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ABSTRACT Anomaly detection tools play a role of paramount importance in protecting networks and
systems from unforeseen attacks, usually by automatically recognizing and filtering out anomalous activities.
Over the years, different approaches have been designed, all focused on lowering the false positive rate.
However, no proposal has addressed attacks specifically targeting blockchain-based systems. In this paper,
we present BAD: Blockchain Anomaly Detection. This is the first solution, to the best of our knowledge,
that is tailored to detect anomalies in blockchain-based systems. BAD is a complete framework, relying on
several components leveraging, at its core, blockchain meta-data in order to collect potentially malicious
activities. BAD enjoys some unique features: (i) it is distributed (thus avoiding any central point of failure);
(i1) it is tamper-proof (making it impossible for a malicious software to remove or to alter its own traces);
(iii) it is trusted (any behavioral data is collected and verified by the majority of the network); and, (iv) it is
private (avoiding any third party to collect/analyze/store sensitive information). Our proposal is described in
detail and validated via both experimental results and analysis, that highlight the quality and viability of our

Blockchain Anomaly Detection solution.

INDEX TERMS Blockchain technology, security, intrusion detection systems, distributed systems.

I. INTRODUCTION

The Internet of Things (IoT) digital revolution has brought
a wide range of smart devices in the global market that are
remotely accessible via Internet and able to communicate
and cooperate with each other. This opens great opportunities
from an application and service point of view, but it also cre-
ates new security challenges as devices are easily accessible
from Internet [1].

To address the above introduced typology of threat, intru-
sion detection systems (IDS) have been developed in the
past as tools aimed at strengthening the security of complex
networks and systems via capturing, monitoring, and analyz-
ing the peers’ traffic or, more in general, their behavior [2].
These approaches, usually based on log analysis and data
correlation, aim at building attack models and mitigation
strategies on top of them. Existing IDS can be classified based
on their approach into two classes: signature recognition
or anomaly behavior [3]. On the one hand, the first class
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leverages databases where signatures of well-known attacks
are matched. These databases are then used as a reference
model to detect future occurrences of such attacks. Hence,
this approach is not able to recognize new attacks whose
signatures are still unknown. On the other hand, anomaly
detection approaches build models of normal behavior and
rise alerts for deviations from such baselines. Thus, the goal
of an anomaly detection system (ADS) is to build the normal
behavior model and then to challenge it with new/unknown
behaviors in order to analyze how close they are to the
reference model.

IDS and ADS proved their functionalities so far, especially
when based on trusted third parties that are responsible to
build reference models and to alert end-users or end-devices
if an unexpected behavior has been detected. We can consider
the classic case of anti-virus companies that build and man-
age threat databases, which are later used to identify known
threats or to predict zero-day attacks. However, this approach
does not work for truly distributed peer-to-peer communi-
ties that lack trusted anchors or centralized management,
as in blockchain-based applications. Firstly designed as a
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support tool for Bitcoin [4], the blockchain technology allows
untrusted peers within open (i.e. permission-less) communi-
ties to agree on the status of a shared database, without the
necessity to access trusted third parties. The only assumption
is that the majority of involved peers is honest and willing
to keep the protocol up and running against malicious users.
However, has shown in real life applications, attackers can
eclipse their victims (i.e. manipulate honest nodes access to
the mainstream global blockchain), thus reducing the number
of honest peers participating in the overall blockchain net-
work. Eclipsing a node allows or simplifies several types of
attacks as shown in [5], [6].

A. CONTRIBUTIONS

In this paper we propose BAD: a general solution that lever-
ages the features of blockchain to provide an Anomaly Detec-
tion Service. As an instance of its effectiveness, BAD allows
the peers in a blockchain network to be protected against
eclipse attacks by sharing information on previous attacks
(i.e. by re-distributing malicious forks to the whole peer-to-
peer community). To the best of our knowledge, our approach
is the first one that leverages forks on a global scale to detect
and prevent local threats. The core idea behind BAD is to
collect local attack logs in the form of (hashed) malicious
transactions. These logs are generated by BAD from an attack
sequence injected by an attacker on isolated victims, and they
are later reused to prevent similar attacks on uncorrupted
nodes. More precisely, the attack logs (usually discarded in
standard blockchain applications) populate a threat database
that allows other potential victims to be resilient against
zero-day attacks already discovered. The proposed solution is
detailed and implemented. Achieved results show its quality
and viability, and pave the way for future research along the
highlighted directions.

B. ROADMAP

This paper is organized as follows: in Section II the
blockchain background technology is introduced as well
as related previous works on anomaly detection systems.
Section III describes our threat model. Sections IV and V
introduce respectively our solution and the related experi-
mental results. In Section VI we discuss the overhead anal-
ysis of BAD as well as its theoretical complexity, while
Section VII addresses issues and limitations of our system.
Finally, Section VIII concludes the paper and introduces
future work.

Il. TECHNOLOGY BACKGROUND AND RELATED WORK

In the rest of this paper we adopt the same notation used
in [7] to describe blockchain and, in general, state machine
replication protocols. We will only consider permissionless
blockchain technologies, where a race among peers is estab-
lished for mining blocks and rising potential forks (see Bit-
coin, Ethereum and Tether which are the cryptocurrencies
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with higher market capitalization'). We give some concepts
and definitions from [7] below, followed by a general descrip-
tion of a blockchain protocol.

An output is a tuple consisting of an amount of bitcoins
and a spending condition. The latter is usually a valid signa-
ture associated with the private key of the spender address,
however it can be generally a script which could be exploited
by an attacker.

An input is a tuple consisting of a reference to a previously
created output and arguments for the spending condition. This
allows the transaction creator to spend the referenced output.
We call UTXO the set of unspent transaction outputs.

Definition 1 [7]: A transaction is a data structure that
describes the transfer of bitcoins from spender to recipients.
The transaction consists of a number of inputs and new
outputs. The former result in the referenced output spent
(removed from the UTXO), and the latter being added to the
UTXO.

Definition 2 [7]: A block consists of a transactions’ list,
a reference to the previous block and a nonce. Each block
contains those transactions that the block creator (called the
miner) has accepted in its memory-pool since the previous
block.

A. BLOCKCHAIN TECHNOLOGY

Blockchain technologies are specifically designed to avoid
single point of failures, i.e. those scenarios in which a single
fault (either malicious or not) can affect the entire system
by disrupting the provided service. These technologies solve
this problem by replicating the server nodes and orches-
trating their interaction with clients thus, achieving fault-
tolerant services. As such, the fundamental property achieved
by blockchain technologies is the state machine replication
(SMR), which is defined as follows (we will use the Bitcoin’s
terminology for the sake of simplicity):

Definition 3 [7]: A set of miners achieves state replication,
if all the miners execute a (potentially infinite) sequence of
transactions t1, f, 13, . . ., in the same order.

State replication is crucial to enforce the exact same state
for all miners over time, while a set of transactions (issued
by several users/wallets) is received and executed. Note
that, miners are usually located on different machines to
ensure that their eventual failures are independent. Although
different in several aspects such as performances, permis-
sions, provable security and computational completeness, any
blockchain implementation satisfies the above definition. As
an example, a central blockchain’s tool that differs among
implementations is the consensus algorithm [8]. It solves the
following problem, which is crucial in designing an efficient
SMR protocol. In the consensus problem, we consider a finite
set of processes (or nodes in the network) pi,pa, ..., pn
which communicate by exchanging messages. These pro-
cesses could fail and we will consider the worst case: the
byzantine failure. Initially, each process p; is in an undecided

1 https://coinmarketcap.com/
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state and proposes a value v; by broadcasting it to every other
node. At the end, each node p; will decide the value of its
decision variable d;. We can now formally define consensus
as follows [9]:

Definition 4: A set of n processes p1, pa, . ..
consensus if the following properties hold:

, Pn achieves

o Agreement: the decision values of all the correct pro-
cesses are the same;

o Integrity”: if the correct processes all proposed the same
value v, then any correct process has set its decision
variable to v;

o Termination: eventually each correct process sets its
decision variable.

In the remaining part of this section we give a brief review of
how standard ADS systems work and provide an overview on
how we can build an ADS on top of the meta-data leveraged
by a blockchain running a proof-of-work like [10] consensus
protocol that generates local meta-data discarded at the time
of block creation. We refer the reader to [7] for a formal and
more complete treatment of blockchain’s protocols.

B. ANOMALY DETECTION SYSTEMS

By recognizing and then discarding, sanitizing, or otherwise
nullifying outliers input that might exploit security vulner-
abilities, ADS often play a central role in many computer
security systems [11]. Formally, an ADS can be defined as
a couple (M, D), where M is the reference model describing
the expected behavior while D is a similarity measure which
specifies the actual behavior’s deviation from M. Over the
years, several ADS approaches have been proposed.

In statistical methods for anomaly detection, the system
observes subjects’ activities and generates different profile
baselines to represent their behavior. Haystack was one of
the earliest examples of statistical based ADS [12] which
used a range of values that were considered normal and used
to detect intrusions. Machine learning based prediction tools
can be used to guess the next expected values; thus, they can
be used in ADS to build the reference model by predicting
normal incoming events, given the current ones. It is then
possible to detect anomalies by selecting those next events
which are not the ones anticipated by the prediction tools
[13]-[15]. Machine learning approaches study algorithms
that allow systems to derive general behaviors from data, and
which can be either supervised or unsupervised. The first
model is created from known clean data while the second is
constantly analyzing data and modifying the behavior model
without owning a previous one. For example, Spectrogram
[16] is a machine learning based statistical ADS for defense
against web-layer code-injection attacks orchestrated by a
network situated sensor that dynamically assembles packets
to reconstruct content flows, and learn to recognize legitimate
web-layer script inputs. Taint-based techniques have been
analyzed in ADS to avoid the false positives common issue.
However, their applicability is limited by the need for accu-

2In the literature, integrity is also called “validity”.
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rate policies on the use of tainted data. Cavallaro et al. [17]
developed a solution capable of detecting attack types that
have been problematic for taint-based techniques, while sig-
nificantly cutting down the false positive rate.

A preliminary report on the work in progress on BAD was
published in [18]. In those two pages we just exposed the
general idea. In this contribution, we experimentally prove
its viability and formally define the related framework. Note
also that BAD served as a baseline for filing a Nokia Bell
Labs patent [19]—a clear sign of its innovative and viable
approach, poised to have a concrete impact on both industry
and research.

C. ADS CHALLENGES

ADS usually need to protect the reference model used
to detect known and unknown threats [20], [21]. In host-
based ADS (H-ADS) this database is stored locally while in
network-based ADS (N-ADS) it can be either centralized on
a trusted third party or distributed among the peers.

The problem of having centralized data-storage and man-
agement systems which are susceptible to breaches becomes
even worse in truly distributed networks such as the
ones leveraging blockchain technologies [22]. Furthermore,
although a blockchain technology prevents several types of
unexpected behaviors from malicious or compromised peers
on a global scale, it does not eliminate attacks on a local
scale. Indeed, local malfunctioning of the blockchain (see
Section III) are discarded and cannot be used by others
to recognize attack sequences that get reused over time by
an attacker. As a result, ADS tools aimed at protecting
blockchain-based systems cannot solely rely on information
appearing within the mainstream chain but also need to take
into account local contexts, and share such information on a
global scale.

Table 1 lists some of the latest approaches in design-
ing ADS systems on top of blockchain technologies [23].
We have grouped these approaches in Table 1 by highlighting
(on the columns) four key properties as follow:

o Approach: describes whether the solution uses
blockchain technologies to: i) build a framework for
detecting anomalies; ii) as a simple (yet reliable) sforage
system to keep track of ADS data built by other tools;
and, iii) as other ADS approaches that applied various
techniques on top of blockchain meta-data;

o Attack: identifies the vector through which malicious
data is introduced within the system, i.e. how the adver-
sary tries to subvert the system or control sensitive data.
It can either be on-chain or off-chain. The former identi-
fies attacks using the blockchain data structure to inject
malicious code, while the latter identifies those attacks
which are carried outside the blockchain;

o Data usage (for short DU): this is a boolean flag that
identifies those solutions that leverage blockchain meta-
data, usually discarded by the p2p network, to better
understand and identify anomalies within the system;
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TABLE 1. Related works on blockchain-based anomaly detection systems.

Solution Approach Attack DU DC
S. Iyer [24] storage off-chain

S. Sayadi [25] storage on-chain

Y. Mirsky [26] storage off-chain

M. Li [27] storage off-chain

0. Alkadi [28] storage off-chain .

S. Morishima [29] other off-chain .

Z. 11-Agure [30] other off-chain v

M. Salimitari [31] framework  off-chain . .

X. Wang [32] framework  on-chain v .

B. Podgorelec [33] framework  on-chain v .

BAD (Our solution)  framework  on-chain v v

o Data creation (for short DC): unlike the above property
that leverages blockchain data to analyze anomalies, this
boolean property identifies those solutions enriching the
standard blockchain meta-data with additional informa-
tion that could help other nodes in identifying anomalies.

As shown in Table 1, although there are other works focus-
ing on the study of ADS applied to the blockchain technology,
to the best of our knowledge, BAD is the first approach that
designes an ADS framework which not only works with the
blockchain meta-data (forks being created and discarded over
time) but also enriches it by sharing on a global scale all those
information that are typically generated and stored on a local
scale.

llIl. THREAT MODEL

The solution proposed in this paper has been designed to
be resilient against any class of mass attacks where a mali-
cious entity (usually in the form of a mass-targeting threat
such as Botnets, collective hacking, etc) can append its own
transactions within the blockchain to inject malicious code
on multiple devices. However, for the sake of simplicity and
clarity, we will use the well-known eclipse attack [5], [6] to
provide an example of these attacks, and how our solution
counters them.

Definition 5: A fake transaction is a blockchain transac-
tion used as a side channel to deliver an unexpected message.

Definition 6: A malicious transaction is a special type of
fake transaction in which the hidden message has the main
purpose of attacking one or more peers within the network.

Definition 7: A fake block is a blockchain block that con-
tains one or more fake/malicious transactions. Fake blocks
can be either eventually discarded or accepted as part of the
mainstream chain.

The standard blockchain network (used in Bitcoin) has
been designed to be decentralized and independent of any
public key infrastructure. Indeed, each node connects to
8 other nodes stored in a list that is obtained by querying
DNS seeders. In an eclipse attack, the attacker infects a node’s
list of IP addresses, thus forcing the victim’s node to con-
nect to IP addresses controlled by the attacker. Furthermore,
the attacker also aims at filtering and manipulating victim’s
incoming connections.
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One way to execute an eclipse attack, is to repeatedly
and rapidly forming unsolicited incoming connections to the
victim by attacker’s controlled IP addresses and then to wait
until the victim restarts [34]. Hence, one challenge for the
attacker is to control enough number of IP addresses in order
to increase the probability that all the victim’s outgoing con-
nections will be directed to IP addresses controlled by him
(see Section V). Once the attacker has monopolized all the
victim’s connections, he can filter incoming blocks and send
his own fake blocks containing either malicious transactions
as it has been done in ZombieCoin [35] (see Fig. 1). For the
above attack to succeed, we assume the following attacker’s
capabilities:

« Network Control: the attacker can manipulate victims’
connections in order to control their inbound and out-
bound traffic, thus being able to isolate them. This is a
standard requirement for the eclipse attack;

« Blockchain Control: the attacker is capable of creating
fake blocks which are sent to the victim. Their content
is forged ad hoc by the attacker and usually contains a
malicious payload.

a: LIVENESS OF THE SYSTEM

As described in Section V-A, we assume to have one or
multiple powerful attackers who are able to perform eclipse
attacks by targeting several victims. However, they have to
complete in a finite time window. This means that we always
assume that the victim(s) will eventually: i) recognize a fork,
ii) synchronize with the mainstream blockchain technology
and iii) share all the information collected during the eclipse
attack with other peers in the network.

IV. BAD: A BLOCKCHAIN ANOMALY DETECTION
SOLUTION

The core idea behind Blockchain Anomaly Detection (BAD)
consists in providing a new decentralized system based on the
blockchain technology which leverages all the information
collected from past forks. In blockchain-based applications,
forks become more important as the chances to create their
evolution for malicious purposes get higher. The rationale
behind this approach is that while attacks may happen only
once within a single device, when they are repeated over time
against other devices they usually keep behaving in the same
way. Hence, by collecting information on previous attacks,
it could be possible to black list them and to prevent them
within those peers that have not been attacked yet. In the
following we first report the rationale that inspired BAD and
provide and example of its applicability, and later discuss the
complete application stack of our solution.

A. BAD: RATIONALE AND EXAMPLE

In our solution, information regarding chain forks and their
orphaned blocks, is discarded (as usually done in classical
approaches). Indeed we collect, enrich and share such infor-
mation with other peers in the network. Shared information
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Inputs
Previous Output | Amount | From Address | Signature

=
n278cojci... 3.451 Sandra -fuw93v2... g
m8nds3hd... | 6334 Brian asefosuc..| |3
Outputs S
Redeemed Input | Amount | To Address| | Signature E
j3s8b30f... 2.118 Mary k732cne..1~N |5
ks2foms7... 10 John 87fckwlo... =
payload

orphaned
blocks

mainstream
blocks

orphaned
blocks

Inputs
Previous Output | Amount | From Address | Signature

-
Nn278cgjci... 3.451 Bob fuw93v2... g
m8nd§3hd.. | 6334 John asefbsuc..| |8
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Redeempd Input | Amount |  To Addiess Signature E
j3s8K30f... 2.118 Stev, k732cne.—~ |§
ks2foms7... 10 Robeft 87fckwlo... =
payload

FIGURE 1. Example of malicious code embedded within orphaned blocks.

A-B-C recognized as an attack

C not accepted after A-B

mainstream blockchain enhanced blockchain

—> fork

FIGURE 2. An overview of BAD being used as a tool to avoid known
blockchain-based attacks to be repeated over time.

contains: i) the time at which the fork has started; ii) the time
at which the fork has been detected; and, iii) the number and
type of malicious transactions, if any, that has been identified
within the fork. Fig. 2 shows a toy example of how we build
our enhanced blockchain. The longer chain in the figure rep-
resents the mainstream chain (eventually agreed by all peers)
with block head (BH) being the last blocks accepted. Shorter
branches represent forks that happened in the past with fork
head (FH) being the last blocks accepted before a new fork
was created. Last, but not least, the figure also contains
an example of malicious payload being spread through the
blockchain. Such payload is composed by three transactions
labeled {A, B, C} which, as explained in Section III, can
be either fake transactions or valid transaction embedding
malicious code.

The collection of all fork-related information and the build-
ing of an enhanced blockchain made us able to design BAD as
an ADS for blockchain-based applications. In fact, by having
the enhanced blockchain agreed by all peers we only had
to re-define (M, D) (see Section II-B) to model our ADS.
Indeed in our solution, M is represented by the mainstream
blockchain, thus describing the expected behavior, while D(s)
is represented by the fork(s), thus describing similarity mea-
sures and their deviation from M. It is then possible to learn
that, as shown in Fig. 2, A-B-C have been previously labeled
as an attack thus to prevent them from being re-executed on
other peers.
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Note that our solution is particularly efficient when the
attacker, or the payload being spread, replicates the same
operations (i.e. the transaction content) against every peer (for
example, this is common in Botnet’s attacks). In a general
case, where attacks are crafted specifically for single targets,
an additional ML/AI layer could be considered for comparing
suspicious transactions with a set of malicious sequences
(collected over time), in order to identify a potential attack
and eventually prevent it (see Section VIII).

B. APPLICATION STACK
The standard blockchain application stack is structured in
three layers: shared data, shared protocol and application.

Shared Data Layer: contains the core blockchain and
its overlay network. It is still based on the core blockchain
protocol but it is used to build networks (called sidechains
[36]-[38]) that work in parallel to the mainstream chain to
perform tasks that the mainstream chain cannot solve while
still relaying on the same data structures. Whatever forms
these overlay networks take, they all share the connection to
the mainstream chain. Such a connection is used to bootstrap
their own alternative solution by leveraging the mainstream
peer-to-peer network;

Shared Protocol Layer: thanks to the blockchain it is now
possible to develop decentralized applications with built-in
data (transaction payload), validation processes, and transac-
tions that are not controlled by any single entity;

Application Layer: applications built on top of the shared
data layer and the shared protocol layer work very similarly to
the ones we have nowadays. However, they inherit security,
privacy and decentralization properties from the underlying
blockchain technology. Hence, peers using these applications
will be able to talk with each other and finally reach an
agreement which is trusted even though no central authority
has been used.

As shown in Fig. 3, BAD has been designed to be an ad hoc
solution (i.e. a blockchain based application plug-in or a third
party service) rather than being embedded within Bitcoin or
any other specific blockchain application. The reason for such
approach is that BAD does not rely on a specific blockchain
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Blockchain Application
(e.g. Bitcoin)

BAD Application Module
Threat Detector
| Pattern Inspector I

Application Layer

Decentralized Decentralized Decentralized
Protocol Protocol Protocol

Protocol Layer

Wallet

BAD Overlay Network

BAD
Fork Broadcast Module
BAD BAD
Transaction Filter Chain Manager
BAD Mainstream
Threat Database Chain Database

Data Layer

Overlay Network

Standard Node
(e.g. miners)

FIGURE 3. BAD application stack.

and can be instructed to detect attacks on any blockchain
application. Indeed, the core Bitcoin elements such as the
wallet and the miner do not contain BAD elements but just
interact with them. Here, we describe each BAD’s module
and how it interacts with standard blockchain applications:

o Transaction Filter (Tx Filter): intercepts standard
blockchain messages and forward them to both the miner
and the chain manager, thus not interrupting the stan-
dard protocol. Furthermore, it allows the collection of
transactions meta-data;

o Chain Manager: it is responsible to build our enhanced
blockchain which, among the other elements, contains
information on all forks that have been generated so
far. It receives messages from the transaction filter and
retrieves additional missing information from the chain
database which finally stores our enhanced blockchains.
Last but not least, the chain manager notifies the pattern
inspector if the enhanced blockchain has been updated
and some threat analysis has to be applied;

« Pattern Inspector: leverages the chain database to detect
unexpected behaviors. The inspection on the forks can
be done with any approach ranging from signatures
to heuristic static analysis and it is aimed at finding
sequences of transactions which were found to be dan-
gerous in the past;

o Threat Detector: starting from the anomalies found by
the pattern inspector this module performs root-cause
analysis by exploiting past blockchain activities (past
blocks and transactions within them) to roll back all the
operations done by the victim. Afterwards, all the attack
information are collected within a threat database which
contains the information on all malicious patterns within
the blockchain that have to be considered malicious
(depending on the security policy being adopted).
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Tx1 Payload)<—— Transaction X block A

‘ S1 | ‘ Si ‘ | | ‘ ‘ | Sn ‘ enhanced blockchain

maicious ransacton

FIGURE 4. Implementation of the threat database in BAD.

BAD Threat database
(copy replicated within the node)

|
<

FIGURE 5. Eclipse Attack in Domain A.

Fig. 4 shows a simple implementation of BAD’s threat
database. Here, recalling the toy example given in Fig. 2
in which {A, B, C} were found to represent chunks of a
malicious payload, we show how this information is collected
and later shared with other peers. BAD’s threat database is
basically a dynamic (i.e. not sized) array of array in which
S; represents the i-th attack sequence detected while 7; rep-
resents the hash of the i-th transaction which was found to
contain part of the payload’s attack sequence.

Information used to fill the threat database is provided by
the pattern inspector and used by the transaction filter to
avoid the repeating of known attacks. The filtering process
is accomplished by the BAD’s transaction filter module each
time a new block is received and its overhead has been
analyzed in Section VI-B.

V. EXPERIMENTAL TEST

In this section we show how BAD has been used in our exper-
imental platform to prevent attacks across different networks
thanks to the information collected from forks. The goal of
this experiment was to detect forks on a given peer, that were
caused by an eclipse attack, and then to share this information
with other peers in order to build a reference model, aimed at
detecting future occurrences of the same attack.

A. TESTBED
For simplicity, the testbed shown in Fig. 5 is only composed
by two domains, A and B, that represent two separated
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private IP networks with a router between them. In domain
A (B respectively), we have deployed two full nodes and one
lightweight client as follow:

« Full Nodes: two active full nodes® A/ (BI in domain
B) and A3 (B3 in domain B) are deployed on a virtual
machine with 4 GB of RAM with Linux Ubuntu 16.04 as
a guest operating system. Both have been executed in
regtest experimental mode,* i.e. a mode in which local
testing environment can be created with instantaneous
on-demand block generations and digital assets creation,
without any real value. During the experimental tests,
A3 in domain A (B3 in domain B) is assumed to be
controlled by a malicious user;

« Client Node: as a lightweight client we used a Bitcoin
Java BitcoinJ wallet (version 0.14.3)° running on a 4GB
RAM PC with Windows 8.1 installed as a guest operat-
ing system. This wallet acts as the victim of the eclipse
attack and is labeled as A2 (B2 in B).

Al (Bl in domain B) and A3 (B3 in domain B) are con-
nected to each other, which means they can exchange blocks
and agree on the longest chain—to do so we used on each
node the following command: bitcoin-cli -regtest
addnode IPaddr add. Nodes in domains A and B
are initially synchronized on the same blockchain—this
blockchain is generated using the command: bitcoin-cli
-regtest generate X, that is meant to initialize X
blocks in the blockchain.

B. ATTACK DETECTION AND PREVENTION

Based on the above testbed, we have implemented a real
attack using bitcoin-cli commands. The attack aims at eclips-
ing a victim node and force it to accept some malicious blocks
containing a payload. The attack, as well as the creation of our
enhanced blockchain, has been implemented as follows:

1) eclipsing A2 and forcing it to only communicate with
A3 which is controlled by the attacker;

2) stop A3 from exchanging blocks with A/ to avoid being
detected by other nodes in the same domain. This
has been implemented via executing: bitcoin-cli
—-regtest addnode IPaddressofAl remove
within A3;

3) make A3 sending to A2 three new blocks con-
taining forged transactions. We have implemented
this via the command: bitcoin-cli -regtest
generate 3;

4) wait for A2 to send the above fake blocks as connected
to the previous blockchain header and representing the
longest chain received so far. Assuming that the above
three new blocks, created by A3, contains a malicious
payload, we can conclude that A2 is compromised at
this step;

3 https://bitcoin.org/en/full-node#what-is-a-full-node
4https://bitcoin.org/en/deve1oper—examples#\ifregtest-mode
5 https://bitcoinj.github.io
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5) as the attack is completed, the eclipse on the victim
is removed. Hence, A2 starts again to communicate
with other peers in the same domain, and to receive
blocks from them which eventually forces A2 to receive
a longer chain that does not contain the above three
fake blocks. At this point, and by leveraging on our
BAD modules, A2 is capable of keeping track of the
malicious blocks received and to share this information
broadcasting it to the other peers in all domains.

As a second phase we executed the same steps described
above but this time within domain B. By leveraging BAD,
and the information gathered so far from domain A, peers
in domain B were able to detect and to prevent the attack
from succeed. Indeed, we witnessed the (attempted) attack
in domain B to behave as follows:

1) B2 is eclipsed by forcing it to only connect to B3, here
controlled by a malicious user;

2) B3 generates three malicious blocks which contain,
among the others, the same three malicious transactions
used in the attack against A2;

3) unlike A3, B3 has now the knowledge of some mali-
cious blocks/transactions that resulted in another peer
being compromised. Indeed, as also shown in Fig. 2,
BAD is able to detect blocks that are different but
contains the same transactions (or a subset), in the same
order, as previously received by A2.

The final result is the prevention of the complete attack as
only a small subset of the malicious transactions is accepted
(in our example accepted by B2) before BAD recognizes them
as malicious. As done by A2, also B2 will share the informa-
tion with other peers once it realizes that it was previously
mining and elaborating on blocks that belonged to a malicious
fork.

VI. OVERHEAD ANALYSIS

The core elements introduced by BAD on the classical Bit-
coin protocol are the broadcast of brand new forks, their
orphaned blocks, as well as the detection of malicious trans-
actions on new received blocks. In this section, we analyze
the introduced bandwidth overhead to show that our solution
is scalable and thus deployable within the standard Bitcoin
network. In particular, the results of our analysis show that our
system has minimal bandwidth consumption in comparison
with the one consumed by standard nodes.

A. BANDWIDTH OVERHEAD

We have analyzed the overhead introduced by our solution
in the worst-case scenario, i.e. the whole global Bitcoin fork
activity to affect one single node named NX. Our overhead is
then defined as the amount of bandwidth that NX consumes
due to the fork broadcast introduced in BAD. To this aim,
and to be rooted on real data, we have considered the max-
imum number of orphaned blocks discarded by the Bitcoin
community during last year. We are interested in the total
number of orphaned blocks because it includes those used to
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FIGURE 6. Overhead introduced by the system as a function of the
bandwidth consumption of a node.

attack the victims (see Section III). Furthermore, we assume
this number to have a small variance since a smart adversary,
to stay hidden in the network, would not create an anoma-
lous number of orphaned blocks. A more abstract, and less
constrained, analysis is given in Section VI-B.

To analyze BAD’s overhead, we have designed the p2p
network surrounding our NX node. By construction, nodes
in the Bitcoin network create a random graph with ran-
domness emerging from the selection of outgoing connec-
tions. In the vanilla Bitcoin protocol, each node attempts
to keep a minimum of 8 outgoing connections at all time.
However, it has been observed that, on average, a Bit-
coin node has 32 outgoing connections [39]. Furthermore,
the total number of orphaned blocks discarded during 2016°
was 141 with a maximum block size of 0.993201 MB.
As such, in our worst-case scenario, we consider all those
141 orphaned blocks (of the maximum size) to be collected
and re-distributed in broadcast by NX. To broadcast all these
blocks with their transactions, NX would send broadcast mes-
sages to its neighbors, which sum up to the global size of
32 x 0.993201 x 141 = 4.481 GB per year. It is important to
highlight that the total number of orphaned blocks is indepen-
dent of the node’s bandwidth. Hence, our worst-case scenario
can be applied to any node: from lightweight SVP clients
to relay nodes or miners. Furthermore, the total node/month
upload bandwidth could vary according to nodes capabilities
and ISP resources: it could require an initial 150 GB/month of
uploaded data (which is the minimum recommended upload
data plan to run a Bitcoin core’) and reach values up to
300 GB/month or more.

Fig. 6 plots the result of our BAD’s overhead (Ovh) analy-
sis which is approximated by the following formula:

_ BAD data broadcast (per year)  4.481
" total data exchanged (per year)  m x 12

ey

where m is the average bandwidth consumption of a node per
month. Fig. 6 shows the maximum overhead introduced in
the case of 150 GB of data upload consumption, resulting in

6https://blockchain.info/charts/n—orphaned—blocks
7 https://bitcoin.org/en/bitcoin-core/features/requirements
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a bandwidth overhead of only 0.248%. This latter figure sup-
ports the fact that BAD is a lightweight security add-on that
can be smoothly deployable in the standard Bitcoin network.

B. COMPLEXITY

In the previous section we studied BAD’s overhead in the
worst case, i.e. with an attacker using Bitcoin’s forks to spread
malicious code. However, statistics and real data used for
such analysis refer to natural forks appeared over time in the
network due to its delay.

In thus section, we analyze a more general use case where
the attacker creates as many blocks as needed (thus also gen-
erating more forks in the system). The result, as shown in the
remaining of this section, is that BAD’s bandwidth overhead,
in the worst case, can only be proportional (up to a constant
factor in real cases) to the size k of our Threat Database 7 . Let
S1, ..., Sk be the malicious transaction sequences of k attacks
detected and stored in 7. Each malicious sequence S; has a
length of ¢; transactions injected by the attacker to complete
attack i. We call partial sequence (PS;, j) a subsequence of
S; starting from the first transaction and ending with the
Jj-th transaction of §;. Note that (PS;, ¢;) represents the full
attack i. For each attack i we can have at most £; — 1 distinct
partial subsequences. Each node in the network maintains a
set U of partial transactions. Given that H(¢) is the hash of
a transaction ¢, every time ¢ is analyzed by a node, BAD
performs two actions:

1) If there is a partial sequence (PS;,j) € U such that
(PSi, DIH () = (PS;,j + 1), we replace (PS;, j) with
(PS;,j+ 1) in U. Here || is the standard concatenation
function.

2) If H(z) represents the first block of a sequence S;, then
we insert (PS;, 1) into U.

Finally, BAD checks if there is a (PS;,¢;) in U and,
in that case, discards the transaction z. While the cor-
rectness of this approach follows from the construction,
the additional computational cost (per transaction) incurred
by each node in the network can be derived. Note that,
in the worst case (which is when every transaction of
every attack has the exact same hash), every transaction
will create a new partial sequence (PS;, 1), Vi, plus it will
increase at most ¢; — 1 existing partial sequences in U
for each attack i. This translates in the following number
of steps:

k k
Wiy =k+) (ti-H=) &
i=1 i=1

Since (in a real scenario) each attack sequence is no longer
than a constant ¢ of transactions, the total work W (¢) for a
given transaction will be at most ¢ - k = O(k) where k = | 7.
In case the size of 7 grows very quickly, pruning techniques
can be adopted to adjust its dimension. For example, old
or infrequent attacks could be discarded in favor of newly
discovered ones.
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VII. DISCUSSION

The solution proposed in this work requires an attacker capa-
ble of pushing fake blocks into his/her victim, i.e. to make
the latter believing that some fake blocks received have been
already accepted within the mainstream chain. In blockchain-
based applications, this outcome can be achieved with a
broad range of attacks spanning from owning 51% of the
whole peer-to-peer network, to leveraging the structure of
the overlay network to eclipse the victim. Blockchain-based
applications make large use of overlay networks [40], i.e. con-
nections forming a graph upon which a distributed application
is implemented, as they allow to deploy network functionali-
ties without changing the underlying infrastructure.

As described in Section V, the experimental tests provided
to support our solution have been obtained by implementing
an eclipse attack on our blockchain network. This required
some bitcoin-cli commands that forced our victim node into
adopting the malicious nodes as its peers, thus accepting
all blocks received by them. The eclipse attack deployed
on our network was quite easy to accomplish due to the
limited size of our network. However, the state of art on
distributed systems shows that a wide range of countermea-
sures and defense techniques can be adopted against such
attacks. The solutions proposed by Castro et al. [41] based
on constrained routing tables as well as the one proposed
by Simgh et al. [42] based on neighbor anonymous auditing
are just some example describing how the eclipse attack can
be prevented. Although this may suggest that the solution
proposed in this work is limited since not easily deployable in
real networks, it should be highlighted that the above defense
techniques against eclipse attacks, are used to either make
some strong assumption on the network size/structure or to
prevent optimizations like proximity neighbor selection [43]:
an important and widely used technique to improve overlay
efficiency. Last but not least, the continuous development
of new peer-to-peer protocols, mining algorithms and con-
sensus schemes can make new blockchain applications more
exposed to eclipse attacks. In this latter case, BAD would be
easily adoptable to counter such a threat, as well as to provide
a customizable platform to counter further threats.

VIil. CONCLUSION
In this paper, we proposed BAD: the first Blockchain
Anomaly Detection solution. In particular, BAD allows to
detect anomalous transactions and to prevent them from being
further spread. Indeed, while forks can naturally appear in the
blockchain life cycle due to the network delay, they can also
be artificially forged by attackers and used to spread mali-
cious activities within the chain. BAD enables the prevention
of repeated attack occurrences by collecting malicious activ-
ities and building a threat database which is distributed (thus
avoiding any central point of failure), tamper-proof, trusted
(any behavioral data is collected and verified by the majority
of the network), and private.

We detailed BAD, and provided an analysis of its overhead,
as well as a prototype implementation, demonstrating its
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effectiveness in detecting, for instance, the dreadful eclipse
attack. The achieved results show the quality and viability of
our solution, that could also be a starting point for further
investigation in this domain.

As for future work, we envisage the adoption of effi-
cient ML techniques to further refine the capability to detect
attacks, should these latter ones show polymorphic features
in order to escape detection.
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