RSSMC con-
troller design, one can simplify the four-wheel model as a
single-track mode. As demonstrated in (4), unlike the tra-
ditional yaw moment vehicle model, we introduce the user-
defined coefficient k into the construction of a single-track
model to achieve a uniform yawmoment control model. With
the virtual front and rear wheels, we rewrite the lateral and
yaw dynamics as

mυx(β̇ + γ ) = Fyf cos δf + F
y
r cos δr (5)

Izγ̇ = lf F
y
f cos δf − lrF

y
r cos δr +Mω (6)

where the lateral tire forces Fyf and F
y
r can be linearly calcu-

lated as follows

Fyf = −Cf

(
β +

lf γ
υx
− δf

)
(7)

Fyr = −Cr

(
β −

lrγ
υx
+ δr

)
(8)

where Cf and Cr denote the cornering stiffnesses of the front
and rear tires, separately.

In general, the tire concerning stiffness is affected by
weight transfer. By applying small-angle approximation (e.g.,
cos δf ≈ 1, cos δr ≈ 1), we reconstruct the nonlinear
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dynamic model derived by (5)-(8) in a general form

ẋ(t) = Ax(t)+ Bu(t)+ f (x, t) (9)

where x(t) = [β, γ ]T and u(t) = [δf ,Mω]T denote the
vectors of system state and control input, respectively, f (x, t)
denotes the external disturbance, and the corresponding para-
metric vectors A and B are obtained as

A =


−(Cf + Cr )

mυx

(lrCr − lf Cf )
mυ2x

− 1

−(lf Cf − lrCr )
Iz

−(l2f Cf + l
2
rCr )

Izυx



B =


Cf − Crk
mυx

0

lf Cf + lrCrk
Iz

1
Iz


Then, considering the parametric perturbation, one can fur-
ther construct the FAMR system (9) as

ẋ(t) = (
_

A+1A)x(t)+ (
_

B+1B)u(t)+ f (x, t) (10)

where
_

A and
_

B stand for the nominal matrix derived from
using Cf =

_

C f and Cr =
_

Cr ,
_

C f and
_

Cr are the related
nominal parameters,1A and1B are the uncertainties caused
by the vibrations of the tire concerning stiffness.

By using the parametric perturbation d(x, t) as

d(x, t) = 1Ax(t)+1Bu(t) (11)

we can define a lumped disturbance as

D(x, t) = d(x, t)+ f (x, t)) (12)

For a practical, one can further assume that D(x, t) and the
related derivative Ḋ(x, t) are bounded by respective known
positive constants Dm and D̃m, which implies that

‖D(x, t)‖ < Dm (13)∥∥Ḋ(x, t)∥∥ < D̃m (14)

Hence, the considered system can be finally expressed by

ẋ(t) =
_

Ax(t)+
_

Bu(t)+ D(x, t) (15)

B. PROBLEM STATEMENT
In practice, the yaw rate and sideslip angle have been regarded
as the universally applied indicators of lateral stability and
dynamic performance. Note that it can be achieved by inde-
pendent in wheel-motor control of the FAMR. Given this
context, the trajectory-tracking problem considered in this
work is translated into the direct yaw moment control issue
of the FAMR to stabilize the lateral motion activities. To this
end, this paper aims at designing an RSSMC control scheme
for the disturbed FAMR system, realizing the lateral stability
control when following the desired profiles. In this paper,
the required yaw rate γd is attained on the basis of the
desired trajectories (thus γd is time-varying) assuming the
controlled system is with widely-employed Ackerman mode.
Specifically, we will use a convenient reference model for

the considered FAMR based on the known information, such
as the steering angle and longitudinal velocity. To be more
specific, the concerning γd of the vehicle can be determined
by

γd = min{|γ1|, |γmax|} · sign(δf ) (16)

where |γmax| = µg/υx with µbeing the road adhesion coef-
ficient, and γ1 is determined by

γ1 =
υx/d

1+ Kυ2x
δf , K =

m
2d2

(
Lf
Cr
−
Lr
Cf

)
(17)

Generally speaking, the yaw rate can be affected more
easily by the control decisions and actuation system of the
FAMR. This implies that it is more sensitive to the stability
of lateral motion control. In comparison, as the embodiment
of the tire slip angles on the robotic main body, the reference
sideslip angle is normally assumed to be around its mini-
mum, which is determined by zero in this paper to enhance
the lateral motion control stability [42]. On the other hand,
different from the traditional method, which assumes the
ideal system modelling and identifications, the parametric
perturbation and unknown disturbances are considered in
the FAMR dynamic responses here. To this end, we will
formulate a robust controller tomake the yaw rate and sideslip
angle approach their respective desired values, which can
enhance the dynamic tracking and disturbance rejection prop-
erty simultaneously.

III. THE PROPOSED RSSMC METHOD
To begin with, suppose that (A,B) is controllable and the
matrix B has full column rank. Specially, we use n and m to
denote the general dimensional of the input vector and output
vector, respectively. Then, we define

z =
[
z1(t) z2(t)

]T
= Fx (18)

where z1(t) ∈ Rn−m, z2(t) ∈ Rm,F =
[
B1 B2

]T
,B1B =

0,B2 = (BTB)−1BT.
Then, the system described by (10) can be transformed into

ż = Ãz+
[
0 u(t)+ f̃ (x, t)

]T
(19)

where f̃ (x, k) denotes the continuous uncertainties/ distur-
bances and Ã = FAF−1 can be expressed by

Ã =
[
Ã11 Ã12
Ã21 Ã22

]
(20)

with elements

Ã11 ∈ R(n−m)×(n−m), Ã12 ∈ R(n−m)×m,

Ã21 ∈ Rm×(n−m), Ã22 ∈ Rm×m

Therefore, one can re-present the corresponding hybrid
system (19) using[

ż1(t)
ż2(t)

]
=

[
Ã11 Ã12
Ã21 Ã22

] [
z1(t)
z2(t)

]
+

[
0

u(t)+ f̃ (x, t)

]
(21)
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The desired sliding mode surface of this paper is con-
structed as

s = z2 − Gz1 (22)

where G ∈ Rm×(n−m) is a matrix to be designed later.
Together with the equivalent law ueq, the control input

takes the form of

u = ueq +$ (s)+ v (23)

$ (s) = −
(
Ã22 − GÃ12

)
s (24)

where v denotes the enforcement control law.
To obtain the equivalent law ueq, the integration of s = 0

and (22) leads to a reduced model{
ż1(t) = Ã11z1(t)+ Ã12Gz1(t)
ż2(t) = Ã21z1(t)+ Ã22Gz1(t)+ f̃ (x, t)+ u(t)

(25)

Thus, one can determine ueq using

ueq = −
(
Ã21 + Ã22G− G(Ã11 + Ã12G)

)
z1(t) (26)

On the other hand, with

φ1(s) = µ1|s|1/2sign(s)+ µ2s (27)

where µi=1,2 > 0 denote pre-defined coefficient, the sliding
mode reaching conditions can be satisfied by applying the
enforcement law as below

v = −σ1φ1(s)− σ2φ2(s) (28)

φ̇2(s) = φ̇1(s)φ1(s)

=
d
dt

(
µ1|s|0.5sign(s)+ µ2s

)
·

(
µ1|s|0.5sign(s)+ µ2s

)
= 0.5µ2

1sign(s)+ 1.5µ1µ2|s|0.5sign(s)+ µ2
2s (29)

where σ1 and σ2 are the related control gains.
It is mentioned that if µ1 = 1, µ2 = 0, we may consider

(28) and (29) as the normal form of the traditional super-
twisting algorithm [43], [44], which can achieve a continuous
control scheme. However, it cannot cope with the undesired
perturbations. In another case, by setting µ1 = 0, µ2 = 1,
one can realize a linear implementation of SMC solution with
the help of symbolic function. In this paper, by employing
µi=1,2 > 0, we can handle the perturbations growing linearly
in s. The potential control gains (i.e., σ1 and σ2) provide an
opportunity to improve the insensitivity of the sliding surface
to perturbations and disturbances increasing. This implies
that the control variable derived in this paper is absolutely
continuous as compared with the discontinuous characteris-
tics of conventional SMC solutions.
Remark 1: In practice, the corresponding matrix G can

be determined by utilizing linear control methods, e.g.,
eigenvalue assignment (adopted here) and optimal control
approaches. It is pointed out that the selection ofGmay affect
the approaching rate of the desired sliding manifold (s = 0).
However, the closed-loop stability of the resultant system

will not be influenced. Generally, the elements of matrix
G can help the FAMR system to satisfy the requirements
of dynamic trajectory tracking. For example, by using the
eigenvalue assignment method to obtain G, one can pre-
specify the system eigenvalues to obtain the required dynamic
response. Further, with the linear quadratic regulator method,
it is possible to achieve an optimal sliding manifold by con-
structing and optimizing a cost function related to the system
state variables [45].
Theorem 1: Supposing the FAMR system is under the

control of the proposed RSSMC law determined by (23),
(24), (26) and (28), there exists a range of values σi=1,2 such
that both the designed sliding surface s and its derivative ṡ
are converged to the origin in finite time and maintain on
it during the succedent periods. That is to say, under the
proposed method, the closed-loop stability of the resultant
FAMR system can be guaranteed.

Proof: The proof is split into the following two steps.
In the first step, we will present the sliding mode surface

in a form that is convenient for Lyapunov analysis.
According to (21) and (22), one can reformulate the trans-

formed lumped disturbance f̃ (x, t) as follows
f̃ (z1, z2 + Gz1, t) = g1(z1, s, t)+ g2(z1, t)
g1(z1, s, t) = f̃ (z1, z2 + Gz1, t)− f̃ (z1,Gz2, t)
g2(z1, t) = f̃ (z1,Gz2, t)

(30)

Since the lumped disturbance, together with its derivative,
are assumed to be bounded in this paper, one can obtain the
following inequalities

|g1(z1, s, t)| ≤ B1(t, x) |φ1(s)|

= B1(t, x)
∣∣∣µ1|s|1/2sign(s)+ µ2s

∣∣∣
= B1(t, x)

[
µ1 + µ2 |s|2

]
|s|1/2 (31)∣∣∣∣ ddt g2(z1, t)

∣∣∣∣ ≤ B2(t, x)
∣∣φ̇2(s)∣∣

= B2(t, x)
∣∣∣0.5µ2

1sign(s)

+ 1.5µ1µ2|s|1/2sign(s)+ µ2
2s
∣∣∣ (32)

where Bi=1,2(t, x) ≥ 0 are known functions.
By using the control law (23), the control sliding mode

surface (22) can be re-described as a new system with
state (s, ϕ)

ż1 = (Ã11 + Ã12G)z1 + Ã12s (33)

ṡ = −σ1φ1(s)+ ϕ + g1(z1, s, t) (34)

ϕ̇ = −σ2φ̇2(s)+ ġ2(z1, t) (35)

Note that there exist some positive functions that satisfy
|41(x, t)| ≤ B1(x, t) and |42(x, t)| ≤ B2(x, t). In this sense,
(31) and (32) can be rewritten as

g1(z1, s, t) = 41(x, t)φ1(s) (36)

ġ2(z1, t) = 42(x, t)φ̇2(s) (37)
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Then, a new state vector is introduced

ζ =
[
ζ1 ζ2

]T
=
[
µ1|s|1/2 sign(s)+ µ2s ϕ

]T (38)

Taking φ̇2(s) = φ̇1(s)φ1(s) into account, one obtains

ζ̇ =

[
φ̇1(s) {−σ1φ1(s)+ ϕ + g1(x, t)}

ġ2(x, t)− σ2φ̇1(s)φ1(s)

]
= φ̇1(s)

[
− (σ1 −41(x, t)) 1
− (σ2 −42(x, t)) 0

] [
φ1(s)
ϕ

]
(39)

Defining 3 =
[
− (σ1 −41(x, t)) 1
− (σ2 −42(x, t)) 0

]
, we rewrite (39) as

ζ̇ =

[
ζ̇1
ζ̇2

]
= φ̇1(s)

[
− (σ1 −41(x, t)) 1
− (σ2 −42(x, t)) 0

]
ζ

= φ̇1(s)3ζ (40)

For (38) and (40), it is observed that: (a) if ζ1, ζ2 → 0 in
finite time then s, ṡ → 0 in finite time; (b) |ζ1| = µ1 |s|1/2

+µ2 |s| and sign(ζ1) = sign(s).
In the second step, we will focus on achieving sufficient

conditions for the related variable gains to guarantee Lya-
punov stability.

For the reconstructed system (40), choose a candidate Lya-
punov function as follows

V (s, ϕ) = ζTPζ (41)

where P denotes a particular symmetric and positive definite
matrix, that is to say

P =
[
p1 p3
p3 p2

]
= PT > 0 (42)

Then, the derivative of the candidate Lyapunov function
V (s, ϕ) is determined by

V̇ (s, z) = ζ̇TPζ + ζTPζ̇

= φ̇1(s)ζT3TPζ + φ̇1(s)ζTP3ζ

= φ̇1(s)ζT
(
3TP+ P3

)
ζ (43)

Leaving out the arguments of the functions, one can obtain
(44) by substituting P and 3 into 3TP+ P3

3TP+ P3 =
[
− (σ1 −41) − (σ2 −42)

1 0

] [
p1 p3
p3 p2

]
+

[
p1 p3
p3 p2

] [
− (σ1 −41) 1
− (σ2 −42) 0

]
=

[
−2p1 (σ1 −41)− 2p3 (σ2 −42) ∗

p1 − p3 (σ1 −41)− p2 (σ2 −42) 2p3

]
(44)

where ∗ denotes the symmetric element.
It follows from (43) and (44) that

V̇ (s, z) = −φ̇1(s)ζTQ(t, x)ζ (45)

where Q = −3TP− P3 denotes a symmetric matrix.

Choosing the elements of positive definite P as p1 = β +
θ2, p2 = 1, p3 = −θ (β, θ > 0) yields

Q =
[
2 (σ1 −41)

(
β + θ2

)
− 2θ (σ2 −42) ∗

(σ1 −41) (−θ )+ (σ2 −42)− β − θ
2 2θ

]
=

[
2σ1β−241β+2σ1θ2−241θ

2
−2θσ2+2θ42 ∗

−θσ1 + θ41 + σ2 −42 − β − θ
2 2θ

]
(46)

If we select the variable gain σ2 as

σ2 = β + θ
2
+ θσ1 (47)

one can calculate the following matrix inequality

Q−
[
θ 0
0 θ

]
=

[
2σ1β−241β+2σ1θ2−241θ

2
−2θσ2+2θ42−θ ∗

−θk1 + θ41 + σ2 −42 − β − θ
2 θ

]
=

[
2σ1β − 241β − 241θ

2
− 2θβ − 2θ3 + 2θ42 − θ ∗

θ41 −42 θ

]
=

[
2σ1β − (2θ + 241) (β + θ2)+ 2θ42 − θ ∗

θ41 −42 θ

]
(48)

To achieve the inequality Q− diag(θ, θ) ≥ 0, we consider
the following Algebraic Riccati Inequality [46]

2 = 2σ1β − (2θ + 241) (β + θ2)+ 2θ42

− θ − (θ41 −42)
1
θ
(θ41 −42) ≥ 0 (49)

Based on (31) and (32), a straightforward calculation of
(49) leads to

σ1 ≥ δ +
1
β
{(θ + B1) (β + θ2)+ θB2

+
1
2
θ +

1
2θ
(θB1 + B2)

2
} (50)

where δ > 0 denotes an arbitrary positive constant.
Denoting λ{Q} as the eigenvalue of matrix Q, it can be

concluded that (48) is positive definite with the combination
(45), (47) and (50), implying that

V̇ (s, z) = −φ̇1(s)ζTQ(t, x)ζ

≤ −λmin{Q}φ̇1(s)ζTζ

≤ −θφ̇1(s) ‖ζ‖22 (51)

Since

φ̇1(s) = (u1|s|−1/2 + u2) ≥ 0 (52)

‖ζ‖22 = φ
2
1 + ϕ

2
= µ2

1 |s| + 2µ1µ2 |s|3/2 + µ2
2s

2
+ ϕ2

(53)

it is concluded from (51) that the stability of the resultant
system is guaranteed. This completes the proof.
Theorem 2: Suppose that σ1 > 0 and σ2 > 0 satisfying

(47)and (50), and generally u2 ≥ 0. The proposed RSSMC
method and Theorem 1 ensure that the states of the FAMR
system will be driven to the origin within a finite time, and
the upper bound of the convergence time can be estimated.
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Proof:Let us consider the following quadratic inequality

λmin{P} ‖ζ‖22 ≤ ζ
TPζ ≤ λmax{P} ‖ζ‖22 (54)

The combination of (41) and (54) leads to

µ1 |s|1/2 ≤ ‖ζ‖2 ≤
V 1/2(s, ϕ)

λ
1/2
min{P}

,
V 1/2(s, ϕ)

λ
1/2
max{P}

≤ ‖ζ‖2 (55)

Further, it is possible to write (51) as

V̇ (s, ϕ) ≤ −θ
(
µ2
1

1

2µ1 |s|1/2
+ µ2

)
‖ς‖22

≤ −
θµ2

1λ
1/2
min{P}

2λmax{P}
V 1/2(s, ϕ)−

θµ2

λmax{P}
V (s, ϕ)

(56)

From (56), we can conclude that V (s, ϕ) is ensured to be
continuously decreased, converging to the equilibrium point
(s, ϕ) = 0 in finite time under arbitrary initial condition. For
the convergence time analysis, define

γ1(µ1) =
θµ2

1λ
1/2
min{P}

2λmax{P}
, γ2(µ2) =

θµ2

λmax{P}
(57)

The derivation of the following differential formulation

v̇(t) = −γ1(µ1)v(t)1/2 − γ2(µ2)v(t), v(0) = v0 > 0 (58)

is determined by

v(t) =
(
v1/20 −

γ1(µ1)
2

t
)2

, if γ1 = 1, γ2 = 0 (59)

or, when if γ1 ≥ 1, γ2 > 0

v(t) = exp(−γ2(µ2)t)

×

[
v1/20 +

γ1(µ1)
γ2(µ2)

(
1− exp

(
γ2(µ2)

2
t
))]2

(60)

It follows from (56) that V (t) ≤ v(t) when V (s0, ϕ0) ≤ v0.
Therefore, s will be driven to the original within finite time.
To be more specific, the reaching time can be estimated by

T =


2

γ1(µ1)
V 1/2(s0, ϕ0) if u2 = 0

2
γ2(µ2)

ln
(
γ2(µ2)
γ1(µ1)

V 1/2(s0, ϕ0)+ 1
)

if u2 > 0

(61)

Therefore, under the designed variable gains determined
by (47) and (50), s and ṡ converge to the origin in finite
time which can be estimated by (61). This confirms the finite
time convergence of the resultant FAMR system. The proof
is completed.

Finally, Figure 3 shows the proposed control framework,
and the implementation procedure can be summarized as:
Step 1: Construct the reference vehicle mode based on (16)

and (17);
Step 2: Obtain the corresponding tracking errors using the

related yaw rate and sideslip angle;
Step 3: Determine the desired sliding surface with (22);

FIGURE 3. The proposed control framework.

Step 4: Together with the control gain constraints, optimize
the control inputMω and δf ;

Step 5: Control the FAMR system using the designed driv-
ing and steering mechanisms;

Remark 2:As can be seen from (1) and (2), the FAMR sys-
tem considered in this paper is a nonlinear multi-inputs multi-
outputs system. With the help of small-angle approximation,
we modify the original system as linear systems. It is worth
mentioning that this method is applicable for the control of
general nonlinear system with multiple inputs/outputs. For
practical implementations, by using the linearized method
(such as the studies in [47]), the multi-inputs multi-outputs
nonlinear system can be transformed into a system in
Brunowsky canonical form, and then the original nonlinear
system can be expressed as a linear one. Given this context,
the proposed method is still applicable for such a transferred
nonlinear system, validating the practicability of the proposed
method.
Remark 3: At this point, compared to the existing designs,

we will demonstrate the distinguishing features of the pre-
sented RSSMC method. Firstly, the newly proposed method
is applicable for trajectory tracking control of very uni-
versal systems subject to external disturbances and uncer-
tainties states, including the linear systems and nonlinear
ones. In this regard, the ‘‘ideal modelling’’ assumption is
not necessary during the derivation of the proposed RSSMC
method. Although the upper limit of the system uncertainties
is required, we can easily obtain the necessary information
since the main disturbances of the FAMR are caused by the
time-varying inertia and payload. Moreover, the undesired
chattering is accommodated by using a continuous SMC con-
troller instead of universal adopted discontinuous ones based
on a multivariable super-twisting mechanism. The multiple
disturbances can be rejected with continuous control inputs.
Finally, the overestimated issue of the control parameters can
be well addressed since the related gains are suitably tuned
based on the stability and convergence aspects.
Remark 4: This paper mainly concerns the direct yaw

moment regulation issue of FAMR systems subject to
unknown disturbances and system uncertainties. For prac-
tical autonomous mobile robots, unmeasurable velocities,
input saturation, etc., are commonly occurred during the con-
trol process. These may reduce the control qualities of the
closed-loop system. Note that saturation functions and quasi

174660 VOLUME 8, 2020



L. Jiang et al.: Anti-Disturbance Direct Yaw Moment Control of a FAMR

FIGURE 4. The developed FAMR.

FIGURE 5. Hardware architecture.

FIGURE 6. Yaw rate tracking results of case 1. (a) yaw rate; (b) the
corresponding tracking errors.

velocities can be utilized to provide effective solutions for the
above-mentioned challenges. For example, the partial satura-
tion function is considered to handle the tire force saturation
of the mobile robots, and the integral sliding mode mecha-
nism is used to mitigate the input saturation issue [48]. These
challenges will be interesting topics for further explorations.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
For simulation experimental validation, the proposed
RSSMC method is realized using a developed platform

FIGURE 7. The related signals of case 1. (a) sideslip angle; (b) steering
angle δf ; (c) yaw moment.

shown in Figure 4. For onboard equipment, the developed
FAMR is equipped with an electric cabinet, industrial com-
puter, laser (rangefinders, HOKUYO UTM-30LX), indus-
trial camera, and a robot arm. This FAMR has several
prominent features, such as automatic charging, trackless
autonomous navigation, anti-crash measurements and vision-
based operating the workpiece. It has been applied to indus-
trial manufacturing applications to perform locomotion and
manipulation synchronously. Owing to the independently-
driving independently-steering property, each wheel has two
degree-of-freedoms to achieve active arbitrary movements
and rotation. To summarize, the hardware architecture con-
tains the modules of: (1) perception, used to obtain the
sensory date for perceiving the real-world surrounding and
guaranteeing the safety of the robot in unmapped or dynamic
environments; (2) decision making, used for global local-
ization, pose estimation and formulating strategies for next
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FIGURE 8. Yaw rate tracking results of case 2. (a) yaw rate;
(b) corresponding tracking errors.

actions; (3) movement control, implementing the actuation
functions to achieve yaw moment control.

For simulation experimental implementation, the key spec-
ifications of the developed FAMR platform are: lf = lr =
0.445m, d = 0.53m. The normal road adhesion coefficient is
determined as µ = 0.9. The reduction radios of the driving
motor and steeringmotor are 7.6 and 60, respectively. Further,
we set µ1 = 0.5, µ2 = 1, θ = 0.3, β = 1, δ = 0.01.
For comparison reason, we apply the traditional proportional-
integral-derivative (PID) controller tuned by trial and error.
The related parameters are determined by {kp = 1.0, ki =
kd = 0.9}. The sampling time is specified as 0.001s.

B. SIMULATION EXPERIMENTAL RESULTS
For simulation validation, we will consider the typical ramp
steering and double-changing maneuvers under different
modes. The above maneuvers will be generally-applied to
access the lateral control performance in a nonidealized
working environment. It is worth mentioning that the widely
used traditional Ackerman and double-Ackerman modes are
considered to verify the practicability of the newly developed
RSSMC scheme. The anti-disturbance trajectory tracking
in a complex operating environment is considered with the
ground disturbed by oil/water. In practice, the control per-
formances will be affected by disturbances, including system
parameter uncertainty, external noise and unmodeled dynam-
ics. Furthermore, the movement of the mounted robot arm
will impose additional external disturbances for the chassis
control module of the FAMR system. Then, comparison

FIGURE 9. The related signals of case 2. (a) sideslip angle; (b) steering
angle; (c) yaw moment.

simulation experiments are conducted with respect to differ-
ent desired trajectories and operational modes. In this regard,
we provide the following cases for demonstration.
Case 1) Ramp steering control under Ackerman mode
In this case, we will pay attention to the ramp steering con-

trol with the commonly-used Ackerman mode. The reference
yaw rate increases from zero to near 0.2 rad/s within 0.1 s,
and keeps the yaw rate for the subsequent periods. The results
of the dynamic response and related tracking errors during
the ramp steering maneuver are shown in Figure 6 (a) and
(b), separately. As depicted in these corresponding evalua-
tions, our presented RSSMC scheme is capable of achiev-
ing improved ramp responses as compared to the traditional
method. As it can be observed, there are no steady-state
errors in the resulting systems under the comparison control
scheme. Note that our proposed method possesses better per-
formance in terms of overshoot and settling time. To be more
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FIGURE 10. Yaw rate tracking results of case 3. (a) yaw rate;
(b) corresponding tracking errors.

specific, the system under the control of our RSSMC method
has enhanced rise time (0.0803 s) and overshoot mitigation
(17.42%) capacity. In comparison, the rise time and overshoot
of the traditional method are 0.0934 s and 48.18%, respec-
tively, which may affect the lateral motion control stability
and dynamic tracking accuracy and efficiency.

Figure 7 shows the corresponding signals related to this
case, including the sideslip angle, steering angle and yaw
moment inputs during the ramp steering maneuver. After
careful observation, we conclude that there exist more distinct
oscillations in the transient process of the resultant system
under the traditional method, whereas our proposed RSSMC
scheme is able to mitigate the impact of disturbances and pro-
vides the smaller errors around the origin, therefore yielding
a better tracking performance.
Case 2) Tracking control under Ackerman mode
To test the robustness of the resulted system under the

widely applied Ackerman mode, the sinusoidal steering pro-
file is considered here. The corresponding responses and
signals are shown in Figures 7 and 8.

Figure 7 (a) and (b) describe the yaw rate responses and
the corresponding errors, respectively. As shown in Figure 7,
both the presented RSSMC and the traditional method can
lead to stable lateral motion responses. Further, as can be seen
from Figure 8 (b), the tracking error of the system under the
traditional PID control scheme has larger amplitudes. This is
caused by the vibrations of the tracking profiles and lumped
disturbances. In comparison, the proposed RSSMC scheme is
able to follow the desired yaw rate with better accuracy and
smoother responses.

TABLE 1. The performance criteria of the yaw rate error under the
comparison controllers.

Figure 9 illustrates the related signals in terms of the
sideslip angle, steering angle, and yaw moment using the
traditional PID controller and our presented RSSMCmethod.
Unlike the newly developed method, the traditional PID con-
troller will result in non-negligible overshoots. Due to the
external disturbance and unknown uncertainties, some vibra-
tion changes with tremendous amplitude are also observed
in the traditional control system. Intuitively, the presented
RSSMC method offers more robustness against the unknown
disturbances such that the system performs closely as the
reference profiles.

In conclusion, the simulation experimental results derived
from this case show the proposed RSSMC controller under
Ackerman mode is capable of efficaciously alleviating the
negative effects of the lumped disturbances and uncertainties,
and obtain direct yaw moment control with high precision
when performing lateral motion control.
Case 3) Tracking control under double-Ackerman mode
For simulation verification of the proposed RSSMC

method under another widely used configuration mode, i.e.,
double-Ackerman mode, we carry out this case with a single-
lane change maneuver. It should also be noted that the
traditional SMC method that adopts reaching law with a
constant term for comparison [12]. As can be observed from
Figure 10 and Figure 11, the test results are in line with the
theoretical analysis. Our presented RSSMC, traditional PID
and SMC methods can obtain stable responses for tracking
the desired yaw rate and constraining the sideslip angle. For
a fair comparative case, the RSSMC method outperforms the
traditional control schemes, which can enable the resultant
FAMR system with smoother dynamics and enhanced stabil-
ity. As shown in Figure 10 (b), the yaw rate tracking errors
are ensured to be within a small range around zero, implying
a satisfactory motion response. There exist some vibrations
of the tracking errors caused by the unknown disturbances,
such as unmodelled dynamics, uncertainties and external
disturbances. The results show that the disturbances will
diminish the performance quality of the controller system and
the proposedmethod obtains smaller tracking error than other
controllers.

On the other hand, according to the comparative evalua-
tions demonstrated in Figure 11, we know that the proposed
method can make the FAMR effectively to achieve smoother
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FIGURE 11. The related signals of case 2. (a) sideslip angle; (b) steering
angle δf ; (c) yaw moment.

responses. Therefore, by applying the proposed method using
the double-Ackerman mode, the lateral stability motion con-
trol is realized to follow the related reference profiles with
guaranteed precision.

Further, using the obtained absolute value of the track-
ing errors in the mentioned three cases, we have calculated
the performance criteria in terms of the maximum value,
the integral absolute error (IAE) and the integral squared
error (ISE). It should be mentioned that, the IAE has long
been employed as a response indicator concerning sustained
oscillation. A resultant system with better ISE performance
can achieve quick responses since minimizing the ISE is
helpful for alleviating large tracking errors faster. Further,
as depicted in TABLE 1, as compared to the traditional PID
method, by applying the proposed RSSMC method, the con-
sidered criteria concerning IAE and ISE are improved by
(57.73%, 81.81%), (53.01%, 80.51%), and (60.43%, 85.83%)

in cases 1, 2 and 3, separately. On other hand, as compared to
the conventional SMCmethod, the related criteria (Max, IAE
and ISE) of the resultant system under the proposed RSSMC
method can be reduced by 50.25%, 43.56%, and 71.43%,
respectively. From these results, once can conclude that our
proposed method is potential for enhancing the direct yaw
moment control of the FAMR with improved tracking and
anti-disturbance performance in various operating environ-
ments.

V. CONCLUSION AND FUTURE WORKS
This paper proposes an improved RSSMC scheme to reach
the anti-disturbance direct yaw moment control of a home-
developed FAMR. Under lumped disturbances and uncer-
tainties, the proposed scheme is capable of scheduling the
yaw rate and sideslip angle simultaneously. To eliminate
the matched perturbations and time-varying lumped distur-
bances, a modified sliding mode mechanism is designed with
attractive characteristics: continuous control input, finite-
time convergence and enhanced robustness. This guarantees
that the system outputs can arrive at the desired sliding region
asymptotically, which achieves better control precision in
both the sliding motion phase and reaching phase. New suf-
ficient conditions of the concerned multivariable gains are
explored with the help of algebra Lyapunov functions so
that the resultant FAMR system can be stabilized globally.
Comparative simulation experiments are performed and the
related results validate that the direct yaw moment con-
trol performance of the FAMR system can be significantly
improved. As can be seen from the simulation experimental
results, the proposed method is able to enhance the dynamic
tracking performance and robustness against the unknown
disturbance simultaneously. It is then concluded that the pre-
sented RSSMC method could certainly satisfy the stringent
requirements of practical FAMR implementations.

It should be pointed out that the developed FAMRcan oper-
ate in multiple kinematic allocations as a profit of its inde-
pendently steering and driving feature. The switching control
between multi-modes will be investigated in the future to
makes full use of the configuration advantages of FAMR such
that the developed FAMR can track the reference trajecto-
ries with more maneuverability and mobility in the confined
spaces or dynamic environments. As another extension of
the proposed method, the disturbance rejection issue of a
nonlinear system (including the multi-inputs multi-outputs
system) can be well handled with the newly-designed sliding
mode mechanism.
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