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ABSTRACT With the rapid development of railway traffic, traffic safety has become a focus. The
ZPW-2000A jointless track circuit is an important part of train control systems. Currently, the fault detection
of the ZPW-2000A jointless track circuit still relies on the experience of maintenance personnel, which can
introduce several problems, such as a low fault detection efficiency and large amounts of required labor.
Although some artificial intelligence fault detection algorithms for the ZPW-2000A track circuit have been
developed, their detection accuracy is not high enough to meet the needs of large-scale applications, and
due to security requirements, the actual ZPW-2000A track circuit fault data cannot be directly obtained
in large quantities. To solve these problems, an equivalent theoretical model of the Chinese ZPW-2000A
jointless track circuit is proposed by using four-terminal network theory. Through this equivalent theoretical
model, the original fault data were collected. Considering that the relationship between fault data and fault
types of the ZPW-2000A jointless track circuit is not obvious, a deep belief network was designed to detect
the fault modes of the ZPW-2000A jointless track circuit. In order to optimize the deep belief network
performance, the particle swarm optimization algorithm optimized by the genetic algorithm (GAPSO) was
selected to optimize the deep belief network. The simulation experiments indicated that the optimized deep
belief network could achieve a 98.5% fault detection accuracy and a 98.6% F1 Score rate, which showed that
the deep belief network optimization by the particle swarm optimization algorithm which was optimized by
the genetic algorithm (GAPSO-DBN) model proposed in this paper, had high accuracy and robustness. The
results show that it had higher accuracy and robustness than other fault detection methods, and it can greatly
improve the level of ZPW-2000A track circuit fault detection in the future.

INDEX TERMS ZPW-2000A jointless track circuit, deep belief network, fault detection, particle swarm
optimization, four-terminal network, genetic algorithm.

I. INTRODUCTION
In recent years, high-speed railways have developed rapidly
and become a popular means of transportation for travel.
They satisfy high safety and operating efficiency require-
ments. The ZPW-2000A jointless track circuit safety is
becoming more and more important. In this paper, the
ZPW-2000A jointless track circuit is studied. The track
circuit system is the weak link in the railway signal sys-
tem because of its complex structure and poor working
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environment. The probability of failure is high, and the failure
phenomena are diverse. At present, on-site maintenance is
mainly used to examine the hidden dangers of track circuits,
and fault detection is carried out based on the experience
of staff, which is a time-consuming and low-efficiency pro-
cess. In addition the labor intensity of maintenance personnel
increases, which can lead to diagnostic errors, affecting the
operation intervals of the trains [1]. Therefore, it is very
important to introduce an intelligent detection algorithm to
assist field personnel in fault detection.

In terms of track circuits, Japan and France carried out
the early research, and great achievements were made [2].
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France completed the UM71 track circuit based on years of
research and practical testing [3]. The UM71 track circuit
in France is an jointless track circuit with low frequency
modulation [4], which exhibits good anti-jamming perfor-
mances [5]. China’s ZPW-2000A jointless track circuit is a
technical transformation and localization product developed
based on the UM71 jointless track circuit in France and the
actual needs of Chinese railways. It fully retains the technical
advantages of the UM71. Compared with the UM71, the
ZPW-2000A jointless track circuit has significantly improved
transmission security, transmission length, system reliability,
and maintainability as well as reduced project costs.

Japanese scholars have studied the problem of the poor
distribution of track circuits for nearly ten years and have
conducted experiments [6]. The causes of shunt resistance
under different environmental conditions have been summa-
rized [7], and practical solutions have been given [8]. In 2004,
Debiolles et al. proposed a method using the least squares
algorithm and a neural network to diagnose compensation
capacitor faults. This was applied to French track circuits
and vehicle equipment [9]. Two years later, to avoid the
least squares approach, Debiolles et al. proposed a fault
detection method using a compensation capacitor based on
a segmented selection output coding strategy, taking the seg-
mented short-circuit current as the characteristic parameter
[10]. In 2008, Chen et al. presented laboratory research
results of track circuit fault monitoring and detection meth-
ods [11]. His team combined a fuzzy system and a neural
network to form a fault detection system, which was car-
ried out using the audio jointless track circuit test bench.
Experiments showed that the fuzzy neural network could
effectively identify all kinds of common failure modes of the
track circuit. Based on a previous report [9], Oukhellou et al.
divided the global detection problem into several local pat-
tern recognition problems and proposed a fault detection
algorithm based on dempster-shafer (D-S) evidence theory
and a neural network with compensation capacitance. This
method could achieve good fault recognition and location
rates [12]. In recent years, with the rise of machine learning
and intelligent algorithms, experts and scholars have con-
ducted considerable research on the Chinese ZPW-2000A
jointless track circuit, and many research results have been
achieved [1]. De Bruin et al. simulated the track voltage
signal by building a mathematical model of the track circuit
in 2017, and they determined the correlation between time
and space in the fault data using a long short-term mem-
ory (LSTM) recurrent neural network to realize the fault
identification of a track circuit [13]. Zhu et al. used rough
set theory and a combinatorial decision tree to identify faults
layer by layer for the common fault modes of jointless track
circuits [14]. Huang et al. accurately identified track circuit
faults by adding fuzzy theory to a traditional neural network
[15]. Dong et al. added attribute reduction and an adaptive
genetic algorithm to the fuzzy cognitive map to preprocess
the fault data, which could effectively diagnose the faults of a
ZPW-2000A jointless track circuit [16]. Xu et al. used the

amplitude trend of the received signal of the track circuit
reader (TCR) as the feature, and they used a method of
combining segmented calculation to find a specific value
and first-order derivative and second-order discrimination to
realize the fast detection of compensation capacitor faults
[17]. Mi et al. proposed a method using fuzzy fault detection,
a genetic algorithm (GA), and grey system theory to detection
the fault of a 25-Hz phase sensitive track circuit [18].

At present, there are some related intelligent fault detec-
tion algorithms for the ZPW-2000A jointless track circuit,
such as back-propagation (BP) neural networks, support vec-
tor machine (SVM) classifiers, radial basis function (RBF)
neural networks, BP networks optimized by genetic algo-
rithm (GA-BP) [19], SVM classifiers optimized by parti-
cle swarm optimization (PSO-SVM), fuzzy cognitive maps
(FCM), and extreme learning machine (ELM), but the results
are only passable. Their fault detection accuracies are basi-
cally between 80% and 95%, so they are not widely used [20].
Although a deep belief network (DBN) was mentioned in a
previous publication [1], the structure of the DBN was not
adjusted accurately, so the accuracy of fault detection was
still limited. The relationship between the collected circuit
parameters of the ZPW-2000A jointless track circuit and the
fault modes of the ZPW-2000A jointless track circuit is not
obvious, and the classification results are greatly affected by
the structure of the DBN. Thus, the high-level distribution
characteristics of the circuit parameters of the ZPW-2000A
jointless track circuit must be extracted to improve the detec-
tion accuracy, and the structure of the DBN must be accu-
rately adjusted to the optimal configuration. Therefore, after
obtaining the circuit parameters of a jointless track circuit
through an equivalent theoretical model, a track circuit fault
mode detection model based on a DBN was established in
this study. This model uses an unsupervised hierarchical
learning method of a DBN to extract the high-level distri-
bution characteristics [21] of the key monitoring quantities
of the ZPW-2000A jointless track circuit. The parameters
of the DBN were fine-tuned through supervised learning to
determine the optimal selection of parameters. A BP neural
network was used as the classifier to detect the track circuit
fault modes, and the structure of the DBN was precisely
debugged.

In this paper, the ZPW-2000A jointless track’s simulation
model is established for fault data acquisition. The reason for
using simulation data is that it was very difficult to obtain the
actual track circuit data, which is restricted by the relevant
confidentiality regulations. Only a small amount of track
circuit data could be obtained, but the amount of data was too
small to complete the training of the neural network. Thus,
simulation data were used to complete the relevant research
of the track circuit fault detection algorithm.

For the DBN model design, the number of hidden layer
nodes, the number of hidden layers, and the iteration number
of the hidden layers were the threemain parameters. A normal
experimental plan is used to decide the number of hidden lay-
ers and the iteration number of the hidden layers. After these
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were preliminarily selected, determining the best number of
hidden layer nodes for each hidden layer would be a difficult
job for a normal experimental plan. To solve this problem,
the particle swarm optimization algorithm optimized by the
genetic algorithm is used to optimize the number of hidden
layer nodes for each hidden layer. Consequently, good exper-
imental results were obtained.

The main contributions of this study were as follows:
1. The high fit simulation circuit of the ZPW-2000A joint-

less track circuit was established, and a large quantity of accu-
rate ZPW-2000A track circuit simulation data was obtained
(in China, such data is generally classified as confidential,
the full ZPW-2000A track circuit fault data could not be
massively obtained from China Railway Administration).

2. Fine tuning of the deep belief network (DBN) structure
by the particle swarm optimization algorithm optimized by
the genetic algorithm (GAPSO) effectively solved the prob-
lem of the number of nodes in each hidden layer in the deep
belief network (DBN) being difficult to select.

3. The deep belief network optimization by the parti-
cle swarm optimization algorithm which was optimized by
the genetic algorithm (GAPSO-DBN) was applied to the
fault detection of the ZPW-2000A jointless track circuit, and
highly accurate and robust fault detection was achieved.

4. This paper provides an alternative and efficient scheme
for other problems in which the relationship between the
original data and the classification results is not obvious and
the classification accuracy is sensitive to the classification
network structure.

The remainder of this paper is organized as follows.
An equivalent theoretical model of the ZPW-2000A jointless
track circuit using four-terminal network theory is explained
in Section II. Section III provides the methodology, including
a detailed explanation of the DBN model and particle swarm
optimization (PSO) algorithm optimized by the GA. The sim-
ulation process for DBN design is presented and compared
with other networks in Section IV. Experimental results are
presented in Section V, and the conclusions are presented in
Section VI.

II. ANALYSIS OF ZPW-2000A JOINTLESS TRACK CIRCUIT
To explain the ZPW-2000A jointless track circuit in more
detail, the structure, equipment function, working principle,
simulation model, and simulation data are introduced in this
paragraph. According to the ‘‘red light band fault’’ of the
track circuit, 15 fault modes are summarized. A four-terminal
network is used to establish the transmission matrix for each
piece of equipment of the jointless track circuit, and thewhole
four-terminal networkmodel is formed by amodular cascade.
The validity of the model is verified by field data, and the
format of the original data and its preliminary processing are
discussed.

A. ZPW-2000A JOINTLESS TRACK CIRCUIT COMPOSITION
The ZPW-2000A jointless track circuit is used near the track
and is connected to the track. The main pieces of equipment

are small, but a set of equipment covers a long track section.
It can realize the communication from rail to train, which is
a low-frequency communication signal. The main function
of the ZPW-2000A jointless track circuit is to automatically
and continuously detect whether the line is occupied by the
rolling stock and also to control the signal or switch device
to ensure the running safety of the equipment. In the current
practical application, the main method is to check the hidden
dangers of the track circuit by regular maintenance. Intelli-
gent methods have not been introduced. A single piece of
equipment may fail, but its failure characteristics may not be
obvious. Thus, comprehensive analysis is needed to detect the
failure. This is usually done by experienced personnel. Thus,
it is difficult for a single sensor alarm to play a decisive role.
To allow artificial intelligence to replace humans for the fault
detection of track circuits, considerable amounts of research
have focused on this subject. The main working states of the
ZPW-2000A jointless track circuit are the adjustment state,
shunt state, and rail breaking state. In the adjustment state,
the track circuit is not occupied by the rolling stock. The
relay at the receiving end is in an excited state and sends
out a message that the track circuit section is idle, regard-
less of the unfavorable power supply or weather conditions.
Since the adjustment state is the general case of the track
circuit, the subsequent analysis is based on this state.

The ZPW-2000A jointless track circuit ismainly composed
of a transmitter, transmission cable equipment (including
matching transformer, service parallel thermoplastic (SPT)
transmission cable, and cable analog network), a 29-m tun-
ing area, a rail, and compensation capacitance and receiving
equipment. The functions of each type of equipment are
shown in Table 1.
The structure of the ZPW-2000A jointless track circuit is

shown in Fig. 1. The ZPW-2000A jointless track circuit is
mainly composed of a main track section and a small track
section, of which the fixed length of the small track section
was 29 m. Generally, parking is forbidden in the small track
section, because it is the specific location at which the electri-
cal insulationmechanism occurs. There are eight kinds of car-
rier frequency information in the system. The uplink carrier
frequency was 2000-1Hz, 2000-2Hz, 2600-1Hz, 2600-2Hz,
the downlink carrier frequency was 1700-1Hz, 1700-2Hz,
2300-1Hz, 2300-2Hz, and the carrier frequencies of the two
adjacent track sections are different. Electrical insulation was
achieved using the series parallel resonance of the tuning
area. In Fig. 1, 1G, 3G, and 5G indicate different specific
areas of a track section with the ZPW-2000A track circuit
installed. Assuming that the carrier frequency information
of the 3G section in Fig. 1 was F1, and the 5G section of
track in the adjacent section was F2, the 3G section of track
showed a pole-impedance state to the carrier frequency F1,
and a zero-impedance state to the carrier frequency F2. At this
time, the circuit formed a short circuit, which isolated the
cross-region transmission of the information in the 3G and
5G sections.
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FIGURE 1. Structure of ZPW-2000A jointless track circuit.

TABLE 1. Equipment function of ZPW-2000A jointless track circuit.

In addition to the eight kinds of carrier frequency infor-
mation, the ZPW-2000A jointless track circuit also generated

18 kinds of low-frequency information. Distributed between
10.3 and 29 Hz, every 1.1 Hz represents a signal with a
specific meaning. The system sent low-frequency signals
with different meanings to the main and small track sec-
tions through the transmitter at the sending end. One of
the low-frequency signals was directly sent to the receiver
at the end of the area, the other was sent to the receiver at
the adjacent track section in front of the operation through
the tuning area, and the checked small track status conditions
(small track (XG) and small track receiving end box (XGH))
were sent to the receiver at the end of the area. The summary
results were output after two-way information was judged to
be correct, and the idle/occupation status of the track section
was determined by the track relay being pulled up and falling
down.

B. ZPW-2000A JOINTLESS TRACK CIRCUIT FAULT MODES
The normal operation of the track circuit must meet two
limit requirements. First, in the adjustment state, the trans-
mission voltage is at the lowest value of the normal range
and the track length is the limit length. At this time, when
the rail impedance is the maximum and the ballast resis-
tance is the minimum, the equipment at the receiving end
operates normally, and the track relay is reliably drawn.
Second, the transmission voltage has the highest value in the
normal range. When the impedance of the rail is the mini-
mum and the ballast resistance is the maximum, a standard
shunt resistance of 0.06 or 0.1 � is used anywhere on the
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TABLE 2. Fault modes of ZPW-2000A jointless track circuit.

rail to cause a short-circuit, causing the relay to fall down
reliably.

In the railway field, there are two kinds of fault charac-
terizations of track circuits [23]. When the track circuit is
not occupied, some factors cause the relay to lose excitation.
The console shows that this section is occupied. This kind
of fault is called a ‘‘red light band fault.’’ For the other kind,
a vehicle occupies the track section, the track relay cannot fall
down reliably, and the console shows that there is no reliable
occupation in this section, which is called a ‘‘poor shunting
fault.’’ This studied was focused on the fault detection of
the jointless track circuit under the ‘‘red light band fault’’
condition. By sorting the field materials (the identification of
the actual field data fault mode is accomplished by workers
measuring the voltage and current of each circuit using a
multimeter or by measuring the voltage and current of each
circuit using sensors, combined with the circuit schematic
diagram and manual experience.), 15 common failure modes
of the system in the case of a red light band failure are
summarized in Table 2.

When failure of the ZPW-2000A jointless track circuit
occurs, a sudden change or wave of the voltage and current
will appear in the centralized signal monitoring. The moni-
toring quantities involved in the dynamicmonitoring included
the transmission voltage, transmission current, rail-in voltage,
and rail-out voltage. The change of these monitoring quan-
tities is an important basis for judging the fault mode and
finding a fault area.

C. MODELING OF ZPW-2000A JOINTLESS TRACK BASED
ON FOUR-TERMINAL NETWORK THEORY
A four-terminal network refers to a multi-terminal network
with four terminals, which is a circuit connected with four

FIGURE 2. Four-terminal network model.

terminals [24]–[26]. A four-terminal network can be used
to establish a corresponding four-terminal network model
based on the characteristics of each part of the ZPW-2000A
jointless track circuit. Different transmission networks can
then be connected based on the actual system structure, and a
theoretical model of the ZPW-2000A jointless track circuit
can finally be established. This study mainly focused on
the red light band fault of the ZPW-2000A jointless track
circuit. Thus, only a four-terminal network model needed to
be built in the adjusted state. The schematic diagram of the
four-terminal network is shown in Fig. 2.
The specific expression of the transfer matrix Tx is as

follows:

Tx =
[
T11 T12
T21 T22

]
, (1)

where T11 and T21 are the open circuit parameters, and T12
and T22 are the short circuit parameters.

The corresponding formula is as follows:{
Uy = T11Ux + T12Ix
Iy = T21Ux + T22Ix

. (2)

Based on the four-terminal network relationship estab-
lished for the input and output voltage and current, if any
two are known, the third can be obtained, and the volt-
age/amperage characteristics between the input and output
can be obtained. Supposing that the port is connected to
an output impedance Z0 and an input impedance Z1, the
relationship between them is as follows:

Z0 =
Ux
Ix
=
T12 − T22Z1
T21Z1 − T11

, (3)

Z1 =
Uy
Iy
=
T11Z0 − T12
T21Z0 − T22

. (4)

The structure of the ZPW-2000A jointless track circuit is
divided into a receiver module, rail circuit module, and trans-
mitter module [22]. The input and output voltages of each
device are marked from the receiver, and the four-terminal
network model is built based on the modeling principle.
The modular modeling results were sorted, and the whole
theoretical model was built based on the structure of the ZPW-
2000A jointless track circuit. The transmission characteristic
model in the adjusted state is shown in Fig. 3.

The modeling of the receiving end mainly involved an
attenuator, receiving cable (cable simulation network and
SPT cable), and matching transformer. The equation relating
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FIGURE 3. Transmission characteristic model in adjusted state.

the input voltage and current of the attenuator is as follows:

Uz = IzZv = Izj2π fLv, (5)

where Lv is the inductance. The input voltage and current of
the attenuator approximately equal the voltage and current
at the end of the cable, so the expression of the voltage and
current at the beginning of the cable at the receiving end is
expressed as follows:[
U1
I1

]
= Nrspt

[
Uz
Iz

]
=

[
cosh(γd lr ) Zcd sinh(γd lr )
sinh(γd lr )

Zcd
cosh(γd lr )

][
Uz
Iz

]
,

(6)

where Nrspt represents the receiving cable transmission
matrix, rd represents the propagation constant of the cable,
lr represents the length of the cable, and Zcd represents the
characteristic impedance of the cable.

The matching transformer structure is shown in Fig. 3,
which can be divided into three parts: the capacitances Ct1
and Ct2, the transformer Tt , and the inductance Ltl .
The transfer matrix Nrtad of the matching transformer can

be expressed as follows:[
U2
I2

]
= Nrtad

[
U1
I1

]
=

[
1 2

jwCt
0 1

] [ 1
n 0
0 n

] [
1 jwLtl
0 1

] [
U1
I1

]
,

(7)

where n is the turn ratio of the transformer.

The transmission characteristic model of the receiving end
tuning area is shown in Fig. 3. The impedance of the air core
coil (SVA) is denoted as ZSVA, Zca represents the connection
impedance between the plug pin and the rail, the impedance
of circuit load BA2 is denoted as ZBA2, and the length of
the half tuning region is ltx . The equivalent four-terminal
network Nrtx in the tuning region of the receiver and the
corresponding voltage and current input and output relations
can be expressed as follows:[

U3
I3

]
= Nrtx

[
U2
I2

]
= NltxNSVANltx

[
U2
I2

]
=

[
1 0
1
Ztx

1

] [
1 Zca
0 1

] [
1 0
1

ZBA2
1

] [
U2
I2

]
. (8)

The transmission matrix of the main track section is
obtained by cascading compensation units, as shown in Fig. 3.
Based on the transmission matrix of the compensation capac-
itance, the four-terminal network of the whole rail can be
cascaded as follows:

Nlgm =

[
cosh(γ lc/2) Zcsinh(γ lc/2)
sinh(γ lc/2)

Zc
cosh(γ lc/2)

]
, (9)

where Nlgm is the transmission matrix of the compensation
unit. [

U4
I4

]
= Ngm

[
U3
I3

]
= N n

lgm

[
U3
I3

]
. (10)

where Ngm is the transmission matrix cascading of multiple
compensation units.
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TABLE 3. ZPW-2000A jointless track circuit monitoring quantity.

The transmission matrix of the transmitting device is sym-
metrical to that of the receiving device. The corresponding
relationship between the input voltage U5 and current I5 and
the output voltage U4 and current I4 in the tuning area of the
transmitter is as follows:[

U5
I5

]
= Nstx

[
U4
I4

]
=

[
1 0
1

ZBA2
1

] [
1 Zca
0 1

] [
1 0
1
Ztx

1

] [
U4
I4

]
.

(11)

The cable at the sending end is the same as the cable at the
receiving end, which is also composed of a cable simulation
network and an SPT cable. Therefore, the expression of the
voltage and current at the beginning of the cable at the sending
end is as follows:[
Ufs
Ifs

]
= Nrspt

[
U6
I6

]
=

[
cosh(γd ls) Zcd sinh(γd ls)
sinh(γd ls)

Zcd
cosh(γd lr )

][
U6
I6

]
,

(12)

where ls represents the length of the cable.

D. ZPW-2000A JOINTLESS TRACK CIRCUIT FAULT DATA
ACQUISITION
After the real ZPW-2000A jointless track circuit parameters
are introduced, through the theoretical model of the jointless
track circuit built using the four-terminal network, the voltage
and current values at each node can be extracted. In this study,
12 main monitoring quantities were selected as character-
istic parameters. These monitoring quantities are shown in
Table 3.

The corresponding simulation conditions were set based on
the relevant parameters of the track circuit. The data recorded
in the field test and the simulation results were compared to
verify the correctness and effectiveness of the model. The
comparison of the results is shown in Table 4. The actual
measured value data of the ZPW-2000A jointless track circuit
in Table 4 is from the actual measurement results of a certain
section of the track circuit of the Beijing Shanghai line of
China Railway, which was provided by the National Natural
Science Foundation project undertaken by the laboratory. The
data is confidential and cannot be disclosed in large quanti-
ties. The simulation data in Table 4 was extracted using the

TABLE 4. Comparison between measured and simulation values.

simulation model of the ZPW-2000A jointless track circuit
established in this paper.

As shown in Table 4, the calculation results of the 12 mon-
itoring parameters of the ZPW-2000A jointless track circuit
model built using the four-terminal network were very close
to the measurement results, with a maximum error of 9.5%,
indicating that the equivalent model of the ZPW-2000A joint-
less track circuit established in this study was effective. Thus,
the data collected by this model can be used as the input of
the subsequent detection system.

In the simulation experiments, using the fault data of the
theoretical model of the ZPW-2000A jointless track circuit
and takingM1–M12 as the characteristic parameters of detec-
tionmodel, 16,500 fault samples were collected, with F1–F15
as the fault modes and 1100 samples for each fault type. The
samples were divided by the strategy described below. For
each fault mode, there were 900 samples in the training set,
100 samples in the validation set, and 100 samples in the
test set. The training set was used to train the model, the
verification set was used to verify the model of each training
stage, and the test set was used to verify the final model.

The physical meaning and order of magnitude of each
value in the data set were different. Thus, a unified normal-
ization process was needed to achieve data standardization.
In this study, the data was transformed using the following
linear function:

y =
x −MinValue

MaxValue−MinValue
, (13)

where x and y are the values before conversion and after
normalization, respectively, andMaxValue andMinValue are
the maximum and minimum values of the corresponding
items in the data set, respectively. Using this formula, each
data point could be mapped to the range of [0, 1]. Some fault
samples after normalization are shown in Table 5.

III. ALGORITHM DISCUSSION
The DBN algorithm and GAPSO algorithm are used to solve
the problem in this paper. The DBN algorithm was mainly
used for fault detection of the ZPW-2000A jointless track
circuit. The GAPSO algorithm was mainly used to adjust the
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TABLE 5. Normalized fault samples.

FIGURE 4. Contrastive divergence training method [28].

structure of the DBN. Both algorithms are described in detail
below.

A. DEEP BELIEF NETWORK
The DBN is composed of simple learning modules. In the
following text, the basic composition unit of the DBN—the
restricted Boltzmann machine (RBM)—is described, and
then the structure of the DBN is analyzed in depth. Finally,
the training method of the DBN is described in detail.

1) RESTRICTED BOLTZMANN MACHINE
The restricted Boltzmann machine (RBM) is a generative
stochastic neural network [27] proposed by Smolensky et al.
The quantitative probability graph model is an energy model
of unsupervised learning, which has the characteristics of
a low network complexity and strong practicability. It is a
double-layer structure composed of a visible layer and a
hidden layer. The visible and hidden layers are connected
symmetrically by weight. Each layer of nodes is independent.
There are two states: active and inactive. The visible layer is
mainly used to input data. Each RBM module has two layers
of feature detection units. The hidden layer is mainly used to
extract feature information to reflect the characteristics of the
input data, and the value of hidden layer’s node must be 0 or
1. The value of the visible layer’s node can be a real number.
The calculation of the RBM generally uses the contrastive
divergence-1 (CD-1) algorithm, and its schematic diagram is
shown in Fig. 4.

2) DEEP BELIEF NETWORK STRUCTURE
To perform a parameter search in the deep structure space,
professor Geoffrey Hinton proposed the DBN method in
2006. The DBN is an unsupervised machine learning

FIGURE 5. Deep belief network (DBN) model structure.

model [29] that can extract the high-level distribution char-
acteristics of input data through autonomous learning, and
it is suitable for the characteristic parameter data of the
ZPW-2000A jointless track circuit.

The DBN is composed of N RBMs, and it is trained
layer by layer. The training process includes two parts:
forward-stacked RBM learning and reverse optimized learn-
ing. In the first part, the multi-layer RBM extracts, abstracts,
and retains the important feature information from the origi-
nal feature input data layer by layer. In the last layer, the RBM
inputs the extracted feature information to the supervised BP
neural network. In the second part, error back propagation of
labeled input data through the BP neural network is used to
fine tune the whole DBN from top to bottom to obtain the
DBN training model that achieves the desired accuracy. The
structure model of the DBN is shown in Fig. 5.

3) DEEP BELIEF NETWORK MODEL TRAINING ALGORITHM
The pre-training process initializes the network param-
eters through unsupervised layer-by-layer training. The
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initialization parameters are mainly connection weights and
offsets of each layer [30]. The training process of the DBN
is described as follows. The RBM network parameters θ =
ai, bj,wij are initialized, and the maximum number of iter-
ations for each layer of the RBM training is set to N . The
calculations of the hidden layer and visible layer units use
the following equation:

h = (W · v+ b), (14)

v = (W T
· h+ a). (15)

where v = v1, v2, v3, . . . , vn are the visible layer units,
h = h1, h2, h3, . . . , hm are the hidden layer units, W is the
connection weight, whose elements wij connect visible layer
node i to hidden layer node j, a is the offset vector of the
visible layer, and b is the offset vector of the hidden layer.
Taking the preprocessed input vector x as the initial state of
the visible layer unit v(0), the hidden layer unit state h(0) is
calculated as follows:

P(hj = 1|v, θ) = σ (bj +
n∑
i=1

viwij). (16)

The reconstruction state of the visible layer unit v(1) is
calculated using h(0) and the following equation:

P(vi = 1|h, θ) = σ (ai +
m∑
j=1

hjwij). (17)

In (16) and (17), ai is the offset of the i-th node of the visible
layer, bj is the offset of the j-th node of the hidden layer,
and σ (x) is the activation function of the neural network,
which is generally the sigmoid function 1/(1 + e−x). The
activation function can effectively enhance the nonlinearity of
the network. The reconstruction layer is used to calculate all
the hidden layer units, and this is repeated until the maximum
number of iterations N is reached. The weight matrix W, the
visible layer offset vector a, and the hidden layer offset vector
b are updated as follows:

W = W + λ[p(h(0) = 1|v(0))v(0)T − p(h(1)

= 1|v(1))v(1)T ]
a = a+ λ[v(0) − v(1)]
b = b+ λ[p(h(0) = 1|v(0))− p(h(1) = 1|v(1))]

, (18)

where λ represents the learning rate, which is generally
between 0 and 1. After the update, the training is com-
plete. After the training, the network parameters must be
further adjusted. The tuning training process uses gradient
descent to supervise the labeled data. In supervised tuning
training, the forward propagation algorithm must be used to
obtain a certain output value from the input, and then the
back-propagation algorithm is used to update the network
weights and deviations. The pre-trained parameters W , a,
and b are used to determine the opening and closing of the
corresponding hidden layer unit, and the excitation value of
each hidden layer unit is calculated as follows:

h(l) = W (l)
· v+ b(l), (19)

FIGURE 6. Flowchart for fault detection of ZPW-2000A jointless track
circuit based on deep belief network (DBN).

where l is the layer index of the neural network. Propagating
layer by layer, the excitation value of each hidden layer unit
is calculated and normalized with a sigmoid function:

σ (hj)(l) =
1

1+ e−hj
. (20)

Next, the output of the output layer must be calculated:

h(l) = W (l−1)
· v+ b(l), (21)

Y = f (hl), (22)

where f (·) is the activation function of the output layer, and
Y is the output of the output layer. The back-propagation
algorithm is used to update the weight W and the offset b,
as follows: 

Wij = Wij − α
∂E(W , b)
∂Wij

bi = bi − α
∂E(W , b)
∂Wij

, (23)

where α is the learning rate. The mean square error of the
DBN learning E is calculated as follows:

E =
1
N

N∑
i=1

(Ŷ (W l, bl)− Yi)2, (24)

where Ŷi is the actual output, Yi is the theoretical output, and
W l and bl represent the weight and offset parameters of the
first l layers to be determined. The training process of the
corresponding DBN model is shown in Fig. 6. The CD-1
algorithm is used to train the RBM layer by layer until the
DBN training is complete. ABP neural network is used to fine
tune the DBN. Finally, the connection weights of the DBN
model are determined.

In addition, if the number of nodes in the input layer is N3,
the number of nodes in the output layer isM2, and the iterative
number of hidden layer is T3. The computational complexity
for the DBN training isO(N3∗M2∗T3), and the computational
complexity for the DBN during operation is O(N3 ∗M2).
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B. PARTICLE SWARM OPTIMIZATION ALGORITHM
OPTIMIZED BY GENETIC ALGORITHM
Particle swarm optimization is a heuristic global optimization
algorithm [31], [32] that can be used to solve complex opti-
mization problems. The improved particle swarm optimiza-
tion algorithm based on the genetic algorithm introduces the
selection, crossover, and mutation operators of the genetic
algorithm. Compared to the ordinary particle swarm opti-
mization method, the improved method makes full use of
the excellent properties of particles, increases the conver-
gence speed, improves the efficiency of the evolution and
search accuracy, increases the diversity of particles through
the genetic algorithm, and searches a wider range of solutions
to jump out of local optima. Thus, this method performs
better for parameter optimization. The fitness function for the
GAPSO [33] was selected as the ZPW-2000A jointless track
circuit fault detection accuracy based on the DBN model to
achieve minimum error. For the GAPSO algorithm, the parti-
cle number is i, the dimension number is j, the total number of
dimensions of each particle isD, the current iteration number
is k , c1 and c2 are acceleration constants, r1 and r2 are ran-
dom numbers (their values were set between 0 and 0.2), the
position of the particle was Xi = xi1 , xi2 , . . . , xiD , the flight
speed was Vi = vi1 , vi2 , . . . , viD , the position with the best
fitness function for one particle was Pi = pi1 , pi2 , . . . , piD ,
and the position with the best fitness function for the entire
population of the particles was Pg = pg1 , pg2 , . . . , pgD . The
following formulas are defined:

vij (k + 1) = ω · vij (k)

+ c1r1(pij (k)− xij (k))

+ c2r2(pgj (k)− xij (k)), (25)

xij (k + 1) = xij (k)+ vij (k + 1), (26)

ωi = ωend + (ωstart − ωend )|
tmax − ti
tmax

|. (27)

The positions of the particles in this study should be inte-
gers. If the calculation results are not integers, they should be
rounded. The value of the position should be greater than 0 for
each dimension.

In each evolution of the particle swarm optimization opti-
mized by the genetic algorithm, the first third of the particles
with the best fitness function directly enter the next iteration
using the selection operation. The middle third of the par-
ticles exchange part of the position and velocity dimension
data with a crossover probability using two random pairs of
crossover operations, after which they produce offspring, and
the offspring enter the next iteration. The last third of the
particles use a mutation operation to change some values in
the position and velocity dimensions by random initialization,
and the process enters the next iteration after mutation. The
formulas for the cross operation are as follows:

X1(k + 1) = A ∗ X1(k)+ (1− A) ∗ X2(k), (28)

X2(k + 1) = A ∗ X2(k)+ (1− A) ∗ X1(k), (29)

FIGURE 7. Flowchart of GAPSO algorithm program.

V1(k + 1) =
V1(k)+ V2(k)
|V1(k)| + |V2(k)|

|V1(k)|, (30)

V2(k + 1) =
V1(k)+ V2(k)
|V1(k)| + |V2(k)|

|V2(k)|, (31)

where X represents the position vector with dimension D, V
is the velocity vector with dimension D, and A is a number
with dimensionD that represents the probability of crossover,
which has the same values for each dimension, and its value
range is [0, 1]. X1(k) and X2(k) are the positions of the two
particles selected for hybridization, and V1(k) and V2(k) are
the corresponding velocities of the two particles selected for
hybridization, respectively.

The flowchart of the improved particle swarm optimiza-
tion algorithm is shown in Fig. 7. In addition, if the num-
ber of particles is N1 and the number of iterations is T1,
then the computational complexity for the PSO and GAPSO
algorithms is O(D ∗ N1 ∗ T1). For the deep belief network
optimization by the particle swarm optimization algorithm
(PSO-DBN) and GAPSO-DBN methods, the computational
complexity for training isO(D∗N1∗T1∗N3∗M2∗T3), and the
computational complexity during operation is O(N3 ∗M2).

IV. EXPERIMENTAL SIMULATIONS
The DBN structure plays an important role in the process
of fault detection of the ZPW-2000A jointless track circuit.
To determine the network structure, the ‘‘experiencemethod’’
and ‘‘trial and error method’’ were used for preliminary
parameter setting in the training process. The best collocation
of hidden layer nodes was obtained by the GAPSO algorithm.
In addition, some other models were introduced to compare
with the GAPSO-DBN model.

A. DEEP BELIEF NETWORK MODEL PRELIMINARY
DESIGN
The number of model input layer nodes depends on the
dimension of the input data, which was a 12-dimensional
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FIGURE 8. Influence of the number of nodes in the hidden layer on the
fault detection accuracy.

jointless track circuit monitoring parameter vector. Thus, the
number of input layer nodes was 12. As there were 15 fault
modes, the number of model output layer nodes was 15,
and the BP neural network was used as the classifier. The
initial value of the RBM learning rate was set to 0.1, and
the initial momentum was set to 0.5. The preliminary number
of hidden layer nodes, the number of hidden layers, and the
iteration number of the hidden layers are determined using
enumerating experiments.

1) EFFECT OF NUMBER OF HIDDEN LAYER NODES
To determine the number of hidden layer nodes in the DBN
used for high-level feature extraction of the input data, the fol-
lowing empirical equation was obtained based on experience:

S =
√
m+ n+ c, (32)

where m is the number of nodes in the input layer, n is the
number of nodes in the output layer, c is a positive integer
between 1 and 10, S is the number of hidden layer nodes.
The values of m = 12 and n = 15 were set in (32) and
determined that the value range of the number of hidden layer
nodes should be 5–15.

With 3 hidden layers and 120 iterations, the DBN model
with 5–15 nodes in each hidden layer was studied through
simulations. The simulation results are shown in Fig. 8.
The simulation results showed that when the number of

single hidden layer nodes was 12, the DBNmodel’s detection
accuracy was 90.3%, which was the highest achieved.

2) EFFECT OF HIDDEN LAYER NUMBER
With 12 hidden layer nodes and 120 iterations, the DBN
model with 1–6 hidden layers was studied using simulations.
When the number of hidden layers was n, the structure of the

DBN was

n+2︷ ︸︸ ︷
12− 12− . . .− 12− 15. The simulation results

are shown in Fig. 9.
The simulation results showed that when three hidden lay-

ers and five total layers were used, theDBNmodel’s detection
accuracy was 90.3%, which was the highest value achieved.

FIGURE 9. Influence of the number of hidden layers on the fault
detection accuracy.

FIGURE 10. Influence of the number of iterations on the fault detection
accuracy.

3) EFFECT OF ITERATION NUMBER OF HIDDEN LAYER
With 12 hidden layer nodes and 3 hidden layers, the effect of
the iteration number of the hidden layers is shown in Fig. 10.

The simulation results showed that when the number
of iterations was fewer than 110, the detection accuracy
increased rapidly with the increase in the number of itera-
tions.When the number of iterations was greater than 130, the
diagnostic accuracy decreased slightlywith the increase in the
number of iterations, corresponding to an over-fit state.When
the number of iterations was about 120, the DBN model’s
detection accuracy was 90.3%, which was the highest value
achieved.

B. DEEP BELIEF NETWORK MODEL ACCURATE DESIGN
The number of nodes in the input and output layers of
the DBN structure was determined by the number of key
parameters and fault nodes of the ZPW-2000A track circuit,
respectively. However, it is generally difficult to determine
the number of nodes in each hidden layer. The process of
adjusting the number of nodes in each hidden layer of a
DBN is time consuming and requires manual work to input
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the parameters and determine the final parameters using the
classification accuracy as the evaluation index. To determine
the number of hidden layer nodes in the DBN more quickly
and effectively, the GAPSO algorithm was used to find the
best number of nodes in each hidden layer, output the best
combination of hidden layer nodes, and meet the require-
ments of the model fault detection accuracy.

The appropriate selection of parameters of the GAPSO
can make the fitness function converge quickly, reduce the
number of iterations of the population, select a better number
of hidden layer nodes in the DBN, and improve the accuracy
of fault detection of the networkmodel. Therefore, the param-
eters of GAPSO must be further determined with simulation
experiments.

As the number of particles in the particle swarm is gen-
erally large, the search time is long. Thus, the number of
particles should not be too large. To satisfy the requirements
of the genetic algorithm, the number of particles in this study
was selected as 30. Since there were three hidden layers, the
number of dimensions per particle was set to three. The inertia
weights ωstart = 0.8 and ωend = 0.1, which were selected
based on experience. The initial value of each dimension
of the particle position was determined by the coarse-tuning
structure of DBN, that is, the initial value of each dimension
of particle position was 12. The value of each dimension of
particle velocity was randomly initialized to a larger value in
the optional range, the maximum number of iterations was
taken as tmax = 100, and the value of each dimension of
parameter A was set to 0.5.

For the selection of key parameters c1 and c2 of the
GAPSO algorithm, special parameter combinations were
chosen based on experience (such as c1 = 1, c2 = 1,
c1 = 2, c2 = 2). The empirical formula c1 + c2 ≈ 4 was
also used. In the process of parameter optimization, the value
of c1 was changed from 1.0 to 3.0 with a step size of 0.05,
and the value of c2 was between 4-c1-0.2 and 4-c1+ 0.2 with
a step size of 0.05. The experimental results are shown in
Fig. 11, For each value of c1 in the Fig. 11, the corresponding
fault detection accuracy was achieved by the optimal choice
of c2 in the corresponding value range (in this way, there is
only one curve in the plot, which is clearer, as there are no
overlapping curves). The corresponding parameter c1 and the
iterative number of GAPSO algorithm are shown in Fig. 12.
Fig. 11 shows that there were multiple c1 and c2 parameter

combinations to optimize the fault detection results (which
was 98.6%). At this time, the combination of parameters c1
and c2 that made the GAPSO algorithm stable with the fewest
number of iterations was selected as the final value, that is, the
final selected parameter values were c1 = 2.8 and c2 = 1.3,
and the corresponding number of iterations was 28.

To better show the results, four different combinations of
learning factors were used that were typical and representa-
tive: c1 = 1, c2 = 1; c1 = 2, c2 = 2; c1 = 2.8, c2 = 1.3; and
c1 = 2.2, c2 = 1.8. The fitness curve is shown in Fig. 13, and
the corresponding number of iterations of the hidden layer of
the DBN model is shown in Fig. 14.

FIGURE 11. Influence of learning factor for GAPSO algorithm on the fault
detection accuracy.

FIGURE 12. Influence of learning factor for GAPSO algorithm on the
iteration number required for model stability.

As shown in Figs. 13 and 14, when c1 = 2.8 and c2 =
1.3, the DBN model’s structure was 12 − 12 − 10 − 15 −
15, the number of iterations was 28, the number of iterations
of the hidden layer in the DBN model was about 130, the
optimal accuracy of the fault detection was obtained, which
was 98.6%.

C. DESIGN OTHER MODELS WITH COMPARATIVE VALUE
A BP neural network and deep belief network optimization
using the particle swarm optimization algorithm (PSO-DBN)
were used with the same input data for comparison. The com-
parison was based on whether the classifier result and labeled
result were consistent. The topology of the BP neural network
was as follows. The number of input layer nodes was 12, and
the number of output layer nodes was 15. Using one hidden
layer, the learning rate was set to 0.1, and the minimum
training objective error was 0.001. The optimal number of
hidden layer nodes was determined by enumeration. The fault
detection accuracy with different numbers of hidden layer
nodes is shown in Fig. 15.
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FIGURE 13. Fitness curve for each GAPSO parameter group.

FIGURE 14. Number of iterations of hidden layer (DBN model) for each
GAPSO parameter group.

Fig. 15 shows that the optimal number of hidden layer
nodes was 12, and the best detection accuracy of the BP neu-

FIGURE 15. Relationship between hidden layer node number and fault
detection accuracy of BP neural network.

ral network was 91.7%. In addition, if the number of nodes
in the input layer is N2 and the number of nodes in the output

VOLUME 8, 2020 175993



Z. Zheng et al.: Research on Fault Detection for ZPW-2000A Jointless Track Circuit Based on Deep Belief Network

FIGURE 16. Influence of learning factor for PSO algorithm on the fault
detection accuracy.

FIGURE 17. Influence of learning factor for PSO algorithm on the iterative
number required for model stability.

layer is M1, and the total number of iterations is T2, then the
computational complexity for training is O(N2 ∗M1 ∗T2) and
the computational complexity during operation isO(N2∗M1).

The basic parameters of the PSO algorithm were set with
reference to the GAPSO algorithm (a slight difference from
the analysis above is that the maximum number of iterations
was taken as tmax = 150), and the key parameters c1 and
c2 of the PSO algorithm were set using a similar method
to that of the GAPSO algorithm. The relationship between
the corresponding c1 and c2 parameter combination and fault
detection accuracy is shown in Fig. 16, and the corresponding
parameter c1 and the iterative number of PSO algorithm are
shown in Fig. 17.

Fig. 16 shows that the best detection accuracy of the
PSO-DBN model was 95.1%, and the corresponding c1 and
c2 parameter combinations had only three groups. The opti-
mal parameter combination of the PSO algorithm was sig-
nificantly less than that of GAPSO algorithm. Based on the
results in Fig. 17, the parameters were selected from the three
groups with the smallest iteration number to make the model
stable, which were c1 = 1.7 and c2 = 2.3, and the iteration

FIGURE 18. Influence of iteration number for PSO algorithm on fault
detection accuracy.

FIGURE 19. Classification results of BP neural network model.

curve is shown in Fig. 18. The iteration number required
to make PSO algorithm stable was 86, the PSO-DBN model
structure was determined to be 12− 12− 14− 13− 15.
Comparing Fig. 11, 16, 12, and Fig. 17, it was found

that the iteration number required by the PSO algorithm
was significantly larger than that of GAPSO algorithm,
and the GAPSO algorithm exhibited faster convergence and
stronger optimization abilities than the PSO algorithm for the
ZPW-2000A jointless track circuit fault detection based on
the DBN.

V. EXPERIMENTAL RESULTS
In this experiment, there were 1500 samples in the test
set, and 100 samples were available for each fault mode.
Fig. 19, 20, and 21 show each fault mode’s classification
effect from the BP neural network model, PSO-DBN model,
and GAPSO-DBN model, respectively, which can verify the
performance of the proposed GAPSO-DBN method.

Fig. 19 shows the classification confusion matrix of the BP
neural network model. No fault mode’s detection accuracy
reached 100%. The detection accuracy of most fault modes
was about 90%. The detection accuracy of the worst fault

175994 VOLUME 8, 2020



Z. Zheng et al.: Research on Fault Detection for ZPW-2000A Jointless Track Circuit Based on Deep Belief Network

FIGURE 20. Classification results of PSO-DBN model.

FIGURE 21. Classification results of GAPSO-DBN model.

mode F7 was only 85%, and that of the best fault mode F9
was only 97%, and for each fault type, some samples were
identified as normal. The overall effect was relatively general.
The results showed that the BP neural network model was
significantly worse than the other two methods.

Fig. 20 shows the classification confusion matrix of the
PSO-DBN model. The detection accuracy of only one fault
mode reached 100%. The detection accuracy of most fault
modes was about 95%, and the detection accuracy of the
worst fault modes F7 and F14 was 91%. Almost every fault
type had some samples identified as normal. The overall
effect was good, and the results show that the PSO-DBN
model was quite good at identifying faults.

Fig. 21 shows the classification confusion matrix of the
GAPSO-DBN model. There were six fault modes whose
detection accuracy reached 100%. The detection accuracy of
most fault modes was about 98%, the detection accuracy of
the worst fault mode F7 was 95%, and only six fault types
had some samples that were identified as normal. The overall
effect is excellent. The results show that the GAPSO-DBN
model was obviously better than the other two methods.

To better measure the effect of the model, four parameters
were selected: accuracy rate, recall rate, precision rate, and

FIGURE 22. Accuracy comparison.

FIGURE 23. Precision comparison.

F1 Score rate to evaluate the model. The accuracy rate refers
to the ratio of the number of samples correctly classified
by the model to the total samples of the test set, which is
an evaluation of the classification accuracy of the model.
The recall rate refers to the proportion of the target class
samples identified by the model in the total target category,
which measures the recall rate of the diagnostic model. The
precision rate refers to the probability that all positive samples
were actually positive. The F1 Score is a probability value
obtained from the combination of the recall rate and precision
rate, which reflects the network modulus. The larger the
numerical value, the more stable the model is. F1 Score is
calculated as follows:

F1 Score =
2 ∗ Recall ∗ Precision
Recall + Precision

. (33)

To further evaluate the GAPSO-DBN model proposed in
this paper, Fig. 22, 23 and 24 compare the accuracy, precision,
and F1 Score of different models for different ZPW-2000A
jointless track circuit fault types (for the model in this paper,
for single fault mode, the accuracy and recall were numeri-
cally equal, so it was not necessary to draw a graph for the
recall).

Fig. 22, 23, and 24 show that for all fault types, the
classifier evaluation index of the GAPSO-DBN model was
basically better than that of the other models (except for
the accuracy index of fault type F13, the precision index of
fault type F9, and the F1 Score index of fault type F9). This
shows that the GAPSO-DBN model proposed in this paper
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TABLE 6. Comparison of evaluation indices of each model.

FIGURE 24. F1 Score comparison.

is accurately classified each fault sample. The model rarely
made wrong classifications, and its performance was stable.

A multi-class classification problem is the focus of this
study. Thus, the recall, precision, and F1 Score are all the
macro-averaging values were calculated. The formulas for
the macro-precision, macro-recall, and macro-F1 Score are
as follows:

Precisionmacro =

n∑
i=1

Precisioni

n
, (34)

Recallmacro =

n∑
i=1

Recalli

n
, (35)

F1 Scoremacro =
2 ∗ Recallmacro ∗ Precisionmacro
Recallmacro + Precisionmacro

. (36)

The fault classification results of the BP neural network
model, PSO-DBNmodel, and GAPSO-DBNmodel are com-
pared in Table 6.

As shown in Table 6, the GAPSO-DBN model had the
highest detection accuracy, macro-recall, macro-precision,
and macro-F1 Score. Each performance indicator was excel-
lent, and thus, the proposed method had high accuracy and
robustness, and the PSO-DBN model and BP neural network
model evaluation indices were slightly worse. Combinedwith
the limited effect of fault detection proposed in the literature
[1], [2], [19], [20], the GAPSO-DBN algorithm successfully
overcame the bottleneck of ZPW-2000A jointless track cir-
cuit fault detection and achieved excellent results.

The reason that the GAPSO-DBN model is suitable for
ZPW-2000A jointless track circuit fault detection is that
the DBN is an excellent deep structure space optimization
algorithm, which is more suitable for solving the problem of
fault detection in which the relationship between original data

and classification results is not obvious. After the original
data was extracted by the DBN model, it showed better
inter-class separation and intra-class aggregation and less
overlap in the high-level distribution characteristics. At the
same time, because the final classification accuracy is greatly
affected by the DBN structure, using the GAPSO algorithm
to optimize the DBN structure can greatly increase the final
fault detection effect. Combining these two advantages, the
GAPSO-DBN model exhibited a good detection effect, and
the accuracy reached 98.5%.

In addition, the GAPSO-DBN model proposed in this
paper can effectively search the parameter space of deep
structures. It can be further used to solve the problem that
there is a relationship between the original data and the
classification results, but the relationship is not obvious, and
it must extract the high-level distribution characteristics of
the original data. The final result is greatly affected by the
DBN structure. Of course, if the relationship between the
original data and the classification result is obvious, then
the GAPSO-DBN method proposed in this paper has no
significant advantages.

VI. CONCLUSION AND FUTURE WORK
In this paper, an equivalent theoretical model of a
ZPW-2000A jointless track circuit was used, which was
established using four-terminal network theory to obtain the
fault data of the ZPW-2000A jointless track circuit. The fault
mode detection based on the DBN model was used, which
was optimized by the GAPSO algorithm. The experiments
showed that the established ZPW-2000A jointless track cir-
cuit fault detectionmethod could achieve excellent results and
had a high detection accuracy of 98.5%. At the same time,
the method has strong robustness. The actual jointless track
circuit environments are complicated, which also increases
the difficulty in jointless track circuit fault detection. Improv-
ing the method’s fault detection capabilities will be the
subject of future research. The operating environment of this
method will be installed on an acquisition computer in an
actual railway field to carry out ZPW-2000A jointless track
circuit fault detection. After the performance of the method
is demonstrated, we will launch practical integrated products
with corresponding equipment companies.
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