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ABSTRACT Graph-based simultaneous localization and mapping (SLAM) is one of the methods to generate
point cloud maps which are used for various applications in autonomous vehicles. Graph-based SLAM
represents the pose of the vehicle as a node and the odometry between two different nodes as an edge.
Among the edge generating methods, scan matching, light detection and ranging (LiDAR) based method,
can provide an accurate pose between two nodes based on the high distance accuracy of the LiDAR.
However, the point cloud in real driving situations contains numerous moving objects, which degrade the
scan-matching performance. Therefore, this article defines the static probability which means the likelihood
that an acquired point is from a static object, and proposes the weighted normal distribution transformation
(NDT), which is achieved by modifying NDT. Weighted NDT is a scan-matching algorithm which can
reflect the static probability of each point as a weight. The odometry from the weighted NDT is utilized
for graph construction to generate a robust point cloud map even in a dynamic environment. Finally,
the proposed algorithm was compared with the existing object removal algorithms in two areas: dynamic
object classification and scan-matching performance. Based on the scan-matching results, the accuracy
of the point cloud map generated by the proposed algorithm was evaluated with a reference map using
high-performance global navigation satellite system (GNSS). It was confirmed that the proposed algorithm
has higher classification accuracy and lower scan-matching error compared with other dynamic object
removal methods. The proposed algorithm was able to generate a point cloud map, despite the presence
of many dynamic objects, that was similar to a map generated in the absence of dynamic objects in the same
environment.

INDEX TERMS Static probability, scan-matching, weighted NDT, LiDAR characteristic, graph-based
SLAM.

I. INTRODUCTION
Light detection and ranging (LiDAR), which is an essen-
tial sensor in autonomous vehicles, has the following two
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characteristics. First, it can provide precise distance infor-
mation on vehicles, buildings, and people in the form of
points. Second, a LiDAR sensor can represent the sur-
roundings of the vehicle with a high resolution. Such a
reconstructed three-dimensional (3D) environment is called
a point cloud map, which can be utilized in various
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applications (e.g., localization and path planning) in
autonomous vehicles [1]–[3].

To generate a point cloud map, the vehicle with LiDAR
acquires point cloud data while driving along the road. The
center of the reference coordinates is set as the starting
point of data acquisition. The sensor coordinates of each
point cloud change in real-time during driving relative to the
reference coordinates. Therefore, to generate a point cloud
map, it is necessary to estimate the sensor coordinates of the
LiDAR at each time step.

To estimate the sensor coordinates of the LiDAR while
simultaneously generating the point cloud map, an optimiza-
tion technique called graph-based simultaneous localization
and mapping (SLAM) is generally used [4]–[6]. In graph-
based SLAM, all the sensor poses are represented as nodes.
The nodes are optimized based on edge constraints, which are
generated by the relationship between two nodes. In general,
an inertial navigation system (INS) or environment-aware
sensor (e.g., camera, LiDAR) is used to generate edge con-
straints [7], [8]. Among the various methods for construct-
ing graph edge constraints, scan-matching can be used in
graph-based SLAM for LiDAR-based generation [9]–[11].
LiDAR provides accurate distance information on objects and
detailed depictions of the surrounding environment at a high
resolution. These characteristics of LiDAR can be used in
scan-matching tomatch the same static object in two different
point clouds. Thus, we can estimate the relative pose between
two acquired poses in the point clouds. Then, the constraint
between nodes is created with the estimated relative pose.

If only static objects exist in the environment where point
cloud maps are created, then scan-matching can accurately
estimate the relative pose. However, in a real driving envi-
ronment, there are numerous dynamic objects such as cars
and pedestrians, which change their pose during the data
acquisition for mapping. This can result in incorrect estimates
of the relative pose while the point clouds are aligned owing
to the effect of the dynamic objects [12]. If the wrong match
result is used as a constraint of the graph, then the graph
optimization is carried out incorrectly, which in turn leads
to inaccurate map generation. Thus, the effect of dynamic
objects must be eliminated during scan-matching to create an
accurate point cloud map.

This article proposes a novel point cloud mapping method
to generate an accurate map in an environment with numerous
dynamic objects. The proposed algorithm consists of three
steps. The first is to estimate the static probability of each
point. In this study, we define static probability as the pos-
sibility of a point being acquired from a motionless object.
The probability is calculated using point cloud information
obtained from the LiDAR sensor and the two-dimensional
(2D) pose of the sensor. The static probability of the point
cloud is calculated by comparing the previous point cloud
information according to probability theory and LiDAR char-
acteristics. In the second step, scan-matching is carried out,
reflecting the static probability of each point. Among the
many scan-matching methods, this study utilizes the normal

distribution transform (NDT) algorithm, which is proven
to have excellent matching performance [13], [14]. The
basic NDT algorithm to reflect the static probabilities, called
weighted NDT, is also proposed. The weighted NDT algo-
rithm conducts point cloud matching in a dynamic environ-
ment by assigning higher and lower weights to points with
higher and lower probabilities, respectively. Finally, the result
is used as a constraint in graph-based SLAM. Thus, we could
generate an accurate point cloud map with the point cloud
acquisition spots from an optimized graph.

The proposed algorithm was verified according to three
indicators. First, the accuracy of the estimated static prob-
ability was evaluated according to a confusion matrix. Sec-
ond, the scan-matching error was evaluated scene-by-scene
and illustrated in an error histogram. Third, the accuracy of
the generated point cloud map was evaluated quantitatively
by calculating the closest distance from the reference map,
which was generated from the high-precision global navi-
gation satellite system (GNSS). All experiments were con-
ducted in a dynamic environment and compared with other
algorithms; these are covered in Section 2.

This article makes two main contributions. First, it calcu-
lates the static probability of an individual point based on
the probability theory and LiDAR’s characteristics. By con-
sidering the latter, more accurate static probabilities can be
calculated compared with other dynamic object classification
methods. Second, the paper proposes a modified NDT algo-
rithm that reflects the static probability of an individual point
as a weight. Basic NDT algorithms assign the same weight to
all points. In contrast, the modified NDT algorithm reflects
the calculated static probability to exclude the influence of
dynamic points. This method can estimate the related poses
of two-point clouds accurately in a dynamic environment.
Finally, an accurate point cloud map in a dynamic environ-
ment is generated based on the accurate relative pose.

II. PREVIOUS STUDIES
To carry out accurate point cloud mapping in dynamic envi-
ronments, the relative pose of point clouds must by estimated
by reducing the effects of dynamic objects in scan match-
ing. Previous research on point cloud mapping that consid-
ered the effects of dynamic objects can be divided into two
major categories: classifying dynamic objects and estimating
the relative pose of point clouds using scan matching for
mapping.

A. CLASSIFICATION OF DYNAMIC OBJECTS
To eliminate the influence of dynamic objects, it is neces-
sary to classify dynamic objects and remove the classified
points. If the dynamic objects are effectively removed, then
scan matching can be performed as in a static environment.
There are two representative dynamic point classification
algorithms: occupancy grid maps and detection and tracking
moving objects (DATMO).

An occupancy grid map is a static map of the surrounding
environment created by accumulating measured values [15].
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The surrounding environment must be divided into a 2D or
3D space to make the map. Each grid cell has a uniform
size and fixed structure. Each also has an occupancy level,
which is updated by the laser’s ray tracing. The occupancy
level increases when the rays are reflected back after encoun-
tering a structure and decreases when no rays are reflected
back when passing through the area. The occupancy level
of a grid increases based on probability theory [16] and
evidence theory [17]. Consequently, a static object increases
the occupancy level as its location does not change. In con-
trast, dynamic objects do not increase the occupancy level
because their locations continuously change. In this process,
the occupancy grid map can remove dynamic objects by con-
sidering a grid with an occupancy level below the threshold
as free. Occupancy grid map-based classification has been
studied for a long time in this field. However, the method has
limited real-time applications in autonomous vehicles. When
the occupied grid map has a small cell size, a considerable
amount of memory is required for storage because all the
space around the vehicle is divided into grids or voxels to
represent occupancy. It also requires a long time to trace each
LiDAR beam and update the occupancy level of each cell.
Moreover, when the grid map has few cells, discretization
errors can occur because the space is divided discretely.

DATMO is another static point classification algo-
rithm [18]–[20]. This field studies how to detect and track
moving objects around the ego vehicle. At the object detec-
tion level, the nearby points are clustered around a point
cloud. Among the clustered point clouds, the algorithm cre-
ates a bounding box to the point cloud, which is considered
to represent dynamic objects. In the tracking step, this algo-
rithm can track the bounding box to obtain position, head-
ing, velocity, and acceleration information through various
filtering techniques. Despite considerable research on such
point-clustering methods, it remains difficult to accurately
distinguish between static and dynamic objects with only
point cloud information. In particular, in an environment with
many moving objects, it is difficult to create the vehicle
bounding box as the points of each vehicle are hidden behind
the surrounding vehicles. Furthermore, because the tracking
method requires the initial time to create a new track, it is
impossible to remove the dynamic objects before the track is
created.

To enhance the classification performance, a method that
can estimate the static probability of each point is proposed.
The static probability of a point is calculated using the laser
beam model of LiDAR. Because this method does not sep-
arate the space discretely, there is no discretization error or
erroneous clustering, which occurs in occupancy grid maps
and DATMO, respectively.

B. ESTIMATION OF THE RELATIVE POSE SCAN-MATCHING
The scan-matching method used as the constraint for
graph-based SLAM has been actively studied since the
2000s [21]. This method aligns the same object contained
in two different point clouds. Through this, it is possible

to calculate the relative pose between the two poses where
the point clouds are acquired. There are two representative
scan-matching techniques: iterative closest point (ICP) [22]
and NDT [23]. The ICP method generates a correspondence
between points and finds the rotation and translation that
minimizes the distance between all correspondences. This
research is extended to generate a correspondence between
lines and faces [24], [25]; improved studies with many differ-
ent versions exist [26]. NDT divides the standard point cloud
into equal cell sizes and calculates the normal distribution.
Then, it scores how well it compares to other normal distribu-
tions that are derived from other point clouds. The algorithm
also finds the rotation and translation that increases the scores
given. NDT has been applied to a 2D grid cell and 3D voxel
cell by Magnusson [23]. Magnusson also proved that NDT
performs better than ICP when there is little overlap between
two point clouds and no distinct geometric structure through
experiments and under various conditions [27].

Although many matching methods exist and their perfor-
mances have been compared, it is difficult to apply them in
a dynamic environment. Because these methods are often
evaluated in environments with static objects, their per-
formance cannot be guaranteed in dynamic environments.
Therefore, this article proposes a weighted NDT, which is
modified to reflect the static probability of each point based
on the existing NDT algorithm. By using the weighted NDT,
scan-matching results for graph-based SLAM constraints are
generated more accurately.

III. SYSTEM ARCHITECTURE
The objective of this algorithm is to generate an accurate
3D point cloud map in a dynamic environment. To do so,
the LiDAR coordinates (x1, x2, · · · , xm) and point cloud
information (Z1,Z2, · · · ,Zm) at each time step were used as
inputs of the algorithm. The entire algorithm of this system is
illustrated in Fig.1.

First, the proposed algorithm received the 3D point cloud
and its acquisition pose as input. The point cloud at time
= k consists of laser beams and its multi-echoes. The point
cloud element can be represented as zn,mt , where n denotes
the index of the laser beam from 1 to N , and m represents
the multi-echo index for each laser beam, which often has a
value less than 2. The LiDAR pose at time = k is denoted
as xt , where xt is calculated by integrating the motion infor-
mation from an initial pose x1. xt consists of three states,
i.e., position x, position y, and angle yaw. We can utilize
various types of motion information, such as inertial mea-
surement unit(IMU) or on-board motion sensors based on
a motion model(constant velocity or constant acceleration).
In this study, the motion sensor was not determined for scala-
bility reasons. When all the point clouds Z1,Z2, · · · ,Zm, and
all the LiDAR poses x1, x2, · · · , xm are given, the proposed
algorithm is performed in the following three steps.

In the first step, the algorithm calculates the static proba-
bility of the individual points. Static probability refers to the
probability that an individual point measured from LiDAR is
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FIGURE 1. System architecture of point cloud mapping using static probability-based NDT.

obtained from a static object. If the point acquired at the cur-
rent time wasmeasured at the same position as in the previous
time, then it can be assumed that the point was acquired from
a fixed static object. On the other hand, if the point acquired
at the current time is located in the ray area of the previous
point, then the current point is expected to have been obtained
from a dynamic object. To estimate the static probability of
Zt , the total W of point clouds Zt−1, · · · ,Zt−W and sensor
poses xt−1, · · · , xt−W of the previous time are required. The
W is the window size to estimate the static probability of Zt ,
and it can be optimized according to estimation performance.
Using the immediately preceding point cloud Zt−1 and its
pose xt−1, the areas in which the object does and does not
exist can be represented in the 3D map. In this situation,
if the point in Zt is located near the area with the object,
then the point will have a high static probability. However,
if the point in Zt is located in the sweep area by the ray of
the previous point, then it will have a low static probability.
Similarly, the static probability of Zt was calculated using not
only Zt−1 but also Zt−2, · · · ,Zt−W . Multiple calculated static
probabilities of Zt can be integrated into one through Bayes’
rule.

Although we already know the LiDAR poses from motion
information, the IMU and on-board sensor have a bias accu-
mulation problem. Thus, it is impossible to generate an accu-
rate point cloudmap using only motion information. The next
step is to conduct scan matching between two consecutive
point clouds. Scan matching is a method that aligns different
point clouds using their static objects to estimate the relative
pose. This relative pose can be used as a LiDAR odometry.
However, in a dynamic environment, it is difficult to perform
scan matching because of the dynamic objects. Therefore,
we must utilize the static probability that was previously
calculated. The basic NDT algorithm matches all points with
the same weight. However, the proposed algorithm aligns the
weight of each point according to their static probability to
reduce the effect of dynamic objects in LiDAR odometry
estimation. If a point has a high static probability, then it is
assigned a large weight to significantly influence the scan
matching. Likewise, a point with low static probability is
assigned a low weight.

All the LiDAR odometry was estimated between consec-
utive point clouds. These values were applied as constraints
in the graph-based SLAM. According to the generated con-
straints, the graph-based SLAM optimizes all the graphs to
minimize the constraint error. As a result, the LiDAR poses
at each time are obtained as an output of the algorithm. Fur-
thermore, accumulating point clouds based on the calculated
LiDAR poses can generate the point cloud map. In this study,
scan matching-based LiDAR odometry is explained as a con-
straint in the graph. However, to improve the mapping perfor-
mance, additional information, such as high-definition (HD)
map-based localization, loop closure, and GNSS/INS can be
added as a constraint on the graph.

IV. POINT-WISE STATIC PROBABILITY ESTIMATION
A. CHARACTERISTICS OF LiDAR POINT CLOUD
LiDAR rotates and fires a laser beam to the environment at
an angle. When the laser beam hits an object, it is reflected
back. At this time, the time-of-flight (ToF) is measured by
calculating the difference between the time when the pulse
is emitted from the diode and when it returns. The distance
to the reflected object can be estimated by multiplying the
measured ToF by the laser’s velocity.

The laser beam has several characteristics, which were
applied in this study. First, it does not travel in a straight line;
the cross-section of the beam increases as it moves forward.
The rate of increase in cross-sectional area in the horizontal
and vertical directions is determined by the individual LiDAR
specifications. Second, the laser beam can measure multiple
echoes; hence, it can produce several points within a beam.
Third, its distance information has an uncertainty. As the
distance to the measured object is calculated through ToF,
the accuracy of the time measurement is directly related to
that of the measured distance. This section describes how to
calculate the static probability of individual points using these
LiDAR characteristics.

The basic concept of scan matching is aligning the pose of
static objects in two point-clouds. Therefore, when we gen-
erate accurate scan-matching constraints in a dynamic envi-
ronment, points from dynamic objects reduce the matching
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accuracy. To reduce the effect of dynamic points, we estimate
the static probability of individual points and assign differ-
ent weights based on this probability in the scan-matching
process. To estimate the static probability, the point cloud is
represented by a spherical coordinate and Cartesian coordi-
nate. In the spherical coordinate, the point cloud at time = t
can be represented by the horizontal and vertical beam angles.
It can be expressed as Zrθφ,t = z1,mrθφ,t , · · · , z

i,m
rθφ,t , · · · , z

N ,m
rθφ,t .

Because of the multi-echo capability of LiDAR, more than
one measurement can be generated in a single beam. There-
fore, the individual beam zi,mrθφ,t has several measurements

with different distances r i,1t , r
i,2
t , · · · , r

i,m
t in certain vertical

and horizontal angles θ it , φ
i
t . The Cartesian coordinate system

has 3D information, which consists of x, y, z values.

B. PROBABILISTIC MODELING FOR LiDAR POINT STATIC
PROBABILITY
The goal of this step is to obtain the static proba-
bility of the most recent point cloud through stochas-
tic modeling. The static probability of point cloud Zt
is represented as p(St ). p(St ) includes the static prob-
ability of individual points p(s1,mt ), p(s2,mt ), · · · , p(sN ,mt ).
To calculate the static probability of individual points of
the current point cloud Zt , the previously buffered point
clouds Zt−1, · · · ,Zt−W+1,Zt−W and sensor coordinates
xt−1, · · · , xt−W+1, xt−W are utilized. The sensor pose can be
obtained from the node of graph-based SLAM before graph
optimization, which is generated from vehicle motion. The
static probability of the current point cloud Zt calculated
with Zt , Zt−k , xt , xt−k can be expressed by the conditional
probability shown in Equation (1).

p(S(t−k)→t ) = p(St |Zt ,Zt−k , xt , xt−k ) (1)

where p(St ) is the sum of the static probability of individual
point {p

(
s1t
)
, p
(
s2t
)
, · · · , p

(
sNt
)
}. Equation (1) can be trans-

formed into Equation (2).

p
(
S(t−k)→t

)
= {p

(
s1,mt

∣∣∣Zt ,Zt−k , xt , xt−k) ,
· · · , p

(
sN ,mt

∣∣∣Zt ,Zt−k , xt , xt−k)} (2)

Each point consists of two probabilities, the static proba-
bility p(s) and nonstatic probability p(!s), the sum of which
is always 1. The static probability of a point is expressed as
Equation (3), which is rearranged according to Bayes’ rule.

p(si,mt |z
i,m
t ,Zt−k , xt , xt−k )

=
p(zi,mt |s

i,m
t ,Zt−k , xt , xt−k )p(s

i,m
t |Zt−k , xt , xt−k )

p(zi,mt |Zt−k , xt , xt−k )
(3)

In Equation (3), p
(
zi,mt

∣∣∣si,mt ,Zt−k , xt , xt−k
)

is the like-
lihood function when the point is in a static state.
p
(
si,mt

∣∣∣Zt−k , xt , xt−k) is a predicted probability density func-
tion since si,mt is determined by the given Zt−k , xt , xt−k ,
and state consists of only static or nonstatic states. There-
fore, we can assign the p

(
si,mt

∣∣∣Zt−k , xt , xt−k) as 0.5. Finally,

FIGURE 2. Likelihood field for the point z i,m
t is constructed by previous

point z j,l
rθφ,t−k .

p
(
zi,mt

∣∣∣Zt−k , xt , xt−k) is the normalization constant. In sum-
mary, the static probability of a point can be calculated if there
is a likelihood function for a static state.

p
(
si,mt

∣∣∣zi,mt ,Zt−k , xt , xt−k
)

= η p(zi,mt |s
i,m
t ,Zt−k , xt , xt−k ) (4)

where η is the normalization constant of the likelihood func-
tion to satisfy the condition that the sum of the static and
nonstatic probabilities is 1. The normalization is multiplied
with the likelihood function p

(
!si,mt

∣∣∣zi,mt ,Zt−k , xt , xt−k
)
to

obtain the final static probability.

C. LIKELIHOOD FUNCTION FOR THE STATIC STATE OF
POINT CLOUD
To calculate the static probability p

(
S(t−k)→t

)
of the current

point cloud, the likelihood function p(zi,mt |s
i,m
t ,Zt−k , xt , xt−k )

is required. The likelihood function p(zi,mt |s
i,m
t ,Zt−k , xt , xt−k )

indicates how static points are statistically distributed when
Zt−k , xt , xt−k are given. The likelihood function of zi,mt for
a static state is expressed as a spherical coordinate system
based on the sensor pose xt−k at the previous time= t−k . The
regionwith the black in Figure 3 is the regionwhere the object
is detected at time = t − k . Therefore, the current point zi,mt
in the likelihood region located near the black region is likely
to be a static point. On the other hand, the static probability
of the point located farther away from that region decreases.
The point cloud from LiDAR is detected with horizontal and
vertical angles. Therefore, it would be easier to understand if
point cloud Zt−k is converted into a spherical coordinate.

Zt−k = Zrθφ,t−k = z1,lrθφ,t−k , · · · , z
j,l
rθφ,t−k , · · · , z

J ,l
rθφ,t−k

(5)

One of the elements of Zt−k , zjrθφ,t−k can have
more than one return value in one laser beam because
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FIGURE 3. Two-dimensional likelihood field of the previous
measurements z j,1

t−k , z j,2
t−k , and z j+1,1

t−k in the (r-θ) plane and (r-φ) plane.

of the multi-echo described in the LiDAR character-
istic. Therefore, it can be represented as zjrθφ,t−k ={
r j,1t−k , r

j,2
t−k , · · · , r

j,m
t−k , θ

j
t−k , φ

j
t−k

}
. The state likelihood

function represented in three dimensions can be rep-
resented by 2D planes: (r-θ ) plane and (r-φ) plane.
In the (r − θ) plane, p

(
zi,mt

∣∣∣si,mt ,Zt−k , xt , xt−k
)

is con-

verted into p
(
r i,mt , φit

∣∣∣si,mt ,Zt−k , xt , xt−k
)
, and converted

into p
(
r i,mt , θ it

∣∣∣si,mt ,Zt−k , xt , xt−k
)
in the (r − φ) plane. Fig-

ure 3 shows the likelihood function of the elements zjt−k and
zj+1t−k of the point cloud at time = t − k in the (r − θ) and
(r − φ) planes.

Each likelihood function reflects beam divergence accord-
ing to the actual LiDAR specifications and multi-echo char-
acteristics, in which multiple measurements are returned in
one laser beam. Figure (4) shows the static likelihood func-
tion when Zt−k , xt , xt−k are given. When the previous mea-
surement zjt−k has two multi-echoes, it can be expressed as{
r j,1t−k , r

j,2
t−k , θ

j
t−k , φ

j
t−k

}
. As mentioned before, if the point

at the current time is located in the same area where the
point was measured at a previous time, then it is likely to be
static. The uncertainty of the distance r i,mt , which is measured
according to the LiDAR’s ToF principle, is determined by
LiDAR’s ToF measurement accuracy. To account for the
uncertainty, the likelihood of a static state is expressed as a
Gaussian distribution, as in Equation (6).

p
(
r i,mt

∣∣∣si,mt , zjt−k , xt , xt−k
)

= max
(

1

σ
√
2π

e−(r
j,1
t−k ,−r

i,m
t ),

1

σ
√
2π

e−(r
j,2
t−k ,−r

i,m
t )
)

(6)

The standard deviation of the measured distance σ is deter-
mined by the LiDAR used. However, the likelihood of a
nonstatic state can be determined by subtracting the static
likelihood value at that position from the maximum likeli-
hood of the static state, as in Equation (7).

p
(
r i,mt

∣∣∣!si,mt , zjt−k , xt , xt−k
)

= MaxLikelihood jt−k − p
(
r i,mt

∣∣∣si,mt , zjt−k , xt , xt−k
)

(7)

where MaxLikelihood jt−k denotes the maximum likelihood
value of the previous measurement zjt−k . It indicates when
the distance between the current and previous measurements

FIGURE 4. Likelihood of static state for one laser beam.

is the same, as described in Equation (8).

MaxLikelihood jt−k = p(r j,mt−k |s
i,m
t , zjt−k , xt , xt−k ) (8)

Thus, the likelihood of both the static and nonstatic states
in one measurement at the current time can be defined. After
calculating both likelihoods, we calculated the normalization
constant b, which makes the sum of the two probabilities
equal to 1, and is reflected in the calculation of the static
probability of the measured value. Given the point cloud and
sensor pose Zt , xt of the current point cloud, and the sensor
pose Zt−k , xt−k at the previous time= t−k through the above
process, the static probability p(S(t−k)→t ) is calculated.

D. FINAL STATIC PROBABILITY ESTIMATION BY
INTEGRATING THE STATIC PROBABILITIES
The static probability of the current point cloud can be
calculated using point clouds from time = t − W to time
= t − 1 just as p

(
S(t−k)→t

)
= p(St |Zt ,Zt−k , xt , xt−k )

was calculated in Section 4.3. Therefore, it is neces-
sary to integrate the static probabilities of the current
point clouds classified through different previous point
clouds p

(
S(t−1)→t

)
, · · · , p

(
S(t−k)→t

)
, · · · , p

(
S(t−W )→t

)
into one integrated static probability. The integrated static
probability of the current point cloud is expressed as
p(St |Zt ,Zt−W :t−1, xt , xt−W :t−1). To calculate this value,
the definition of the log odds ratio is used. The log odds ratio
is the ratio of the probability that an event will occur and the
probability that an event will not occur. The static probability
of the current point cloud classified through the information
at time= t−k is p(St |Zt ,Zt−k , xt , xt−k ) and the nonstationary
probability is p(!S t |Zt ,Zt−k , xt , xt−k ). Since the sum of the
two is always 1, the log odds ratio of the static probability
l(St |Zt ,Zt−k , xt , xt−k ) can be defined by Equation (9).

l(St |Zt ,Zt−k , xt , xt−k )

= log
p(St |Zt ,Zt−k , xt , xt−k )
p(!St |Zt ,Zt−k , xt , xt−k )

= log
p(St |Zt ,Zt−k , xt , xt−k )

1− p(St |Zt ,Zt−k , xt , xt−k )
(9)

This log odds ratio can be accumulated as the sum of
individual log odds ratios by the binary Bayes’ filter in
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Equation (10).

l(St |Zt ,Zt−W :t−1, xt , xt−W :t−1)

= l(St |Zt ,Zt−W , xt , xt−W )

+ · · · + l(St |Zt ,Zt−1, xt , xt−1) (10)

When modifying Equation (10), the final static probability
can be obtained as in Equation (11).

p(St |Zt ,Zt−W :t−1, xt , xt−W :t−1)

= 1−
1

1+ exp(l(St |Zt ,Zt−W :t−1, xt , xt−W :t−1))
(11)

V. NDT SCAN-MATCHING-BASED EDGE CONSTRAINT
GENERATION
A. BASIC NDT SCAN-MATCHING
The basic principle of scan matching is to align points
from the same object contained in two point-clouds. Among
the various scan-matching algorithms, we used the NDT
algorithm, which has robust matching performance under
various conditions. In this study, a point cloud used as a
scan-matching reference is called a target point cloud, while
a point cloud that is matched to a target point cloud is defined
as a source point cloud. A characteristic of the NDT algorithm
is that the target point cloud is transformed into a combi-
nation of normal distributions to express the surface of the
surrounding environment. NDT is performed by determining
the degree of matching with the normal distribution, and
not directly with the target points. If the number of points
contained in the divided voxel is greater than five, then the
normal distribution is obtained by calculating the mean (µ)
and covariance matrix (6). Assuming that a set of point
clouds contained in a voxel is Y = y1, · · · , ym, the mean and
covariance matrix calculations are as follows.

µ =
1
m

m∑
k=1

yk , 6 =
1
m

m∑
k=1

(yk − µ) (yk − µ)T (12)

When the mean and covariance matrices are calculated,
the normal distribution of the D-dimension is expressed by
Equation (13).

p (x) =
1

(2π)D/2
√
|6|

exp

(
−
(x − µ)T 6−1 (x − µ)

2

)
(13)

The score function of the individual source point is cal-
culated from the above equation. The goal is to maximize
the product of the scores of all points. However, this normal
distribution is vulnerable to the effects of outliers. Previ-
ous studies have solved this problem by mixing the normal
distribution and uniform distribution. The problem has also
been modified to calculate the sum of all scores by simply
taking the log-likelihood of the whole expression rather than
calculating the product of scores.

score (Ep) = −
n∑

k=1

p̃ (T (Ep, xk )) (14)

where T (Ep, xk ) are the means to transform xk by vector Ep. The
scoring sum of all source points converted by Ep is the final
score of Ep. An optimization technique based on Newton’s law
finds a vector Ep that minimizes the score.

H1Ep = −Eg (15)

Newton’s law is expressed as Equation (15), and H
and Eg represent the Hessian matrix and gradient vector,
respectively. The Hessian matrix and gradient vector can be
obtained by Equation (16) and Equation (17), respectively,
when x ′k defined as T (Ep, xk)− µ.

Hij =
n∑

k=1

d1d2exp(−
d2
2
x ′k
T
6−1k x ′k )

(−d2(x ′k
T
6−1k

δx ′k
δEpi

)(x ′k
T
6−1k

δx ′k
δEpi

)

+ x ′k
T
6−1k

δ2 x ′k
δEpiδEpj

+
δx ′k
δEpj

6−1k
δx ′k
δEpi

) (16)

gi =
n∑

k=1

d1d2x ′k
T
6−1k x ′k

δx ′k
δEpi

exp
(
−
d2
2
x ′k
T
6−1k x ′k

)
(17)

NDT calculates the Hessian matrix and gradient vector
at each point and finds 1p, which minimizes the score by
adding all the values. The calculated 1p is added to Ep,
which was calculated in the previous step to obtain a new Ep.
Finally, the optimized transformation vector Ep between two
point-clouds can be obtained by repeating the same process.
Algorithm 1 presents the pseudo code of all the processes.

B. WEIGHTED NDT SCAN-MATCHING BASED ON THE
STATIC PROBABILITY
Basic NDT scan-matching gives equal weight to all points
in the scan-matching process. In a dynamic environment,
if all points have equal weight in matching, points from
dynamic objects can degrade the matching performance.
Therefore, to reduce the influence of dynamic points, an NDT
scan-matching algorithm that can reflect the static probability
of each point is proposed. The static probability of each point
is utilized as the weight of each point. The weight of each
point is reflected in the matching process in two ways. First,
the weight of the target point cloud can be applied in the
calculation of the normal distribution. The target point cloud
is represented as a combination of normal distributions. The
normal distribution is obtained by calculating the mean and
covariance matrix of points, which exist inside the voxel.
The calculation of the normal distribution with the static
probability is shown in Equation (18) and Equation (19).

q∗ =

∑m
k=1 ωkyk∑m
k=1 ωk

(18)

where ωk represents the static probability of the kth point.
The weighted covariance matrix can be calculated using the
weighted mean.

6∗=

∑m
k=1 ωk(∑m

k=1 ωk
)2
−
∑m

k=1 ω
2
k

m∑
k=1

ωk
(
yk − q∗

) (
yk − q∗

)T
VOLUME 8, 2020 175569



S. Lee et al.: Robust 3-Dimension Point Cloud Mapping in Dynamic Environment

Algorithm 1 Basic NDT Algorithm
Input:

The source point cloud X
The target point cloud Z
Initial guess of transformation Epini

Output:
Final transformation Ep between X and Z

1: Ep← Epini
2: for all points zi ∈ Z do
3: find the cell Y that contains zi
4: classify zi to entire cells Y
5: end for
6: for all cells Y do
7: Y = {y1, · · · , ym}
8: q = 1

m

∑m
k=1 yk , 6 =

1
m

∑m
k=1 (yk − q) (yk − q)

T

9: end for
10: while not converged do
11: score← 0, Eg← 0, H ← 0
12: for all points xi ∈ X do
13: find the cell Y that contains T (Ep, xk )
14: update Eg,H
15: end for
16: solve H1Ep = −Eg
17: Ep← Ep+1Ep
18: end while

=

∑m
k=1 ωk (yk − q

∗) (yk − q∗)T

V1 − (V2/V1)
(19)

If we define V1 =
(∑m

k=1 ωk
)2 and V2 = ∑m

k=1 ω
2
k , then

thewhole equation can be summarized as Equation 5–9. Next,
Newton’s law of each point reflects the static probability of
the point in the Hessian matrix and gradient vector compu-
tation. The pseudo code of the static probability-based NDT
scan-matching is as follows.

VI. POINT CLOUD MAPPING BASED ON GRAPH-BASED
SLAM
To construct the point cloud map, graph-based SLAM esti-
mates the acquired pose of the point cloud at each time
step. Graph-based SLAM can be divided into the front-end
and back-end. The front-end generates nodes of the graph
each time a point cloud comes in from LiDAR. Graph-based
SLAMgenerates edges through constraints from information,
such as GNSS, motion, and scan matching. Based on the
generated nodes and edges, the back-end optimizes the all
of the graphs to obtain the accurate pose at each time step.
Recently, iSAM [28] and g2o [29] have been widely used as
the back-end of graph-based SLAM.

A. GRAPH CONSTRUCTION (FRONT-END)
Assuming that the environment in which the vehicle moves
is 2D, the sensor pose is represented as xt = {xt , yt , θt }. The
graph is a vector x = x1:n consisting of xt representing the
pose of the vehicle. The relative pose between two nodes

Algorithm 2Weighted NDT Algorithm
Input:

The source point cloud X
The target point cloud Z
The static probability of point clouds p(S)
Initial guess of transformation Epini

Output:
Final transformation Ep between X and Z

1: Ep← Epini
2: for all points zi ∈ Z do
3: find the cell Y that contains zi
4: classify zi to entire cells Y
5: end for
6: for all cells Y do
7: Y = {y1, · · · , ym}
8: wk ← p(sk )

9: q∗ =
∑m

k=1 wkyk∑m
k=1 wk

, 6 =

∑m
k=1 ωk(yk−q

∗)(yk−q∗)
T

V1−(V2/V1)
10: end for
11: while not converged do
12: score← 0, Eg← 0, H ← 0
13: for all points xi ∈ X do
14: find the cell Y that contains T (Ep, xk )
15: wk ← p(sk )
16: update wk ∗ Eg,wk ∗ H
17: end for
18: solve H1Ep = −Eg
19: Ep← Ep+1Ep
20: end while

xi and xj can be represented with the edge constraint. The
information of the edge constraint can be obtained from the
in-vehicle motion sensor, INS sensor, and scan matching,
and even a static probability-based algorithm, which was
described in the previous section.

B. GRAPH OPTIMIZATION (BACK-END)
In the constraint, xi and xj are the location of the two nodes
before optimization, and < zij, �ij > are the mean and
information matrix of a virtual measurement of xj obtained
using GNSS, motion, or scan matching at pose xi. The error
between the pose of the virtual measurement and that of
the node before optimization is denoted by eij(xi, xj). Using
these constraint information, graph optimization iteratively
computes the final graph that minimizes the sum of these
errors based on least squares.

x∗ = argminx
∑
i

eTi,j(xi, xj)�i,jei,j(xi, xj) (20)

VII. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
To evaluate the proposed algorithm, the autonomous vehi-
cle A1 of Hanyang University ACE Lab was used in the
experiment. The A1 was equipped with two LiDARs and a
GNSS/INS sensor. The two LiDARs in the vehicle enable
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FIGURE 5. Test site with numerous dynamic objects.

FIGURE 6. Sensor configuration of test vehicle A1.

point cloud acquisition in real-time during driving. The
mounted LiDAR is Velodyne’s Puck (VLP-16) sensor with
horizontal and vertical angles of 360◦ and 30◦ degrees,
respectively, in the region of interest (ROI). Through the
Ethernet interface, the vehicle receives point clouds with
an accuracy less than 3 cm and frequency of 10 Hz. Both
LiDARs were calibrated and acquired a point cloud in the
same coordinate system. A1 also has the RT3002 vehicle-
mounted GNSS/INS sensor to evaluate the performance of
the proposed algorithm. It can provide the absolute position
and velocity with errors of less than 2 cm and 0.03 m/s,
respectively, using real-time kinematic (RTK) GNSS cor-
rection. In addition, A1 has another low-cost GNSS sensor
from Garmin, which was used as a constraint of graph-based
SLAM to reduce the cumulative scan-matching error. The
performance of the proposed algorithm was evaluated with
following three experiments. As shown in Figure 5, all
the experiments were conducted in Gangbyun Expressway,
Seoul, Korea, which has numerous dynamic objects.

B. HOW EXACTLY THE STATIC PROBABILITIES OF
INDIVIDUAL POINTS ARE ESTIMATED
To evaluate the performance of static probability estima-
tion, it is necessary to determine the property of each point,
i.e., whether it is dynamic or static. To tag the property of
each point, we can manually classify the points and assign
the property. However, the manual process also can cause
errors and requires a large amount of computational power.
Thus, we conducted the evaluation in the place where all
points can be considered as static or dynamic. The test in
the static environment was conducted at dawn when there
were no vehicles on the road. On the other hand, to acquire
the dataset of the dynamic environment, we drove to the
center of highway which had numerous vehicles, and we only

utilized the points from other vehicles within 8 m of the ego
vehicle.

Based on the explained actual class of each point, we eval-
uated the static probability estimation performance of the
tracking and proposed algorithm. The tracking determinis-
tically derived the predicted class of each point as dynamic
or static according to bounding boxes. On the other hand,
the output of the proposed algorithm is the static probability
of each point. Therefore, we made classifications based on
whether the static probability of the point exceeds a certain
value. The result is shown in Figure 7. The accuracy and recall
rate of the two algorithms were calculated based on confusion
matrices. It was confirmed that both the accuracy and recall of
the proposed algorithmwere higher than those of the tracking
algorithm by at least 10%.

C. HOW EXACTLY DOES THE STATIC PROBABILITY BASED
SCAN-MATCHING CALCULATE THE SENSOR ODOMETRY
The scan-matching performance of the proposed algorithm
was compared with the basic NDT algorithm using a dynamic
object removal algorithm. All adjacent point clouds were
matched to estimate the odometry between the two point-
clouds, and the results were compared with RTK-GPS-
based ground truth. Before evaluating the proposed algorithm
in the dynamic environment, an independent performance
evaluation of the proposed algorithm was first performed
in an environment without dynamic objects. Specifically,
the test was conducted at dawn without moving vehicles.
The scan-matching performance of the proposed algorithm
is shown in Figure 8. Figure 8-(a) shows the distance and
heading errors of the predicted odometry over the entire area
of the test site. The distance error of the predicted odometry
at the entire test site has a maximum value of 0.0590 m and
an root-mean-square (RMS) value of 0.0190 m. The heading
error has a maximum value of 0.2196◦ and an RMS value of
0.2196◦. Figure 8-(b) shows the predicted absolute position of
the vehicle by accumulating scan-matching results obtained
with the proposed algorithm. Although matching errors were
accumulated for all test sites, the predicted position of the pro-
posed algorithm followed the reference position well. It can
be confirmed that the proposed algorithm has good matching
performance in an environment without dynamic objects.

Next, the performance of the proposed algorithm in an
environment with many dynamic objects was compared with
matching based on other dynamic object removal algorithms.
As in the previous experiment, scan matching was performed
for each algorithm in each scenario. Four algorithms were
used in the experiment: the proposed algorithm, NDT with-
out dynamic object removal, NDT with DATMO, and NDT
with an occupancy grid map. To evaluate the performance
of individual algorithms, error histograms of scan-matching
results were compared. In the histograms, the more samples
with errors close to 0, the better the scan-matching perfor-
mance. The proposed algorithm had the largest number of
samples with heading and distance errors close to 0 compared
with other algorithms. Figure 10-(a) shows the distance and
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FIGURE 7. Confusion matrices of the tracking-based algorithm and proposed algorithm.

FIGURE 8. (a) Distance and heading error of the estimated odometry based on the proposed algorithm in a static environment (b) Comparison
between the reference pose from RTK-GPS and the estimated pose from the proposed algorithm.

TABLE 1. RMS and maximum error of the proposed algorithm and the
other dynamic object removal algorithms.

heading graph for the entire area. The proposed algorithm,
represented by the solid red line, has a lower error level
than the other algorithms. The results of vehicle position
estimation by accumulating scan-matching results are shown
in Figure 10-(b). Because the proposed algorithm has a lower
level of peak error, the estimated position of the proposed
algorithm is closer to the reference position than those of
the other three algorithms. RMS and maximum values of
matching errors are summarized in Table 1. Numerically,
it can be confirmed that the proposed algorithm has a lower
matching error compared with the other algorithms.

D. HOW ACCURATELY THE POINT CLOUD MAP BASED ON
THE SENSOR ODOMETRY ARE GENERATED
To evaluate the performance of the point cloudmap generated
through the proposed algorithm, the closest distance from the
reference map was used as an evaluation index. The test site
was used twice, i.e., when there were no dynamic objects,
and when there were many dynamic objects. The two sets of
driving data were used to produce a point cloud map using
only high-precision GNSS. To produce the reference map,
the dynamic objects were manually removed from the point
cloudmaps. The point cloudmaps for performance evaluation
were produced under three conditions. The first is the map in
the environment with no dynamic objects. The second is the
map in the environment with many dynamic objects, which
were not filtered. The third is the map in the environment
with many dynamic objects, which were considered based
on static probability. In the three cases, a point cloud map
was generated based on scan matching and low-cost GNSS.
In the proposed static probability-based algorithm, only
points with a static probability of 0.5 or higher in the point
cloud map were considered as static points. To calculate the
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FIGURE 9. Error histograms of heading and distance of various algorithms.

FIGURE 10. (a) Distance and heading error of the estimated odometry of various algorithms in a dynamic environment (b) Comparison between
the reference pose from RTK-GPS and the estimated pose from various algorithms.

correspondence between the reference map and the map to be
evaluated, 1/1000∗N among theN points included in themap
to be evaluated was randomly extracted. For each extracted
point, the closest corresponding point in the reference map
was found. The distance between all corresponding points
was calculated, and their RMS errors were compared.

The results confirm that the map generated by the proposed
algorithm has RMS nearest distance of 0.5777 m. The map is
twice as accurate as the map without dynamic object filtering,
which has RMS nearest distance of 1.1643 m. In addition,
the proposed algorithm provides more accurate results than
the RMS nearest distance of 0.7444 m, which is the result
of an environment without a dynamic object. There are two
reasons for this result. First, the effect of the greenbelt cre-
ated in the road environment can degrade the scan-matching
performance. The location of the greenbelt can be changed

TABLE 2. RMS distance between reference map and the generated map
in various conditions.

by the wind, and it also causes scattering of LiDAR points.
However, in the proposed algorithm, these green spaces have
a weak effect on scan-matching performance by giving a low
static probability compared with previously acquired point
clouds. Second, it was confirmed that the error of the low-cost
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GPS data acquired under two different driving conditions,
i.e., with and without a dynamic object, influenced the result
to a certain extent.

VIII. CONCLUSION
This article proposed a 3D point cloud mapping algorithm
using a static probability-based NDT algorithm in a dynamic
environment. To generate an accurate point cloud map in a
dynamic environment, the effect of dynamic objects on scan
matching must be eliminated. For this reason, we estimated
the static probability of each point and performed scanmatch-
ing. The calculated odometry from scan matching was used
as a constraint of point cloudmapping. These three steps were
evaluated by comparison with other dynamic object removal
algorithms.

First, the static probability estimation algorithm was com-
pared with a tracking algorithm. Based on the predicted and
actual class of each point, we generated the confusion matrix
of each algorithm. The static probability estimation algorithm
has an accuracy of 90.0%, 82.1%, and 94.8%, static recall,
and nonstatic recall. On the other hand, the tracking algorithm
had an accuracy of 78.2%, 71.5%, and 84.8%, static recall,
and nonstatic recall. The proposed estimation algorithm had
higher accuracy and recall than the tracking algorithm. Sec-
ond, the scan-matching performance of the proposed algo-
rithm (Weighted NDT) was evaluated by comparison with
other dynamic object removal algorithms (tracking, occu-
pancy grid map). The distance and heading errors were rep-
resented in histograms, and there were more elements with
near-zero errors in the proposed algorithm compared with
the other algorithms. Furthermore, the proposed algorithm
has 0.0135 m and 0.0304◦ of RMS distance and heading
errors, respectively, making it much more accurate than the
other algorithms. Third, we evaluated the accuracy of the
point cloud map generated using the proposed algorithm in a
dynamic environment. The RMS of the closest distance from
reference map was calculated by both the proposed algorithm
and nonfiltering algorithm. The RMS nearest distance error
of the nonfiltering and proposed algorithm was 1.1643 m and
0.5777, respectively.
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