
Received September 6, 2020, accepted September 16, 2020, date of publication September 21, 2020,
date of current version October 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3025719

Theory and Experiment of Enclosing Control for
Second-Order Multi-Agent Systems
YANFEI LIU AND YIHUI WANG
Computer Science and Technology Department, High-Tech Institute of Xi’an, Xi’an 710025, China

Corresponding author: Yanfei Liu (bbmcu@126.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61703411 and Grant 61834004, and in
part by the Natural Science Foundation of Shaanxi Province under Grant 2017JM6016.

ABSTRACT This article investigates the enclosing control without preset formation of second-order
multi-agent systems for stationary targets. This article uses a directed graph to describe and the direction
of information exchange between agents and targets. For continuous-time systems, an enclosing control
algorithm is proposed, which does not need to preset the desired formation. The state transfer equation is
used to transform the solution of the system into a matrix function of first-order linear constant-coefficient
non-homogeneous differential equations. By analyzing the convergence of the solution, the value range of
the gain parameter is obtained, and the requirements of topology are proposed. Then the discrete protocol
is applied to the discrete-time system. Based on the Schur stability analysis of the system, the requirements
of topology and parameter for the system to achieve enclosing control are given. Finally, the self-designed
multi-agent platform is introduced, and simulation and experimental results are presented to validate the
effectiveness of the protocol.

INDEX TERMS Multi-agent systems, enclosing control, directed graph.

I. INTRODUCTION
With the development of intelligent robots, cooperative con-
trol algorithm has been applied to a great number of civilian
and military fields [1]–[4]. According to different application
fields, cooperative control can be classified into consensus
control [5]–[7], containment control [8]–[10], formation con-
trol [11]–[13], consensus tracking [14]–[16], and so on. The
relationship between agents in these systems is mainly coop-
erative. While in some applications, the relationship between
multi-agent systems is confrontation. In some application
scenarios, such as using robotic shepherds, cluster drone
attacks, etc. [17]–[19], agents need to be used to encircle the
targets. We refer to the problem of using a multi-agent system
to enclose another multi-agent system as enclosing control.

Similar to the enclosing control, containment con-
trol involves the encirclement problem of the agents.
Containment control can be described as followers design-
ing their control inputs based on information of neighbors
to control the agents enter the convex hull formed by the
leaders [20]. The containment control of continuous-time
systems and discrete-time systems were studied in [21].
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Cao and Stuart studied the containment control of second-
order systems under the conditions of fixed topology and
switched topology, and realizes containment control on the
physical platform [22]. The protocols proposed in these two
papers provide a reference for the design of enclosing con-
trol protocols. The containment control of first-order and
second-order systems was investigated in [23]. The litera-
ture divided the containment control problem into two sub-
problems, namely, the analysis of convergence of system
and analysis of topology for ensuring achieve containment
control. The analysis of the topology provides a reference
for the analysis of achieving enclosing control. Li and Dong
studied the problem of formation-containment control, and
the platform built in this article reduces the difficulty of con-
trol by decoupling the states of quadrotor [24]. It provides a
reference for the design of the enclosing control experimental
platform.

Although the containment control provides reference anal-
ysis methods for enclosing control, there are some differences
between containment control and enclosing control. In the
containment control, the system controls followers to enter
the convex hull formed by the leaders. In contrast, in enclos-
ing control, a multi-agent system is controlled to form a
convex hull to contain the targets.
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In the existing collaborative control algorithm, formation
tracking control and surrounding control can solve some
enclosing control problems. The formation tracking control
and surrounding control can be described as: the followers
calculate their control inputs based on the desire position and
set by manual and the information of the neighbors, and con-
trol agents to move to the aim position. Kawakami proposed a
target encirclement strategy based on virtual structure, which
assumed the target as a virtual agent and implemented the
encirclement of the target through the consistency algorithm
in [25]. In 2014, Aranda studied the encircling of a target with
low-velocity characteristics in three-dimensional space [26].
Zhang studied the problem of tracking and surrounding tar-
gets using multiple UAVs in [27]. The proposed algorithm
controls the alignment of the formation center with the target
by keeping multiple UAVs at equal distances, and realizes the
tracking and surrounding of the target. One estimator was
used to estimate the centroid of multiple agents, and keep
the centroid consistent with the target to realize the tracking
of the target in [28]. In the research process of formation
tracking control of a single target, some scholars began to pay
attention to the formation tracking control of multiple targets.
Dong proposed a time-varying formation tracking algorithm
in [29]. Followers use the information of neighboring agents
and relative position information to design the control input,
build the formation shape by setting the relative position, and
use the consensus algorithm to make the formation track the
convex combination of multiple leaders. The work in [30]
studied the surrounding control of a second-order multi-agent
system with switching topology. Through the estimator, all
followers can predict the geometric center of the leaders.
By setting the time-varying vector describe desire formation,
the followers can realize the circle of the leaders. The sur-
round control problem of an agent with nonlinear dynamic
characteristics was studied in [31]. An estimator is designed
to estimate the sum of the distance between the leader’s
geometric center and the leader, and the distance is used for
surround control. An adaptive method is given to adjust the
position parameters.

When using formation tracking control and surrounding
control to solve the problem of enclosing control, it is gener-
ally to design vectors manually to describe the desire position
between agents, that is, to set a convex hull manually. This
process is cumbersome, and mainly used in the enclosing
control of a single target.When the formation tracking control
is used to solve the problem of enclosing control of multiple
targets, it is generally necessary to solve or estimate the set
center of the target, so as to transform the problem into the
enclosing control of a single target. In some military applica-
tions, such as contain multiple targets, agents are limited by
the performance of sensors, resulting in the inability to collect
information on all targets. The formation tracking strategy is
challenging to adapt to such applications. The work in [32]
proposes an enclosing control strategy. The strategy uses fol-
lowers to form a convex hull to contain the leaders by setting
the gain parameters and topology only. However, this article

only considers the enclosing control of stationary targets of
first-order systems. While in many applications, the second-
order integrator is often used to describe the dynamic charac-
teristics of the agents.

Based on the above analysis, this article studies the
enclosing control problem of the stationary targets of the
second-order system. A continuous-time protocol and a
sampled-data based protocol, which is based on position
and velocity information, are designed. By analyzing the
eigenvalues of the matrix related to the Laplace matrix,
the gain range of the continuous-time protocol is obtained.
By analyzing the expression of final positions of agents,
the requirements of topology are obtained. The Schur stability
of the discrete-time system is analyzed, and the requirements
of parameters and topology are obtained. Finally, numerical
simulation and experimental results are given to validate the
theoretical results.

Compared with previous related work and research,
the contribution of this article is threefold. Firstly, this arti-
cle refers to the definition of the convex hull and proposes
the relationship between the state vector of agents and that
of targets when a multi-agent system encloses the targets.
Secondly, the protocols we proposed do not need to design
the desire formation, but it is required in [27]–[31]. Thirdly,
we discretize the protocol to meet the requirements of engi-
neering applications and propose the requirements of vari-
ous parameters in engineering practice. Then, the theoretical
results are validated by the simulations and an experiment.

The structure of the rest of the paper is as follows:
In Section II, some related concepts, definitions, and theoret-
ical results are introduced. The convergences of continuous-
time and discrete-time systems are, respectively, analyzed in
Section III and Section IV. In Section V and Section VI,
the numerical simulations and an experiment are presented,
respectively. Finally, Section VII concludes the work of this
article.
Notations:⊗ indicates the Kronecker product. In is the n-th

order identity matrix. diag{α1, · · · , αn} represents a diagonal
matrix with diagonal elements α1, · · · , αn. 0n×m denotes a
zero matrix with n rows and m columns. ẋ represents the
differential of x.

II. PRELIMINARY
In this section, we introduce some definitions and theoretical
results that need to be used in the following sections.

A. GRAPH THEORY
A directed graph G consists of V , E , and A. Let V be the set
of all nodes in the graph that with n nodes. The nodes are
denoted by vi, i = 1, · · · , n. E is the set of all edges in graph,
which is presented by eij = (vi, vj).A is the adjacency matrix
of graph, which is represented by aij, i, j = 1, · · · , n. When
eij ∈ E(G), aij = 1, otherwise, aij = 0.
The neighbors and in-degree of node vi are, respectively,

defined as: Ni and degin(vi) =
∑n

j=1 aij. The in-degree
matrix of the graph is D = diag{degin(v1), · · · , degin(vn)}.
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The Laplace matrix of the graph is L = [lij], i, j = 1, · · · , n,
where when i 6= j, lij = −aij, otherwise, lij = degin(vi). Then,
the Laplacematrix of the graph can be obtained by calculating
L = D−A.

In the research of this article, the existence of repeated
edges and self-loops in the communication topology is not
considered. However, the theoretical results are still valid for
isolated agent nodes.

You can refer to [33] for more detailed content.

B. DEFINITIONS AND LEMMAS
Definition 1 ( [34]): Suppose a point set v1, · · · , vn, vi ∈

Rm, i = 1, · · · , n. The convex hull of the point set is defined
as the minimum convex set of the point set, which is rep-
resented by co{v1, · · · , vn} = {

∑n
i=1 aivi|ai ∈ R, ai ≥

0,
∑n

i=1 ai = 1}. For a point y inside of the convex hull,
satisfy y =

∑n
i=1 aivi, ai ≥ 0,

∑n
i=1 ai = 1.

Definition 2: Suppose that A = (aij)m×n ∈ Rm×n,B =
(bij)p×q ∈ Rp×q, the Kronecker product of A and B is
defined as:

A⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

 ∈ Rmp×nq

The Kronecker product of matrix has the following
properties:

1) k(A⊗ B) = (kA)⊗ B = A⊗ (kB);
2) When matrices A1 and A2 are of the same order, (A1 +

A2)⊗ B = A1 ⊗ B+ A2 ⊗ B;
3) (A⊗ B)⊗ C = A⊗ (B⊗ C);
4) Suppose that A1 = (a(1)ij ) ∈ Rm1×n1 ,A2 = (a(2)ij ) ∈

Rm2×n2 ,B1 = (b(1)ij ) ∈ Rp1×q1 ,B2 = (b(2)ij ) ∈ Rp2×q2 ,
and n1 = m2, p1 = q2. Then, (A1 ⊗ B1)(A2 ⊗ B2) =
(A1A2)⊗ (B1B2);

5) (A⊗ B)−1 = A−1 ⊗ B−1.
Lemma 1: Consider first-order linear constant coefficient

non-homogeneous differential equations, dx
dt = Ax + b(t),

where A = [aij]n×n, x = x(t) ∈ Rn, b(t) ∈ Rn. The
solution satisfying the initial condition x(t0) = x0 is x(t) =
e(t−t0)Ax0 + etA

∫ t
t0
e−sAb(s)ds.

Lemma 2 ( [35]): A,B ∈ Rn×n. When there is a non-
singular matrix P such that B = P−1AP holds, A is said
to be similar to B, and it is denoted as A ∼ B. Similar
matrices have the same eigenpolynomial and therefore have
equal eigenvalues.
Lemma 3 ( [35]): Suppose A ∈ Rm×m,B ∈ Rn×n, and the

eigenvalues of A are λ1, λ2, · · · , λm, the eigenvalues of B are
µ1, µ2, · · · , µn, then the overall eigenvalues of A ⊗ B are
λiµj(i = 1, 2, · · · ,m; j = 1, 2, · · · , n).
Lemma 4 ( [35]): For a block matrix, when it is a lower

triangular matrix, its eigenvalue is equal to that of the matrix
on the diagonal.
Lemma 5 ( [35]): Suppose there is an n-order square

matrix B = [βij], i, j = 1, . . . , n. All eigenvalues

of B are located in union of the n discs
⋃n

i=1

{
z ∈ C :

|z− βii| ≤
∑n

j=1,j6=i |βij|
}
.

Lemma 6 ( [35]): Suppose A = 0n×n, B ∈ Rn×n, C ∈
Rn×n,D ∈ Rn×n, if B−1 exists, and C−DB−1A ∈ Rn×n is an

nonsingular matrix, then
[
0 B
C D

]−1
=

[
−C−1DB−1 C−1

B−1 0

]
.

Lemma 7 ( [36]): Given a polynomial a(s) = αnsn +
· · · + α1s + α0, where αi ∈ C, i = 1, · · · , n. Using the
bilinear transformation s = σ+1

σ−1 for this polynomial, a new
polynomial is obtained as r(σ ) = (σ − 1)2a(σ+1

σ−1 ). Then a(s)
is Schur stable if and only if r(σ ) is Hurwitz stable.
Lemma 8 ( [36]): Given a quadratic polynomial r(σ ) =

β2σ
2
+ β1σ + β0. the expression is Hurwitz stable if and

only if β2, β1, β0 > 0.

C. MATHEMATICAL MODEL OF THE PROBLEM
Suppose that there is a swarm system with n agents and
m targets. Let A and T denote the set of agents and targets.
Then, the dynamic characteristics of agents and targets can
be described as:

ẋi(t) = vi(t)
v̇i(t) = ui(t),
i = 1, 2, · · · , n, n+ 1, n+ m.

(1)

where xi(t), vi(t), ui(t) ∈ RN , i = 1, · · · , n are, respectively,
the state, velocity and control input of the (i − n)-th agent.
xi(t), vi(t), ui(t) ∈ RN , i = n+1, · · · , n+m are, respectively,
the state, velocity and control input of the i-th target. In engi-
neering practice, agents, which number greater than those
of targets, are often used to surround the targets. Therefore,
we assume that n ≥ m.
In this article, we consider the enclosing control of sta-

tionary targets. According to Definition 1, we describe the
enclosing control problem as that the agents move according
to the position of targets to form a convex hull which contains
the targets.

III. CONTINUOUS-TIME PROTOCOL DESIGN AND
SYSTEM CONVERGENCE ANALYSIS
We design the following continuous-time control protocol for
continuous-time systems:

ui(t) = α
n∑
j=0

aij(xj − xi)+
n+m∑
j=n+1

aij(xj − xi)

+

n+m∑
j=n+1

aij(vj − vi), i = 1, 2, · · · , n,

ui(t) = 0, i = n+ 1, · · · , n+ m.

(2)

where α is a negative gain constant to be designed. Let
uA = {uT1 , · · · , u

T
n }

T

xA = {xT1 , · · · , x
T
n }

T

vA = {vT1 , · · · , v
T
n }

T ,


uT = {uTn+1, · · · , u

T
n+m}

T

xT = {xTn+1, · · · , x
T
n+m}

T

vT = {vTn+1, · · · , v
T
n+m}

T .
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Let u = {uTA , u
T
T }

T , x = {xTA , x
T
T }

T , v = {vTA , v
T
T }

T . Accord-
ing to the protocol, for any agent

ui(t) = [αai1, · · · ,−(αn(Ni)+ n(Mi)), · · · , αain,

ai(n+1), · · · , ai(n+m)]xTA
+[0, · · · , 0,−n(Mi), 0, · · · , 0,

ai(n+1), · · · , ai(n+m)]vTA .

where n(Ni) denote the number of the neighbors of the
i-th agent, n(Mi) is the number of targets for which the
agent receives target information. Let L1 ∈ Rn×n denote
the Laplace matrix of the multi-agent system. Let DT =
diag{n(M1), · · · , n(Mi), · · · , n(Mn)}.
Suppose there is a matrix such that L2 = αL1 + DT .

Construct two matrices as follows:

L3 =
[
L2 −AT

0m×n 0m×m

]
, L4 =

[
DT −AT
0m×n 0m×m

]
, (3)

where AT = [aij] ∈ Rn×m represents the adjacency matrix of
the connection between the agents and the targets. When the
i-th agent receives the information of the j-th target, aij = 1,
otherwise aij = 0. Then, according to the definition of the
Laplace matrix, the control inputs of the multi-agent system
and targets can be written as:

u(t) = −(L3 ⊗ IN )x − (L4 ⊗ IN )v. (4)

According to (4), we can obtain that[
ẋA(t)
v̇A(t)

]
=

([
0n×n In
−L2 −DT

]
⊗ IN

)[
xA(t)
vA(t)

]
+

([
0n×m 0n×m
−AT −AT

]
⊗ IN

)[
xT
vT

]
. (5)

Let 
E =

([
0n×n In
−L2 −DT

]
⊗ IN

)
,

F =

([
0n×m 0n×m
−AT −AT

]
⊗ IN

)
.

(6)

Substitute (6) into (5) to get a simplified formula:[
ẋA(t)
v̇A(t)

]
= E

[
xA(t)
vA(t)

]
+ F

[
xT (t)
vT (t)

]
(7)

where vT (t) = 01×Nm. From Lemma 1, we can get that
the solution of the first-order linear constant-coefficient non-
homogeneous differential equations of the matrix function
are:[

xA(t)
vA(t)

]
= eEt

[
xA(0)
vA(0)

]
+ eEt

∫ t

0
e−EsF

[
xT (t)
vT (t)

]
ds. (8)

Assuming E is a non-singular matrix,∫ t

0
e−EsF

[
xT (s)
vT (s)

]
ds =

∫ t

0
e−EsdsF

[
xT (0)
01×Nm

]
= −e−Et (E−1F)

[
xT (0)
01×Nm

]
+ (E−1F)

[
xT (0)
01×Nm

]
. (9)

The following theorem shows the range of parameter and
the requirements of topology to achieve enclosing control.
Theorem 1: Suppose the topology is fixed. The convex

hull formed by the agents contains the targets for any initial
state if the control gain such that max −12(L1)ii

< α < 0, where
(L1)ii is the element on the diagonal of the i-th row of L1,
and each agent receives information from one target only, and
there is no isolated target.

Proof: When the eigenvalues of the E all have negative
real part,

lim
t→∞

e−Et = 0Nn×Nn. (10)

Then the solution of (7) is:[
xA(t)
vA(t)

]
= −(E−1F)

[
xT (0)
01×Nm

]
. (11)

Construct a matrix P such that P−1EP = E1, where

P =
[
−In In
0n×n In

]
⊗ IN , (12)

Then,

E1 =
[
−In 0n×n
DT −L2

]
⊗ IN (13)

According to Lemma 2, we can get E ∼ E1. Then the eigen-
values of theE are equal that ofE1. FromLemma 3, the eigen-

values of the E1 are equal that of
[
−In 0n×n
DT −L2

]
. By Lemma 4,

we can obtain that the eigenvalues of
[
−In 0n×n
DT −L2

]
are equal

those of −IN and −L2.
Obviously, all the eigenvalues of −IN have negative real

part. According to Lemma 5 and expression of L2, all the
eigenvalues of −L2 have negative real part if α such that

0 < −α(L1)ii + α < (L2)ii, (14)

where (L1)ii, (L2)ii are, respectively, the element on diagonal
of the i-th row of L1 and L2. Since each agent receives infor-
mation from one target only, by calculation, the requirements
of the range of α can be obtained as following.

max
−1

2(L1)ii
< α < 0 (15)

Since each agent receives information from one target only,
DT = In. According to Lemma 6, we can get expressions of
E−1 by calculation.

E−1 =
[
−L−12 −L−12
In 0n×n

]
⊗ IN . (16)

Substituting (16) into (8), we can get that

lim
t→∞

[
xA(t)
vA(t)

]
= lim

t→∞

[
L−12 AT xT
0Nn×1

]
, (17)

When t →∞, we can obtain that{
(L2 ⊗ IN )xA(t) = (AT ⊗ IN )xT
vA(t) = 0Nn×1

(18)
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Since each agent receives information from one target only,
and there is no isolated target,AT is full column rank. Accord-
ing to the expression of L2, the state of i-th target can be
expressed as:

xi(t) = (2⊗ IN )xA(t), (19)

where 2 = [−αai1, · · · , αn(Ni)+ n(Mi), · · · ,−αain], i =
1, · · · , n. According to the range of α, −αaij > 0, i, j =
1, · · · , n, i 6= j. From (14) and the expression of L2, we can
obtain that αn(Ni) + n(Mi) = (L2)ii > 0. From the
expression of 2, we can get the sum of the coefficients
of 2 is

α(L1)ii + 1− α(L1)ii = 1. (20)

According to Definition 1, when t → ∞, the convex full
formed by agents contains the targets.
Remark 1: When α ≤ max −12(L1)ii

, the positions of agents
tend to infinity, and the convex hull formed by agents has
no application significance. When the α increases within the
value range, the area enclosed by the convex decreases as
the alpha increases. When α = 0, the convex hull formed
by the agents is consistent with the convex hull formed by
the target.

IV. SAMPLED-DATA BASED PROTOCOL DESIGN AND
SYSTEM CONVERGENCE ANALYSIS
We use constant time interval sampling and zero-order hold
circuit to discretize the protocol (2) to get the following
protocol. 

ui(t) = α
n∑
j=0

aij(xj(kh)− xi(kh))

+

n+m∑
j=n+1

aij(xj(kh)− xi(kh))

+

n+m∑
j=n+1

aij(vj(kh)− vi(kh)),

i = 1, 2, · · · , n,
ui(t) = 0, i = n+ 1, · · · , n+ m.
t ∈ [kh, kh+ 1).

(21)

From Newton’s second law, we can obtain:{
x(kh+ h) = x(kh)+ hv(kh)+ h2

2 u(kh),
v(kh+ h) = v(kh)+ hu(kh).

(22)

Let ηi = [xTi , v
T
i ]
T , ηA = [ηT1 , · · · , η

T
n ]

T , ηT =

[ηTn+1, · · · , η
T
n+m]

T , η = [ηTA , η
T
T ]

T . Then, the state transition
equation can be obtained as:

η(kh+ h) = ([In+m ⊗ B− L3 ⊗ C − L4 ⊗ D]⊗ IN )η(kh),

(23)

where B =
[
1 h
0 1

]
, C =

[
h2
2 0
h 0

]
, D =

[
0 h2

2
0 h

]
. Simplify the

equation to:

η(kh+ h) = (�⊗ IN )η(kh), (24)

where

� =

[
�1 �2

02m×2n B

]
,
�1 = In ⊗ B− L2 ⊗ C − DT ⊗ D

�2 = AT ⊗ (C + D).

Then according to the state transition equation, the state at
the kh+ h time of the system is:

η(kh+ h) = (�k+1
⊗ IN )η(kh)

=

([
�k+1

1 0k
02m×2n Bk+1

]
⊗ IN

)
η(0), (25)

where 0k = �k
1�2+�

k−1
1 �2B+ · · · +�1�2Bk−1+�2Bk .

Then the conditions that ensure achieve enclosing control
are proposed as following.
Theorem 2: Suppose the topology is fixed. The convex

hull formed by the agents contain the target for any initial
state if the parameters such that max −12(L1)ii

< α < 0, h < 2
λ
,

and h < 2, where λ presents the denote the eigenvalues of L2,
and each agent receives information from one target only, and
there is no isolated target. The state of agents can be obtained
by solving (L2 ⊗ IN )xA(kh+ h) = (AT ⊗ IN )xT (kh+ h).

Proof: When the eigenvalues of the �1 are all within
the unit circle, limk→∞�

k
1 = 02n×2n.

There is a W such that W−1L2W = 3(L2), where 3(L2)
is eigen-matrix of L2. Let λ1, . . . , λn denote the eigenval-
ues of L2. Then 3(L2) = diag{λ1, λ2, . . . , λn}. Since each
agent receives information form one target only, DT = In.
Therefore,

W−1�1W = triag


[
1 h
0 1

]
−

h22 λ1
hλ1 0

−
0 h2

2
0 h

 ,
· · · ,[
1 h
0 1

]
−

h22 λn
hλn 0

−
0 h2

2
0 h


= triag


1− h2

2
λ1 h−

h2

2
−hλ1 1− h

 , · · · ,
1− h2

2
λn h−

h2

2
−hλn 1− h

 (26)

The eigenvalues of �1 are equal to those ofW−1�1W .

ai(s) = det(sI2 −

1− h2

2
λi h−

h2

2
−hλi 1− h

) (27)

The eigenvalues of �1 can be obtained by let ai(s) = 0, i =
1, · · · , n. Let λ denote all the eigenvalues of L2. By some
calculation, we can get that

a(s) = s2 + (h− 2+
h2

2
λ)s+ 1− h+

h2

2
λ (28)

When a(s) is Schur stable, the eigenvalues of the�1 are all
within the unit circle. According to Lemma 7, using bilinear
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transformation σ+1
σ−1 , we can obtain that

r(σ ) = (σ − 1)2a(
σ + 1
σ − 1

)

= h2λσ 2
+ (2h− h2λ)σ + 4− 2h (29)

The Schur stability analysis of a(s) is transformed into the
Hurwitz stability analysis of r(σ ).
According to Lemma 8, when all the coefficients of r(σ )

are bigger than zero, r(σ ) is Hurwitz stable.
h2λ > 0
2h− h2λ > 0
4− 2h > 0

(30)

From the analysis in the Section III, when max −12(L1)ii
<

α < 0, all the eigenvalues of L2 are bigger than zero.
Therefore, the requirement of range of parameters such that

max
−1

2(L1)ii
< α < 0

h < min
2
λi
, i = 1, · · · , n,

h < 2.

(31)

Let limk→∞�
k
1 = 02n×2n, by some calculation, we can

obtain that

0k = �
k+1
1 ((In ⊗ B−�1)−1�2)

− ((In ⊗ B−�1)−1�2Bk+1). (32)

Substituting (32) into (24), we obtain that

lim
t→∞

η(kh+ h)=
[
((In ⊗ B−�1)−1�2Bk+1)ηT (0)

(Bk+1 ⊗ IN )ηT (0)

]
. (33)

Then

lim
t→∞

((L2 ⊗ C + In ⊗ D)⊗ IN ) ηA(kh+ h)

= ((AT ⊗ (C + D))⊗ IN ) ηT (0). (34)

From (34), we can get that{
(L2 ⊗ IN )xA(kh+ h) = (AT ⊗ IN )xT
vA(kh+ h) = 0Nn×1

(35)

Similar to the analysis of expression of xn(t) in Section III,
we can obtain the conclusion that when t → ∞, the convex
hull formed by agents contains the target.
Remark 2: The protocol is discretized so that it can be

deployed in engineering applications. In our theoretical anal-
ysis, the existence of external interference is not consid-
ered, and the maximum velocity of the agents is not limited.
In actual engineering practice, the speed of the agents has an
upper limit. When the external interference input is greater
than the maximum control input, the protocol will fail.

V. SIMULATIONS
We use two examples to validate the theorem result in this
section.

We regard an agent with the dynamic of the second-order
integrator as the target and use four agents to form convex
full, which encloses the targets. The direction of information
exchange between the targets and the multi-agent system is
shown in Fig. 1, where Ti, i = 1, 2, 3, are the targets, and
Ai, i = 1, 2, 3, 4, are agents.

FIGURE 1. A communication topology between targets and multi-agent
system.

From Fig. 1, we can get the expression of L1 and AT as
following:

L1 =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 , AT =


1 0 0
0 1 0
0 0 1
1 0 0

 .
(36)

According to Theorem 1 and Theorem 2 we can obtain that
−0.25 < α < 0.

FIGURE 2. Trajectories of agents in Example 1.

Example 1: Use (2) for (1). According to Theorem 1,
we can obtain that −0.25 < α < 0. Let α = −0.2, and
simulation time is 40 seconds. The trajectories of agents are
shown in Fig. 2. Obviously, the convex hull formed by the
agents contains the targets.
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FIGURE 3. Velocity curves of the agents in Example 1.

The velocity curves of the agents in the coordinate axis
directions are shown in Fig. 3. The simulation results validate
Theorem 1.
Example 2: Use (21) for (1). According to Theorem 2,

we can obtain that −0.25 < α < 0. Let α = −0.2, then
we can get that

L2 =


0.6 −0.2 0 −0.2
−0.2 0.6 −0.2 0
0 −0.2 0.6 −0.2
−0.2 0 −0.2 0.6

 . (37)

The eigenvalues of L2 are λ1 = 0.2, λ2, λ3 = 0.6, λ4 = 1.
Then we can obtain that h < 2. Let α = −0.2, h = 1.2,
the simulation time is 40 seconds. Obtain the trajectories of
the agents as shown in Fig. 4. We can see that the convex full
formed by agents contains the targets.

FIGURE 4. Trajectories of the agents in Example 2.

The velocity curves of the agents are shown in Fig. 5. The
simulation results validate Theorem 2.
Some strategies, such as formation tracking [25]–[29] and

surround control [30], [31], can solve some enclosing control

FIGURE 5. Velocity curves of the agents in Example 2.

problem, but it is generally to manually set a vector describ-
ing the desired formation to control followers to form a
desire formation to surround the leaders (targets). However,
the enclosing control strategy proposed in this article only
needs to set the relevant parameters and does not need to
preset the desire formation so that the agents can enclose the
targets.

VI. EXPERIMENT
In this section, We introduce the self-designed multi-agent
platform and the experiment with the multi-agent platform.
Next, this section introduces the hardware structure of the
multi-agent platform.

FIGURE 6. Hardware structure of multi-agent platform.

The platform consists of Ultra Wide Band (UWB) posi-
tioning system, azimuth correction system (ACS), five omni-
directional wheel robots, and a control station. As shown in
Fig. 6, the UWB positioning system with an accuracy of 5cm
circular error probable consists of tags with a positioning
function and base stations that provide a positioning refer-
ence. The positioning system uploads the position of each
robot to the control station through the first base station.

When there is an angle between the robot coordinate
system and the world coordinate system, the control input
in one direction will cause the robot to move in the other
direction. It is necessary to make the angle between the robot
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coordinate system and the world coordinate system approach
zero. Therefore, we designed the ACS for the platform.

The ACS consists of ACS circuit and the Repeater. The
ACS circuit collects the azimuth information of the robot and
uses the nRF24L01 (NRF) module to upload the azimuth to
the control station. After receiving the azimuth angle, the con-
trol station makes a difference with the azimuth information
of the world coordinate system to obtain the angle between
the robot coordinate system and the world coordinate system.
The control station sends a correction command to make the
robot correct the included angle.

The software of the multi-agent platform includes the top
and bottom parts. The bottom part of the software is mainly
programmed using Embedded C and is used to control robots,
ACS circuits, and repeaters. The top part of the software
is developed in the Windows10 system using python. The
main functions include: i) designing the topology through
programming; ii) receiving positioning and azimuth informa-
tion; iii) calculating the correction input and control input of
each robot; iv) sending control information for control robots
every 0.2 seconds.

We use three robots to simulate the targets and four robots
to mimic the agents. Through programming, the communica-
tion topology of the agent robots and the simulated targets are
set to the structure, which is shown in Fig. 1.

FIGURE 7. Trajectories of the agents and target of Experiment.

Similar to Example 2 in Section V, −0.25 < α < 0.
Let α = −0.2, then we can know h should satisfy h < 2.
The control period of the platform is smaller 2 seconds. Let
the experiment time is 40 seconds. Draw trajectories of the
location of the agents to get the Fig. 7.

Since we did not limit the maximum speed of the agent in
the simulation, and due to the existence of positioning error
and angle between the robot coordinate system and the world
coordinates, there are some errors between the trajectory of
the experiment and that in the simulation. Therefore, there
is an error between the final position of agents in the exper-
iment and that of numerical simulation. However, it can be

FIGURE 8. Velocity curves of the agents and target of Experiment.

seen from the trajectories in Fig. 7 that the target robots are
enclosed by the agent robots. Moreover, it can be seen from
Fig. 8 that the velocity of the agent approaching zero as time
increases. These results validate Theorem 2.
Then, we consider the boundary conditions assumed in

Subsection C of Section II, let n = m, and use the com-
munication topology, as shown in Fig. 9, for simulation and
experiment. Set the simulation time and experiment time as
40s, h = 0.2, α = −0.2. The simulation of the sampled-
data based protocol and experimental results are shown in
Fig. 10. It can be concluded fromFig. 10 that the experimental
results are consistent with the simulation results when the
positioning and control errors are ignored.

FIGURE 9. A communication topology between targets and multi-agent
system.

FIGURE 10. The Trajectories of agents in simulation and experiment.

It is worth noting that only one undirected graph is used
for simulation and experiment. Still, the theoretical results of
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this article are also applicable to multi-agent systems with
directed communication topology.

VII. CONCLUSION
This article has studied the enclosing control problem of
stationary targets. First, the second-order integrator was used
to describe the dynamics of the agents and targets, and the
directed graph was used to present the direction of informa-
tion exchange between themulti-agent system and the targets.
Then, we proposed a continuous-time protocol and sampled-
data based protocol. In continuous-time systems, the problem
of solving the final state of the agents was transformed into
the problem of solving matrix function equations. By ana-
lyzing the eigenvalues of the matrix related to the Laplace
matrix, the parameter range was derived. The requirements
of topology were obtained by analyzing the expression of
the final positions of the agents. In discrete-time systems,
by analyzing the Schur stability of the system, the range of
the parameter of ensuring the system to achieve enclosing
control was obtained. Finally, two numerical simulations and
one experiment were used to validate the theoretical results.

In this article, the closed control of second-order multi-
agent is studied, and some factors are ignored in the
research. Some interesting directions for future research are
listed as follows.

1) In practical engineering applications, the topology
of multi-agents may be time-varying, so the enclos-
ing control of multi-agent systems with deterministic
switching or random switching topology should be
studied.

2) The enclosing control for dynamic targets is a problem
worthy of attention.

3) The parameter setting of the protocols proposed in this
article is a problem worth investigating.
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