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ABSTRACT Local region-based active contour models (ACMs) can effectively segment images corrupted
by intensity inhomogeneity, however, they always converge to local minimum and are sensitive to the initial
position of contour. In this paper, a novel fuzzy ACM is proposed to tackle these problems. In order to deal
with intensity inhomogeneity, the fuzzy local fitted image is first defined and utilized for constructing a
local-region based fuzzy energy term, which is minimized in a variational level set framework to accurately
segment inhomogeneous images. Second, the fractional-order diffusion based edge indicator is used to scale
the local fuzzy energy term to reduce the effect of intensity inhomogeneity. Third, the fuzzy signed pressure
force (FSPF) function defined by local image information is used for constructing the weighted area term
to further improve the accuracy of the developed model. Finally, the global FSPF is formulated and used as
an adaptive force, which can drive the level set function (LSF) to adaptively move up or down according to
image intensity information. Therefore, the initial contour can be initialized as a constant function, which
eliminates the problem caused by contour initialization. Moreover, the global FSPF makes the proposed
model not easy to fall into local minimum. The results of experiments on synthetic and real images validate
the accuracy of the proposed model for inhomogeneous image segmentation.

INDEX TERMS Active contour model, inhomogeneous image segmentation, fuzzy local fitted image, edge
indicator, FSPF function.

I. INTRODUCTION
Image segmentation is a primordial task in image analysis
and computer vision. The main goal of image segmentation
is to partition an image into non-intersected regions with
approximately similar property, such as texture, color, inten-
sity, etc [1]. Up to now,manymethods have been proposed for
image segmentation. Among these methods, ACMs initially
proposed by Kass et al. [2] have received extensive attention
and are widely used for image segmentation. The basic idea
of the ACMs is to state the problem of image segmentation
as the minimization of an energy functional. Moreover, level
set based ACMs implicitly represent an evolving curve as the
zero level set of a higher dimension function [3], [4], and
the initialized curve is driven by a partial differential equa-
tion, which is obtained by minimizing a predefined energy
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functional. When the evolution of curve stops, the desired
boundary of the target object is obtained.

In the past decades, a variety of level set based ACMs,
embedding different image features, have been presented
for image segmentation. However, the existing ACMs
can be roughly dived into three categories: edge-based
models [5]–[9], region-based models [10]–[19] and hybrid
models [20]–[29]. In edge-based models, an edge indicator
defined on image gradient information is used for guiding
the evolving curve toward the interest boundary of the target
object. These methods generally work well on images with
strong boundaries. However, they have difficulty in extracting
the weak edge of the target object and are more sensitive to
noise, because the effective gradient information near weak
edge and noise cannot be obtained.

Generally speaking, region-based models yield better
performance on images with weak boundaries, because the
curve evolution of these models is urged by a certain region
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descriptor, which is independent of image gradient informa-
tion. Specially, one of the typical global region-based models
is the Chan-Vese (CV) model [10], which is based on the
assumption that image intensities are piecewise constant in
the foreground and background. The CV model has some
advantages, such as being robust to noise and insensitive
to the initial contour. Although global region-based models
like the CV model can work well on bimodal images, they
usually obtain inaccurate segmentation results in the presence
of intensity inhomogeneity. The main reason is because only
global image information is incorporated into the defined
energy functional.

To address the above problem of global region-based
models, local statistical information is considered by
researchers to construct local region-based models. By intro-
ducing a Gaussian kernel function into the energy functional,
Li et al. [11], [12] propose the local binary fitting (LBF)
model, which uses two local fitting functions to approxi-
mate the averages of intensities in a local window inside
and outside the contour. In [14], the local entropy weighted
region-scalable fitting energy (WRSF) model is proposed
to enhance the robust of the LBF model. Zhang et al. [13]
propose the local image fitting (LIF) model, whichminimizes
the differences between the original image and the local fitted
image defined as the weighted average of two local inten-
sity means. By minimizing the Kullback-Leibler divergence
between original image, square image and their correspond-
ing fitted images, Wang et al. [15] propose the local hybrid
image fitting (LHIF) energymodel, which is further improved
in [16] by introducing a new inhomogeneity entropy, and
they define an entropy weighted fitting (EWF) energy model.
In [17], the bias field correction strategy is also used to tackle
intensity inhomogeneity. In these models, image intensity
is presented as the multiple of the true image and the bias
component considered as the inhomogeneity of image. And
then, object segmentation and bias component correction are
obtained together in a minimization framework. By taking
advantages of local image information, the above-mentioned
local region-based models can accurately extract the bound-
ary of the target object in the case of intensity inhomogeneity.
However, they are heavily dependent on the initial contour.
In other words, if the position of the initial contour is inap-
propriate, the segmentation results of these models may be
unsatisfactory.

To deal with the shortcomings of global or local based
ACMs and make full use of their advantages, many hybrid
ACMs are proposed in the literature. Akram et al. [21] pro-
pose a local and global fitted image based model, and the
Gaussian distribution is used to approximate the bias field.
Similar to [29], the coefficient of the weighted area term need
to be adjusted according to the position of the initial con-
tour. In [22], global information learned by self-organising
maps is used to construct a local energy term. However,
if the number of layers is too much, a large computational
cost is required. Otherwise, the model cannot effectively
segment images with intensity inhomogeneity. In [25], the

multiplicative and difference images are used to formulate a
new hybrid ACM. However, finding an appropriate method
to process the original images is a challenging task. Based on
different weighting methods, global and local SPF are used to
define hybrid ACMs [26]–[28]. In these hybrid ACMs, local
information helps ACMs to accurately segment images with
intensity inhomogeneity and global information improves the
robustness of ACMs to the initial contour. Therefore, hybrid
models always work well on inhomogeneous images.

From the perspective of clustering, region-based ACMs
belong to the category of hard one [30]. In contrast, soft
clustering methods can retain more information of the orig-
inal image. The famous fuzzy energy based active contour
(FEBAC) [31] is proposed by Stelios Krindis to tackle the
problem of local minimum energy. Later on, many fuzzy
set based ACMs are presented to enhance the segmentation
accuracy of the model. References [32] and [33] use the
fuzzy c-means method to initialize the initial contour and the
clustering centers, respectively. In [34]–[36], the coefficient
constructed by fuzzy method is invoked as the weight to
adjust the evolution of level set function. In addition, many
fuzzy ACMs [37]–[52] are constructed by using of pseudo
LSF, which is identical to the LSF of traditional ACMs.
In addition, the energy functional of fuzzy ACMs is often
solved by two methods. The first is the Euler-Lagrange equa-
tion based gradient descent method [37]–[43]. The second is
to directly minimize the difference between the new and old
energies [43]–[52].

Specifically, Wu et al. [37] put forward an improved fuzzy
ACM by introducing kernel metric (KFAC). To segment
images having intensity inhomogeneity and slight texture,
in [44], the coefficient of variation is used as a regional
statistic. Similar to CV, these global fuzzy information based
ACMs cannot obtain desirable segmentation results, because
only global information of image is used to formulate the
fuzzy energy functional. To overcome this problem, many
fuzzy ACMs [38], [40], [41], [45], [46], [48], [52] make full
use of local fuzzy statistics to cope with intensity inhomo-
geneity. To improve the robustness of model to initial con-
tour, Sun et al. [38] fuse an adaptive contrast constraint into
the presented model. By weighting global and local fitting
energy, Fang et al. [48] present a novel fuzzy region-based
ACM, called FRAGL. These models can segmentation inho-
mogeneous images to some extent. In addition, fuzzy infor-
mation of the filtered image is also used to define FSPF [53],
which guides the movement of the contour. And the optimal
membership function is considered as the adjustment weight
of each approximated local intensity. Moreover, many convex
fuzzy ACMs [42], [44], [45], [48] is designed to prevent the
evolution of curve from falling into local minimum.

As mentioned above, fusing local image information into
the defined energy functional is an effective way to cope
with intensity inhomogeneity. In this paper, we present a
novel fuzzy energy-based ACM. First of all, the fuzzy local
fitted image (FLFI) is defined as the weighted average of
local fuzzy means on the two sides of the evolving curve,
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and the local-region based fuzzy energy term is defined as the
Kullback-Leibler divergence between the original image and
FLFI. Secondly, the fractional-order based diffusion method
is utilized to smooth the original image, and the edge indicator
is constructed on the filtered image. In order to improve the
ability of the model to segment inhomogeneous images,
the previously defined local fuzzy energy term is scaled by
the edge indicator. And then, we respectively formulate local
and global FSPF. The first one is considered as the weight of
the area term, and the other one is taken as an adaptive force.
Because their signs are opposite inside and outside the object,
the weighted area term can automatically drive the evolv-
ing curve toward the desired object boundaries. Meanwhile,
the adaptive force can drive the LSF to automatically increase
or decrease according to image intensity information, which
allows the initial contour of the proposed model to be ini-
tialized as a constant function. Therefore the problem caused
by contour initialization can be eliminated. The experimen-
tal results demonstrate that the proposed method is able to
segment the images with intensity inhomogeneity in terms of
efficiency and accuracy.

In summary, the main contributions of the paper are listed
as follows:

1) The fractional-order diffusion based edge indicator and
FLFI are constructed to reduce the effect of intensity
inhomogeneity in the given images.

2) The area term weighted by the defined local FSPF is
proposed to enhance the ability of our model to seg-
ment inhomogeneous images. Moreover, local FSPF
can control the direction of the evolving curve, which
makes the initial contour automatically move toward
the desired object boundaries.

3) The adaptive force based on the formulated global
FSPF is used to cope with the position problem of the
initial contour. And the evolution of the level set of
the proposed model can start with a constant function
without considering the position of the initial contour.

The rest of the paper is organized as follows. Section 2
briefly introduces some related work and discusses their
limitations to prepare the description of the proposed
model, which will be described in detail in Section 3.
Section 4 presents the experimental results. Finally,
conclusions are drawn in Section 5.

II. RELATED WORK
ACMs have become one of the most popular methods for
image segmentation due to easily handling the topological
changes of evolving curve. In this section, we will give a brief
review on related work and indicate their limitations.

A. CV MODEL
Let I : � → R be an input gray level image in domain �.
A closed curve C is implicitly represented by the zero level
set of the LSF φ(x). Variable x is a point in domain �
with intensity I (x). The purpose of the CV model [10] is
to look for a optimal partition by minimizing the following

energy functional:

ECV (φ(x), c1, c2) = µ ·
∫
�

δε(φ(x))|∇φ(x)|dx

+ λ1

∫
�

|I (x)− c1|2M1(φ(x))dx

+ λ2

∫
�

|I (x)− c2|2M2(φ(x))dx (1)

where M1(φ(x)) = Hε(φ(x)) and M2(φ(x)) = 1 − Hε(φ(x)),
∇ is gradient operator, and Hε(·) is the regularized Heaviside
function formulated as:

Hε(z) =
1
2

(
1+

2
π
arctan

( z
ε

))
, z ∈ R. (2)

Dirac function δε(z) is the derivative ofHε(z), and ε is a small
positive constant. λ1, λ2 and µ are fixed positive parameters.
c1 and c2 are two constants that denote the average intensities
inside and outside the contour C , respectively. The LSF φ(x)
is expressed by:

C = {x ∈ � : φ(x) = 0}
inside(C) = {x ∈ � : φ(x) > 0}
outside(C) = {x ∈ � : φ(x) < 0}

(3)

By minimizing the energy functional (1) with regard to
ci, i = 1, 2, the following equations can be obtained:

ci =

∫
�
I (x)Mi(φ(x))dx∫
�
Mi(φ(x))dx

, i = 1, 2 (4)

Obviously, c1 and c2 respectively represent the global statis-
tical information inside and outside the contourC . Therefore,
if the intensity of image is inhomogeneous, they may be far
different from the actual data. As a result, the CV model
usually fails to segment images corrupted by intensity inho-
mogeneity. However, the CV model is less sensitive to initial
contour and not easy to trap into local minimum.

B. LBF MODEL
To segment images with intensity inhomogeneity, the LBF
model [11], [12] is proposed by introducing a Gaussian ker-
nel function. The energy functional of the LBF model is
expressed by:

ELBF (φ(x), f1(x), f2(x))

= λ1

∫
�

[∫
�

Kσ (x − y)|I (y)− f1(x)|2M1(φ(y))dy
]
dx

+ λ2

∫
�

[∫
�

Kσ (x − y)|I (y)− f2(x)|2M2(φ(y))dy
]
dx

(5)

where λ1 and λ2 are positive constants. Kσ is the Gaus-
sian kernel function with standard deviation σ . Two smooth
functions f1(x) and f2(x) are used to approximate the local
averages of intensities inside and outside the contour in a local
window.

VOLUME 8, 2020 172709



H. Lv et al.: Fuzzy ACM Using Fractional-Order Diffusion Based Edge Indicator and Fuzzy Local Fitted Image

Keeping LSF φ(x) fixed and minimizing the energy
functional (5), f1(x) and f2(x) can be obtained:

fi(x) =

∫
�
Kσ (x − y)I (y)Mi(φ(y))dy∫
�
Kσ (x − y)Mi(φ(y))dy

, i = 1, 2 (6)

Different from c1 and c2 in the CV model, f1(x) and f2(x)
are local averages of the input image intensities in a local
window. Therefore, the LBF model can effectively segment
images with intensity inhomogeneity. However, the LBF
model is easy to trap into local minimum and sensitive to the
position of the initial contour.

C. LIF MODEL
The LIF model [13] assumes that the local region Nx is
piecewise smooth, and the center intensity of Nx can be fitted
by the local intensity averages. The energy functional of the
LIF model aims to minimize the differences between the
original image and the local fitted image, which is formulated
as follows:

ELIF (φ(x)) =
1
2

∫
�

|I (x)− ILFI (x)|2dx (7)

where ILFI (x) is the local fitted image, which is expressed as:

ILFI (x) = M1(φ(x))f1(x)+M2(φ(x))f2(x) (8)

here f1(x) and f2(x) represent the local intensity averages
inside and outside the contour in the local region Nx .

Segmentation results of the LIF model are similar to that of
the LBF model. But compared with the LBF model, the LIF
model needs less computational time, because the Gaussian
filtering process is used to smooth the level set function.
Moreover, the LIF model still suffers from the problem of the
position of the initial contour, that is, whether the selected
position of the initial contour is appropriate is an important
factor affecting the accuracy of the segmentation results.

D. FEBAC MODEL
The basic assumption of the FEBAC model [31] is similar
to that of the CV model. That is, the image intensities in the
foreground and background are piecewise constant. By intro-
ducing the membership value u(x), the FEBAC model first
defines a pseudo LSF, which is given by:

C = {x ∈ � : u(x) = 0.5}
inside(C) = {x ∈ � : u(x) > 0.5}
outside(C) = {x ∈ � : u(x) < 0.5}

(9)

And then the fuzzy energy functionanl of the FEBAC model
is expressed as:

EFEBAC (u, c1, c2) = λ1

∫
�

[u1(x)]m|I (x)− c1|2dx

+ λ2

∫
�

[u2(x)]m|I (x)− c2|2dx (10)

where λ1 and λ2 are positive constants. u1(x) = u(x) ∈ [0, 1]
and u2(x) = 1−u(x) indicate the degree of themembership of
intensity I (x) belong to c1 and c2, respectively. The weighting
exponent m(m > 1) is usually set to 2.

Keeping u(x) fixed and minimizing the energy functional
(10) with respect to c1 and c2, the following equations used
to update c1 and c2 can be obtained:

ci =

∫
�
[ui(x)]mI (x)dx∫
�
[ui(x)]mdx

, i = 1, 2 (11)

Similar to the CV model, when the basic assumption that
image intensities are piecewise constant in each region
(foreground or background) is not met, FEBAC model usu-
ally cannot extract the desirable boundaries of the target
objects.

III. THE PROPOSED MODEL
As mentioned in Section 2, global-based ACMs lack the
ability to segment images with intensity inhomogeneity.
In contrast, the local-based ACMs can obtain more accurate
segmentation results, however, these local-based ACMs are
more sensitive to the position of the initial contour. To cope
with these problems, in this section, we present an adaptive
fuzzy energy based ACM and describe it in detail. We firstly
present the fractional-order based diffusion filter, and define
an edge indicator. Then, we formulate the global and local
FSPF, and prove that their signs are opposite inside and
outside the object. Finally, we define a novel fuzzy energy
functional and give the algorithm steps.

A. FRACTIONAL-ORDER DIFFUSION BASED EDGE
INDICATOR
Inspired by [54]–[56], in this subsection, we aim to extract
the underlying object edge where the initial contour needs to
stop. For this purpose, the fractional-order derivative based
Perona-Malik diffusion is used to smooth the original image.
This diffusion process can yield a piecewise constant results
while preserving edges and suppressing staircase [55], [56].
Specially, the input image is first smoothed by the following
fractional-order diffusion equation:

∂I
∂t
= −Dα∗x

(
g(DC)Dαx I

)
−Dα∗y

(
g(DC)Dαy I

)
(12)

where Dα∗x and Dα∗y are the conjugates of fractional-order
derivatives Dαx and Dαy , α ∈ (1, 2). g(DC) = exp(−DC/100)
is diffusivity function, and DC stands for difference curva-
ture, which is expressed as:

DC = ||Iηη| − |Iξξ || (13)

and

Iηη =
I2x Ixx + 2IxIyIxy + I2y Iyy

I2x + I2y
(14)

Iξξ =
I2y Ixx − 2IxIyIxy + I2x Iyy

I2x + I2y
(15)

where Ix and Iy represent the first-order derivatives, Ixx and Iyy
denote the second-order derivatives. The partial differential
equation defined in (12) can be solved iteratively in the
frequency-domain, for details refer to [55], [56].
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FIGURE 1. (a) Original images. (b) Results of LoG filtering followed by
zero-crossing based on the diffused images. (c) Results of the proposed
edge indicator.

As pointed out in [57], the value of DC is large at the
object edges, while it is small in flat regions. Therefore, the
diffusion process conducted by (12) can efficiently smooth
the flat regions while preserving important image edges,
which are related to the boundaries of the target object. Let
I k (s) be the result of the k iterations, the adaptive order-based
edge indicator of the smoothed image I k (s) is defined as
follows:

M k (s) =
1
25

∑
t∈Ns

∣∣∣(I k (t))β(s) − (m(s))β(s)∣∣∣
m(s)

(16)

where m(s) is the sample mean of the local rectangular win-
dow Ns of size 5 × 5, and adaptive order function β(s) is
defined by:

β(s) =
2 ∗ (1+ T )

1+
√
I2x (s)+ I2y (s)

(17)

here T is the maximum value of
√
I2x (s)+ I2y (s)(s ∈ �),

and I is the normalized result of the smoothed image I k (s).
It is worth noting that when the condition mean(|M k (s) −
M k−1(s)|) < 0.1 is met, iteration process conducted by (12)
is terminated. As shown in Fig. 1, The proposed edge indi-
cator can provide more reliable results compared to the tra-
ditional edge indicator (e.g. Laplacian of Gaussian (LoG)
filter).

B. LOCAL FUZZY ENERGY TERM
Local image information plays an important role in dealing
with intensity inhomogeneity. Therefore, we consider making
full use of fuzzy local information to construct the proposed
local energy term. We first defined the fuzzy local fitted
image as follows:

IFLFI (x) = u1(x)m1(x)+ u2(x)m2(x) (18)

where m1(x) and m2(x) are local fuzzy clustering center
functions and defined by

mi(x) =

∫
�
Kσ (x − y)I (y)[ui(y)]mdy∫
�
Kσ (x − y)[ui(y)]mdy

, i = 1, 2 (19)

Obviously, m1(x) and m2(x) calculate the local intensity
means inside and outside the contour C in a neighbourhood
of x. IFLFI can be considered as the fuzzy approximation of
the original image I in a local window.

To take advantage of the defined FLFI, in this paper,
Kullback-Leibler divergence is used to quantify the differ-
ences between the original image I and its approximation
FLFI, and the edge indicator scaled local fuzzy energy term
is defined by:

EL(u(x)) =
∫
�

[
I (x)log

(
I (x)

IFLFI (x)

)
+ IFLFI (x)log

(
IFLFI (x)
I (x)

)]
W (x)dx (20)

where W (x) = 1/(1 + exp(−M (x)) is used to scale the
Kullback-Leibler divergence between I and IFLFI .M (x) is the
normalized form of the edge indicator defined in (16), which
is obtained when the iteration process conducted by (12) is
terminated.

C. GLOBAL AND LOCAL FSPF
In our works [41], a global FSPF is defined as:

spf (I (x)) =
I (x)− (0.5c1 + 0.5c2)

max (|I (x)− (0.5c1 + 0.5c2)|)
(21)

where c1 and c2 are defined in (11). It has been proved
that spf (I (x)) has values in the range [−1, 1]. Although it
can efficiently modulate the signs of the pressure forces
inside and outside the region of interest, the constant weights
(e.g., 0.5) cannot carry more information of the images.

To overcome this drawback, in this subsection, we propose
two novel FSPF. Let spfG(I (x)) and spfL(I (x)) be global FSPF
and local FSPF, respectively, then they are defined by:

spfG(I (x)) =
I (x)− (u1(x)c1 + u2(x)c2)

max (|I (x)− (u1(x)c1 + u2(x)c2)|)
(22)

spfL(I (x)) =
I (x)− (u1(x)m1(x)+ u2(x)m2(x))

max (|I (x)− (u1(x)m1(x)+ u2(x)m2(x))|)
(23)

where c1, c2 are defined in (11) and mx(x), m2(x) are defined
in (19). From the definition, we can see that spfG(I (x)) is a
global measure which contains the global statistical infor-
mation, and spfL(I (x)) is a local measure which contains
the local statistical information. The FSPF functions defined
in (22) and (23) also have values in range [−1, 1]. For sim-
plicity, we prove this property only for a binary image. Let
�\ω and ω be the background and the object, respectively,
then a binary image can be expressed as:

I (x, y) =

{
a, (x, y) ∈ ω
b, (x, y) ∈ �\ω,

(24)

where a, b > 0 with a 6= b.
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Theorem 1: Let I be a binary image defined by (24). Then
one has

sign (spfG(I (x))) =

{
+sign(a− b), in ω
−sign(a− b), in � \ ω.

(25)

Proof: see Appendix A.
Theorem 2: Let I be a binary image defined by (24). Then

one has

sign (spfL(I (x))) =

{
+sign(a− b), in ω
−sign(a− b), in � \ ω.

(26)

Proof: see Appendix B.
Compared with the FSPF proposed in [53], the proposed

FSPF has the following differences:
1) On one hand, c1 and c2 of the proposed spfG(I (x))

denote the fuzzy average intensities inside and out-
side the contour C , respectively. On the other hand,
the weights of c1 and c2 are not constant (eg. 0.5), but
membership values. Therefore, the designed spfG(I (x))
can retain more information of the original image.

2) The spfG(I (x)) is designed to reduce the dependence of
ACMs on initial contour, not to control the direction of
the evolving curve, which is why the level set of the
proposed model can start with a constant function.

3) The purpose of spfL(I (x)) defined in (23) is the same
as that of the FSPF proposed in [53], which is to
control the direction of the evolving curve. However,
the spfL(I (x)) is defined by the membership value
weighted local mean, which enables the direction of the
evolving curve make adjustments automatically based
on local information.

D. EVOLUTION EQUATION OF THE PROPOSED MODEL
The fuzzy energy functional of the proposed model is
expressed as:

E(u(x),m1(x), c1, c2) = λEL(u(x))+ µL(u(x))

+ νA(u(x))+ γ spfG(I (x)) (27)

where λ,µ, ν and γ are positive constants. u(x) is pseudo LSF
defined in (9). L(u(x)) and A(u(x)) are defined by:

L(u(x)) =
∫
�

δε(u(x)− 0.5)|∇(u(x)− 0.5)|dx (28)

and

A(u(x)) =
∫
�

spfL(I (x))Hε(u(x)− 0.5)dx (29)

where δε(z) is the derivative of the regularized Heaviside
function Hε(z) defined in (2). The energy functional L(u(x))
is length term, which is used to smooth the pseudo zero level
contour. A(u(x)) computes the weighted area of the region
{x ∈ � : u(x) > 0.5}. Since signs of spfL(I (x)) are opposite
inside and outside the object, the pseudo zero level contour
can automatically shrink or expand. And the global FSPF
spfG(I (x)) can be seen as an adaptive force, which drives the
pseudo LSF to automatically increase or decrease according
to image intensity information.

FIGURE 2. Contribution of spfG(I(x)). (a) Original image.
(b) Segmentation result. (c) 3D plot of the initial constant pseudo LSF.
(d) 3D plot of the final pseudo LSF.

Keep mi(x)(i = 1, 2) and ci(i = 1, 2) fixed, we minimize
the fuzzy energy functional (27) with respect to u(x). The
following formulation is obtained to update the pseudo level
set u(x):

∂u
∂t
= λe(x)+ µδε(u(x)− 0.5)div

(
∇(u(x)− 0.5)
|∇(u(x)− 0.5)|

)
+ νspfL(I (x))δε(u(x)− 0.5)+ γ spfG(I (x)) (30)

and

e(x) = (m1(x)− m2(x))
(

I (x)
IFLFI (x)

− 1− log
IFLFI (x)
I (x)

)
W (x) (31)

where div(·) is the divergence operator.
Next, we analyse the characteristic of the global FSPF

spfG(I (x)) based on the following equation:

∂u
∂t
= spfG(I (x)) (32)

From the Theorem 1, It can be seen that the spfG(u(x)) has
opposite signs inside and outside the object. If spfG(u(x)) > 0,
then ∂u/∂t > 0, and (32) makes u increase; Conversely,
if spfG(u(x)) < 0, then ∂u/∂t < 0, and (32) makes u
decrease. This characteristic can drive the pseudo LSF u to
move up or down according to the image intensity infor-
mation. Therefore, a constant function can be used as the
initialization of u(x). Taking a binary image (Fig. 2a) as an
example, the initial contour is set to be a constant function
(e.g., u(x) = 0.5, x ∈ �) shown in Fig. 2c. The segmentation
result of the proposed model is shown in Fig. 2b, and Fig. 2d
shows the 3D plot of the final pseudo LSF, and the contour
C = {x ∈ � : u(x) = 0.5} is marked by red line.
This example demonstrates that the proposed model is less
troubled by the problem of the initial contour.
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It is worth noting that the proposed model is different
from the hybrid ACMs proposed in [27], [48]. In one hand,
the gradient information of LSF used in [27] is sensitive
to the edge of object, which cannot effectively deal with
weak boundaries. On the other hand, the global SPF pro-
posed in [27] and the proposed model are used to enhance
the robustness of the models to initial contour. However,
the proposed global SPF constructed by fuzzy image infor-
mation can makes the level set evolution start with a constant
function. In addition, the hybrid averages in FRAGL [48]
based on global and local intensity ones may not fit the local
information, because the global averages will be far different
from the actual data the intensity of image is inhomogeneous.
Therefore, FRAGL cannot deal with images with serious
intensity inhomogeneity. However, in the proposed model,
Kullback-Leibler divergence based local term is used to effec-
tively capture the local information, and local FSPF can auto-
matically adjust the direction of the evolving curve in a local
manner. Theymake the proposedmore robustness to intensity
inhomogeneity.

E. ALGORITHM
In this subsection, a finite difference scheme is used to
numerically solve the proposed model. The iterative formula
of (30) can be simply written as:

uk+1 = uk +1t · A(uk ) (33)

where1t is the time step, uk is the result of the kth iteration,
and A(uk ) is the approximation of the right hand side of (30).
In order to obtain a stable updating of u, the input image is
first normalized by the following equation:

I =
I − Imin

Imax − Imin
(34)

where Imin and Imax represent the minimum and maximum
of image intensity. Note that u may break the constraint
(0 ≤ u ≤ 1) during the evolution. Therefore, u is reset at the
end of each iteration according to the following approach:

u =


0, if u < 0
u, if 0 ≤ u ≤ 1
1, if u > 1

(35)

And the result of each iteration is smoothed by the Gaussian
filtering method, which is expressed as:

uk+1 = Kρuk (36)

where Kρ is the Gaussian kernel function with standard
deviation ρ. For simplicity, in this paper, the parameter ρ is
set to 0.55 for all experiments.

In summary, the main procedures of the proposed
algorithm are given as follows:
1: Normalize the input image by (34).
2: Initialize the pseudo LSF u to be a constant function or a
step function defined in (9).
3: Compute ci and mi (i = 1, 2) according to (11) and (19).
4: Update u according to (33), and then normalize it by (35).

FIGURE 3. Effectiveness of the initial constant function. (a)-(d)
Segmentation results of the proposed model after 2, 30, 100,
200 iterations. (e) Final results of the proposed model. (f) 3D plots of the
final pseudo LSF.

5: Smooth u by (36).
6: Check whether the evolution is stationary. If not, return to
step 2.

IV. EXPERIMENTAL RESULTS
In this section, the proposed model will be tested on synthetic
and real images. All experiments are conducted in Matlab
(R2019b) programming environment on Intel(R) Core(TM)
i7-4720HQ CPU 2.6GHz and RAM 16.0GB. Unless other-
wise specified, the parameters are set by default as follows:
λ = ν = 1, γ = 0.05, µ = 0.5, 1t = 0.05 and
α = 1.5. To validate the effectiveness of the developed
model, we compare the developed model with CV [10], LBF
[12], LIF [13], EWF [16], FEBAC [21], FRAGL [48] and
GLSEPF [28] to display their performance differences. The
parameters of the compared methods are set according to the
original papers.

A. EFFECTIVENESS OF THE PROPOSED MODEL
In this subsection, we first validate the effectiveness of the
proposed model on four images, and the initial contour is
set to be a constant function (e.g., u(x) = 0.5, x ∈ �).
Figs. 3(a)-(d) show the intermediate results of the proposed
model after 2, 30, 100, 200 iterations. The final segmentation
results marked by red line are shown in Fig. 3(e), and the
3D plot of the final pseudo LSF are shown in Fig. 3(f).
It can be observed that the developed model can obtain
desirable segmentation results for these images, whether it
is noisy images or images with intensity inhomogeneity.
This experiment demonstrates that the defined global FSPF
spfG(I (x)) can drive the pseudo level set function u(x) to
automatically move up or down, which allows u(x) to be
initialized as a constant function. Therefore, the problem
caused by the position of the initial contour can be alleviated
to some extent. In addition, the corresponding fuzzy local
fitted images are shown in row 1 of Fig. 4, which demonstrate
that a large number of the undesired background information
of the original images is greatly suppressed. Moreover, these
fitted images IFLFI highlight the importance of the desir-
able objects and reduce the adverse effects of the complex
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FIGURE 4. Effectiveness of the proposed FLFI and edge indicator. Row 1:
Fuzzy local fitted images IFLFI . Row 2: Edge indicator M(x).

FIGURE 5. Contribution of spfL((I(x)). (a)Original images with initial
contour. (b)-(f): Results after 50, 100, 150, 200, 250 iterations. Rows 1 and
2: local FSPF is replaced by the constant 1. Rows 3 and 4: local FSPF is
reserved.

background in image segmentation of the developed model.
Row 2 of Fig. 4 shows the corresponding edge indicators,
which provide the underlying boundaries of the target objects
and efficiently suppress the complex texture components.
Therefore, the proposed edge indicator weighting method can
hance the model’s ability to segment images with intensity
inhomogeneity.

To demonstrate the contribution of the proposed local
FSPF spfL(I (x)), we conduct the following experiment shown
in Fig. 5, and the initial contours are set as a step function
according to the (9). Fig. 5(a) shows the original images
with initial contour. Figs. 5(b)-(f) show evolution results after
50, 100, 150, 200, 250 iterations, respectively. Rows 1 and 2
are the evolution process of the curve by setting spfL(I (x))
to 1. We can discover that the contours are gradually con-
tracted, if fact, the contours will disappear after 300 iterations.
When spfL(I (x)) is reserved, the proposed model can obtain
desirable segmentation results. The main reason is that the
proposed local FSPF can efficiently modulate the direction
of the evolution of the curve.

B. COMPARISONS WITH THE EXISTING SEGMENTATION
ALGORITHMS
1) ROBUSTNESS TO INITIAL CONTOUR
To demonstrate the robustness of the developed method to
initial contour, the following experiments are conducted on

FIGURE 6. Segmentation results of vessel image with different initial
contours. (a) Original image with initial contour. (b)-(f) Results of LBF, LIF,
EWF, GLSEPF and our model, respectively.

FIGURE 7. Segmentation results of vessel image with different initial
contours. (a) Original image with initial contour. (b)-(f) Results of LBF, LIF,
EWF, GLSEPF and our model, respectively.

two vessel images with intensity inhomogeneity. Given that
CV, FEBAC and FRAGL cannot efficiently segment images
with intensity inhomogeneity, whichwill be shown in the sub-
sequent experiments, we just compare the developed model
with LBF, LIF, EWF and GLSEPF. The segmentation results
of the related models are shown in Figs. 6 and 7. In Fig. 6,
LBF, LIF and EWF only get the desirable segmentation
results in the row 1. GLSEPF falls into local minimum in
rows 2 and 5. Fig. 7 shows that LBF, LIF and EWF can
correctly segment the input image in rows 1 and 2, and their
performance in other situation are worse. It is also can be
seen that the developed model and GLSEPF work well on
the second image with all initial contours. From experiments
in Figs. 6 and 7, we can get the following conclusions to a
certain extent. On one hand, the traditional local information
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FIGURE 8. Segmentation results of bimodal and inhomogeneous images. (a) Original images with initial contours. (b)-(i) Results of CV,
FEBAC, FRAGL, EWF, LBF, LIF, GLSEPF and our model. Rows 1 and 2: results of two homogeneous images. Rows 3-6: results of four
inhomogeneous images.

FIGURE 9. Segmentation results of vessel images with complex background. (a) Original images with initial contours. (b)-(i) Results of CV,
FEBAC, FRAGL, EWF, LBF, LIF, GLSEPF and our model. Row 1: pulmonary vessel (ultrasonic imaging). Row 2: abdominal vessel (computed
tomography). Row 3: carotid vessel (magnetic resonance angiography).

based models can deal with images with intensity inhomo-
geneity, but they are sensitive to the position of the initial
contour. On the other hand, introducing global image infor-
mation into ACM is necessary to improve the robustness of
the method to initial contour. Although, both GLSEPF and
our model are a hybrid model based on global and local
information, our model performs better. The main reason
is that the proposed adaptive fuzzy force greatly avoids the
proposed model trapping into local minimum.

2) SEGMENTATION OF BIMODAL AND INHOMOGENEOUS
IMAGES
In Fig. 8, two bimodal images and four inhomogeneous
images are used to visually evaluate the performance of the
proposed model and the compared methods. Fig. 8(a) shows
the original images with the initial contours. Figs. 8(b)-(i) are
the segmentation results of the CV, EWF, FEBAC, FRAGL,
LBF, LIF, GLSEPF and the propose model, respectively.
From rows 1 and 2, we can observe that all methods can work
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FIGURE 10. Segmentation results of skin lesion images. (a) Original images with initial contours. (b)-(i) Results of CV, FEBAC, FRAGL, EWF,
LBF, LIF, GLSEPF and our model.

FIGURE 11. Local fitted images of images in Figs. 9 and 10. Row 1: the proposed IFLFI . Row 2: ILFI proposed in the LIF model.

well on bimodal images. But CV and FEBAC cannot effi-
ciently segment inhomogeneous images as shown in columns
2 and 3 due to only using the global mean of intensities. Even
though FRAGL is the local-region basedmodel and has better
performance in row 5, it cannot get desirable segmentation
results in rows 3, 4 and 6, the reason may be that the weight
used to compute the local means cannot efficiently capture
the local information of images. On the contrary, EWF, LIF,
LBF, GLSEPF and the proposed model obtain satisfactory
segmentation results for these inhomogeneous images. This
demonstrates that efficiently extracting local information of
images plays a vital role in segmenting images with intensity
inhomogeneity.

3) SEGMENTATION OF MEDICAL IMAGES
In computer-aid medical image analysis, correctly extracting
the required boundaries of the target objects is very impor-
tant for the doctor’s diagnosis. For example, the bound-
aries of skin lesion can be utilized to asses the risk of
melanoma. In order to further test the ability to segment
images with complex background, we conduct the follow-
ing experiments shown in Figs. 9 and 10. Fig. 9 shows the
vessel segmentation of differentmodalities: pulmonary vessel
(ultrasonic imaging), abdominal vessel (computed tomogra-
phy) and carotid vessel (magnetic resonance angiography).

TABLE 1. Segmentation accuracy of our method compared with the
state-of-the-art methods shown in Figs. 8-10.

Segmentation results of three skin lesion images corrupted
by noise are shown in Fig. 10. From these segmentation
results, it can be seen that the proposed model works well on
these images. GLSEPF obtains desirable results of skin lesion
images, but fails to extract the boundary of the carotid vessel
image as shown in row 3 of Fig. 9. However, the other com-
pared models cannot get satisfactory segmentation results.
However, CV, FEBAC and FRAGL are better than EWF,
LBF and LIF. This just verifies what we mentioned earlier
that global-based models are less likely to fall into local
minimum than local-based models. But the proposed model
avoids this drawback by integrating local fuzzy statistical
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FIGURE 12. The final stopping positions of the zero level set for natural image from MSRA-B database using different models.
Row 1: The original images with initial contours marked by blue line. Rows 2-9: Results of CV, FEBAC, FRAGL, EWF, LBF, LIF, GLSEPF
and our model.

information and global based adaptive force into the energy
functional, which makes the proposed more effective to deal
with intensity inhomogeneity and more robust to images with
complex background. Fig. 11 shows the fuzzy local fitted
images corresponding to images in Figs. 9 and 10. We can
find that the proposed IFLFI is more capable of effectively
highlighting the desirable objects than ILFI proposed in [13],
which makes the proposed model less susceptible to complex
backgrounds in image segmentation.

4) QUANTITATIVE EVALUATION
In this section, Dice Similarity Coefficient (DSC) [18] is used
to quantitatively evaluate the accuracy of the proposedmodel,
and the DSC is given by:

DSC(G,T ) =
2× |G

⋂
T |

|G| + |T |
(37)

where |G|, |T | and |G
⋂
T | denote the pixel number of the

regions G, T and their union area, respectively. G is the
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FIGURE 13. Segmentation results in Fig. 12 using different models. Row 1: Ground truth. Rows 2-9: CV, FEBAC, FRAGL, EWF, LBF,
LIF, GLSEPF and our model.

ground-truth segmentation. T is the segmentation results of
the corresponding methods. Obviously, the value of DSC
varies between 0 and 1, and the closer DSC value is to 1,
the better the segmentation is. The DSC of images in
Figs. 8-10 are listed in Table 1, in which the proposed model
obtains comparable results. In addition, we can find that
the accuracy of global and local based models (GLSEPF
and our model) is better than that of global or local based
models.

In addition, natural images from MSRA-B are used to
further evaluate the proposed model. It is worth noting that
the used color images are first transformed into a gray image
before segmentation according to the formula: I = 0.299 ∗
IR + 0.587 ∗ IG + 0.114 ∗ IB, here IR, IG and IB present
the pixel values corresponding to the R, G and B channels,
respectively. From Figs. 12 and 13, we can find that the pro-
posed model and GLSEPF can exactly extract the desirable
boundaries of the objects in the tested images, which include
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TABLE 2. Comparison of the proposed model with the CV, FEBAC, FRAGL,
EWF, LBF, LIF and GLSEPF based on DSC for nature images in Fig. 10.

FIGURE 14. Rows 1 and 3: Segmentation of the images shown
in Fig. 12 and the pseudo LSF are initialized as a constant
function(u(x) = 0.5, x ∈ �). Rows 2 and 4: The corresponding
gray images.

severe intensity inhomogeneity. By contrast, other compared
models fail to segment these images. To clearly compare
the performance of all methods, the segmentation accuracy
of images shown in Fig. 12 in terms of DSC are listed
in Table 2. Compared with other models, the proposed model
and GLSEPF obtain more satisfactory results. But the seg-
mentation accuracy of the proposed model is slightly higher
than that of GLSEPF.

V. DISCUSSION
A. INITIALIZATION OF PSEUDO LEVEL SET FUNCTION
As we mentioned earlier that the pseudo LSF of the proposed
model can be initialized as a constant function (e.g. u(x) =
0.5, x ∈ �), and the effectiveness of this strategy has been
confirmed in some experiments. But this does not mean it
can work well on all types of images. An example is shown
in Fig. 14. It can be observed that the developed method can
exactly extract the boundaries of the target objects with the
position of the initial contour shown in row 1 of Fig. 12.
However, when the pseudo LSF is initialized as a constant
function, the proposed model cannot successfully segment
all images as shown in Fig. 14. From the corresponding gray
images, we can get the following inference. If the target object

FIGURE 15. Segmentation results based on different γ . (a) γ = 0.05.
(b) γ=0.1. (c) γ = 0.2. (d) γ = 0.3. (e) γ = 0.4.

is darker or brighter than the background region, the proposed
model can obtain desirable segmentation result. On contrary,
if a large part of the target object is similar to the background
region, the proposed model will not work well and even gets
wrong segmentation results.

B. INFLUENCE OF THE PARAMETER γ
The proposed adaptive force, which is constructed by using
global information of image, plays a key role in rejecting the
shortcomings suffered by local region-based models. In the
following experiment, we show the effect of parameter γ on
the proposed model. Fig. 15 shows the segmentation results
under the parameter γ , which is set to be 0.05, 0.1, 0.2, 0.3
and 0.4, respectively. It can be seen that two images are cor-
rupted by intensity inhomogeneity and the proposed model
obtain the desirable results by setting γ = 0.05 and γ = 0.01.
However, the objects cannot be segmented successfully in
other cases. In fact, the parameter γ should be set according to
the image. In general, If the image contains severe intensity
inhomogeneity, a small value γ should be chosen, and vice
versa. Fortunately, γ = 0.05 works well on all tested images
in this paper.

VI. CONCLUSION
In this work, a fuzzy local-region based ACM is presented
to segment images with intensity inhomogeneity. The pro-
posed model has some advantages over several famous mod-
els due to the following reason. Firstly, the defined fuzzy
local fitted images effectively reduces a large number of
undesired background information and fits the target objects
well. Secondly, the proposed weighting method based on the
edge indicator, which is defined on fractional-order diffu-
sion, provides underlying boundaries of the target objects
and helps the proposed model to segmentation images with
weak boundaries. Thirdly, the local FSPF makes the evolving
curve automatically move toward the boundaries of the target
objects. Finally, the global FSPF prevents the proposedmodel
from falling into local minimum and allows ourmodel to have
more flexible initialization method. Moreover, the level set
evolution can start with a constant function. Experimental
results demonstrate that the desirable performance of our
model for segmenting both synthetic and real images with
intensity inhomogeneity in terms of accuracy. But the pro-
posed model cannot work well on the images when a large
part of the target object is very similar to the background
region.
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APPENDIX A. PROOF OF THEOREM A
Proof: In ω, we get

a− u1(x)c1 − u2(x)c2 = u1(x)(a− c1)+ u2(x)(a− c2)

=

2∑
i=1

ui(x)

∫
�
[ui(x)]m(a− I (x))dx∫

�
[ui(x)]mdx

=

2∑
i=1

ui(x)

∫
�\ω

[ui(x)]m(a− b)dx∫
�
[ui(x)]mdx

= (a− b)
2∑
i=1

ui(x)

∫
�\ω

[ui(x)]mdx∫
�
[ui(x)]mdx

(A.1)

But also the following facts
2∑
i=1

ui(x)

∫
�\ω

[ui(x)]mdx∫
�
[ui(x)]mdx

> 0 (A.2)

Therefore
sign(a− u1(x)c1 − u2(x)c2) = +sign(a− b) (A.3)

Similarly, In �\ω

sign(b− u1(x)c1 − u2(x)c2) = −sign(a− b) (A.4)

From (A.3) and (A.4), we get

sign(spfG(I (x)) =

{
+sign(a− b), in ω
−sign(s− b), in � \ ω

(A.5)

This completes the proof.

APPENDIX B. PROOF OF THEOREM B
Proof: Let Q =

∫
�
Kσ (x − y)[u1(y)]mdy, q =

∫
ω
Kσ (x −

y)[u1(y)]mdy, P =
∫
�
Kσ (x − y)[u2(y)]mdy, p =

∫
ω
Kσ (x −

y)[u2(y)]mdy. Thus, by (19), we have

m1(x)

=

∫
�
Kσ (x − y)I (y)[u1(y)]mdy∫
�
Kσ (x − y)[u1(y)]mdy

=

a
∫
ω
Kσ (x − y)[u1(y)]mdy+ b

∫
�\ω

Kσ (x−y)[u1(y)]mdy∫
�
Kσ (x−y)[u1(y)]mdy

=
aq+ b(Q− q)

Q
=

(a− b)q+ bQ
Q

(B.1)

m2(x)

=

∫
�
Kσ (x − y)I (y)[u2(y)]mdy∫
�
Kσ (x − y)[u2(y)]mdy

=

a
∫
ω
Kσ (x − y)[u2(y)]mdy+ b

∫
�\ω

Kσ (x−y)[u2(y)]mdy∫
�
Kσ (x−y)[u2(y)]mdy

=
ap+ b(P− p)

P
=

(a− b)p+ bP
P

(B.2)

Therefore, in ω, we get
a− m1(x)u1(x)− m2(x)u2(x)

= (a− b)
[
Q− q
Q

u1(x)+
P− p
P

u2(x)
]

= (a− b)
(
1−

[
q
Q
u1(x)+

p
P
u2(x)

])
(B.3)

in �\ω, we have

b− m1(x)u1(x)− m2(x)u2(x)

= −(a− b)
(
q
Q
u1(x)+

p
P
u2(x)

)
(B.4)

Since u1(x), u2(x) ∈ [0, 1] and u1(x)+ u2(x) = 1, therefore

0 <
q
Q
u1(x)+

p
P
u2(x) =

p
P
< 1 (B.5)

Hence

sign(a−
2∑
i=1

ui(x)mi(x)) = +sign(a− b) (B.6)

Similarly, In �\ω

sign(b−
2∑
i=1

ui(x)mi(x)) = −sign(a− b) (B.7)

From (B.6) and (B.7), we get

sign(spfL(I (x)) =

{
+sign(a− b), in ω
−sign(s− b), in � \ ω

(B.8)

This completes the proof.
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