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ABSTRACT The poor quality of optical imaging caused by the complex and varying underwater envi-
ronment is a significant challenge to underwater target recognition. Moreover, the insufficiency of relevant
datasets may lead to the overfitting problem in target recognition models based on deep learning. Taking
the instance segmentation of three underwater creatures (echinus, holothurian, and starfish) as an example,
we propose a new method for recognition of underwater creatures. It combines the MSRCR (multi-scale
Retinex with color restoration) image enhancement algorithm and the Mask R-CNN (region-based con-
volutional neural work) framework, and achieves a mAP (mean average accuracy) value higher than 90%
on a small sample dataset. This method consists of three major steps. First, the dataset with 84 images is
augmented (flip, adding noise, and GAN (generative adversarial networks)) to 430 images, and all images
are enhanced with MSRCR to improve their qualities; Second, the model is pre-trained on the COCO
(Microsoft common objects in context) dataset to shorten the training time and overcome overfitting; Finally,
the pre-trained model is transferred to the underwater dataset, and the whole training process is completed.
We achieve 97.46% precision and 94.52% recall, and the mAP (intersection over union (IOU) = 50) is
94.84%. The effectiveness of the proposed method is verified by comparing it with several popular target
recognition models, including SSD (Single Shot Detector), YOLOvV3 (You only look once), original Mask

R-CNN, and a SIFT-based (Scale-invariant feature transform) model.

INDEX TERMS Object recognition, mask R-CNN, image enhancement, underwater creature.

I. INTRODUCTION

Seventy-one percent of the Earth’s surface is occupied by
oceans, which contain rich resources [1]. Due to human
physiological limits, people usually need the assistance of
underwater vehicles with different functions to complete
long-term underwater works [2], [3]. During the working
process of underwater vehicles, correct detection and iden-
tification of underwater targets are essential for its safety and
efficiency. Hence, an underwater vehicle is usually equipped
with an optical vision system or imaging sonar system to
capture underwater environmental information. The optical
vision system can acquire more interpretable information
compared with the imaging sonar system, and it is more con-
ducive to enhancing the recognition capability and automa-
tion of underwater vehicles [4], [5]. Underwater optical
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imaging is more demanding on photography equipment than
conventional optical imaging, requiring dedicated lens, flash,
image sensors, and so on. Common underwater photogra-
phy equipment ranges from the amateur-grade devices such
as GoPro to professional-grade devices such as HY-CR109.
However, even with dedicated equipment, the quality of
underwater imaging is still inferior to conventional imaging.

The poor quality of underwater imaging results from the
selective absorption of light (water hindering the propagation
of red and yellow light the most, and the propagation of blue
and green light the least) and the scattering of light (resulting
from the impurities and the flow of water). A similar issue
is imaging on foggy days [6]. Actually, underwater imaging,
together with extreme weather imaging, including rain, fog,
and snow, can be classified into non-uniform media imaging.
Besides, infrared imaging [7] is similar to underwater imag-
ing in the sense of selective absorption of light (selecting the
infrared light artificially).
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Compared with the other non-uniform media imaging,
underwater imaging tends to be persistent and typical. With
the aforementioned factors resulting in color attenuation, blue
or green color tone, noise, and bright spots in underwater
images, great challenges present for underwater target detec-
tion and instance segmentation.

To detect moving underwater targets, Jie et al. [8] referred
to frog eyes and proposed a hierarchical background model
from the perspective of bionics. Considering limited under-
water computing resources, Yiru et al. [9] proposed a fast
method to segment underwater images using the improved
Markov random field model combined with the hard clus-
tering means. To further solve the problem of low-visibility
conditions underwater, Dark Channel Prior, wavelet trans-
form kernel, and hierarchical multi-scale decomposition
algorithms were integrated to segment images in [10].
Srividhya [11] initialized the number of clusters of a Gaussian
mixture model to recognize fish, and used inner distance
shape matching to improve recognition accuracy.

Although the above methods without involving deep learn-
ing have made some progress in certain specific situations,
but due to the series of problems underwater images tend
to have compared with general optical images, it is still
difficult to achieve satisfactory recognition rate for under-
water creatures. With the rise of deep machine learning,
Alex et al. [12] proposed a remarkable deep CNN model
whose accuracy took the first place in ILSVRC2012. Since
then, deep learning has become a new methodology for under-
water biological target recognition, especially multi-target
multi-class underwater target detection. In [13] and [14],
the multi-domain collection of datasets was applied to train
deep learning models for detecting fish. This method can
expand the dataset, but can easily cause the problem of data
imbalance. Hongwei et al. [15] proposed a deep architecture
to recognize the live fish in the water by combing CNNs,
principal component analysis, block-wise histograms, spatial
pyramid pooling, and linear SVM (support vector machine)
together. In their method, masks of fish instead of the original
images were fed to the architecture. In [16], the outputs of the
Gaussian mixture model and optical flow algorithm, together
with greyscale fish image, were fed to CNNs and RPN (region
proposal networks) instead of RGB images. The model
worked well on multi-target detection, but only for binary
classification. Wenwei and Shari [17] proposed a deep learn-
ing architecture, and YOLO was applied for training to recog-
nize the fish in underwater videos using three very different
datasets, which were recorded on real-world water power
sites. Nevertheless, they only achieved a mAP of 0.5392.
Hai et al. [18] applied the Faster R-CNN [19] to autonomous
underwater vehicle to detect marine fishes. Its adaptability
to the changes of marine environment was significant, but
the good results were achieved with fixed point observation
and relatively good water quality. Tayyab er al. [20] used a
32-layer CNN to classify the fish. Their method was effective,
but it was only used for high-quality fish image classification,
and could not detect fish in images.
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To improve the recognition accuracy of underwater targets,
some special problems of the underwater images, such as
poor image purity, loss of detail, and blue or green color
tone need to be dealt with. Several image enhancement tech-
niques, including Dark Channel Prior, wavelet transform ker-
nel algorithms were integrated to segment underwater images
on low-visibility conditions in [10]. And in [21], the MSR
(multi-scale Retinex) was adopted to enhance underwater
images for improving detection, and it is the predecessor of
MSRCR [22].

It is well known that models based on deep learning
are prone to small sample overfitting problems. Different
from the conventional images acquisition on land, the acqui-
sition of underwater images requires professional equip-
ment and personnel, including underwater photographers
and lifeguards. Furthermore, when faced with an under-
water scene, the complex and varying environments often
lead to unsatisfactory imaging. Hence, available datasets
for target recognition of underwater creatures are rather
rare which results in scarce underwater deep learning meth-
ods [15]. Additionally, even though a few datasets are avail-
able, most of them are only used for fish target recogni-
tion [13]-[20]. Only a few works of literature are focusing
on other underwater objects except fish. In [21], holothurians
have been detected with the pruned SSD algorithm [23].
Mahmood et al. [24] combined hand-crafted features with
VGG (visual geometry group network) [25] representations
to classify coral reefs, and achieved a state-of-art classifica-
tion accuracy on the MLC (Moorea Labelled Coral) dataset.
Shuo et al. [26] used MobileNetV2 [27] as the backbone of
SSD to detect crabs fast, and they also replaced the stan-
dard convolution with depthwise separable convolution. The
speed of their method reached over 70 frames per second.
Vitjan et al. [28] applied a deep encoder-decoder network to
detect jellyfish polyp on a small sample dataset, but their
images are clear, high resolution with 4288 x 2844 pix-
els. The methods in [26] and [28] are both only for binary
classification.

To address the problem of insufficient sample, artificial
images were applied to expand datasets in [29], and a deep
model based on SegNet [30] was trained with the annotated
artificial images. Hubert and Ganesh [31] proved that using
GAN to generate images for training can improve the robust-
ness of deep models. Benjamin et al. [32] demonstrated that
using GAN to enlarge dataset can improve the recognition of
handwritten digits.

In 2019, Jian et al. introduced a dataset called Marine
Underwater Environment Database [33], and this dataset con-
tains hundreds of object categories, benefitting the develop-
ment of underwater vision technology. But, it is a pity that
this dataset is in particular for saliency detection [34], which
only pays attention to salient objects but not all objects and it
does not concern the classification of objects.

In conclusion, insufficient datasets, together with poor
quality of images, result in difficulties in underwater target
recognition based on deep learning. Existing studies rarely
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achieve high recognition accuracy, especially for multi-target
multi-class recognition. Therefore, underwater images must
be enhanced, reconstructed, and augmented [35], so as to
narrow the gap with conventional images.

To consider the aforementioned factors and realize multi-
target multi-class recognition based on a small sample under-
water dataset, image augmentation and enhancement and
deep learning framework are integrated to develop a method
with Mask R-CNN [36] as the main body in this article. The
overall structure is shown in Fig. 1.

Results

Trained Model
) I
Image Annotation Mask R-CNN

l Training weights
-------------------------- Testing Training on goc()g

Original Dataset

Image Enhancement | ————

FIGURE 1. The structure of the proposed method.

Three Annotated & Augmented
Datasets with Different
Enhancement Algorithms

The main contributions of this article are as follows:

1) MSRCR is integrated with the Mask R-CNN frame-
work to enhance images before training so as to improve
recognition accuracy. It is demonstrated that an appropriate
enhancement algorithm can benefit the recognition accuracy
in underwater scene.

2) The problem of overfitting caused by a small sample
dataset is addressed by data augmentation and transfer train-
ing. We also apply GAN to generate images for augmentation.

3) The mask branch is used to determine the attribution
of each pixel, and instance segmentation for an underwater
environment is accomplished.

The rest of this article is organized as follows.
Section 2 briefly illustrates the principles of the algorithms
used in this article, including MSRCR and Mask R-CNN;
Section 3 presents experimental details of the proposed
method; Section 4 shows the comparative experimental
results; and Section 5 draws the conclusions.

Il. ALGORITHM PRINCILPE OF MSRCR AND MASK R-CNN
Underwater images usually have a variety of defects, such
as uneven illumination, low contrast, poor purity, loss of
detail, and blue (green) color tone. Through enhancement
processing, the perception gap between underwater images
and conventional images can be reduced, thus it can improve
the accuracy of Mask R-CNN. The principles of MSRCR and
Mask R-CNN are described as follows.

A. MSRCR ALGORITHM

MSRCR was developed from Retinex by Land [37], and we
replace the color restoration function of MSRCR for better
performance. The essence of Retinex is that the image is

172850

represented by the product of the illuminating component and
the reflected component, as shown in (1):

I(x,y) =R(x,y) L(x,y) ey

where I(x, y) represents a pixel value of the image acquired
by cameras (reflection component), and (x, y) are the coor-
dinates of a pixel; R(x, y) corresponds to the high-frequency
component of the pixel, which is independent of illumina-
tion, indicating the original appearance of an object; L(x, y)
corresponds to the low-frequency component of the pixel,
indicating the illumination component.

MSRCR extends MSR by adding color restoration which
is crucial for dealing with blue (green) color tone. The image
obtained by MSR processing is shown in (2):

N
Risr (x, )=y Wy llgl (x, ) —Ig [F (x,y) I (x, )]} (2)

n=1

where the difference between the logarithms of the two sides
of (1) is employed. W, is the weight of the n-th scale, N is the
number of scales [22], R;,;s-(x, y) is a pixel value of the image
after multi-scale processing, and F(x, y) is a Gaussian func-
tion. The illumination component is obtained by convolving
the Gaussian function with the input image.

After enhancement, a color image tends to be color
distorted. We can form an improved algorithm, MSRCR,
by adding a color restoration processing, as shown in (3):

C(xvy)'Rmsr (x,)’) (3)

where C(x, y) is the color restoration function. For faster
speed and better color recovery, the restoration function used
in this article is redefined, as shown in (4):

Cyy=g-[lga-Tx,n+H-I'(x,] @&

where the gain constant g and controlled nonlinear « are
hyperparameters to be determined empirically. Through
experimentation, their values are set to 1 and 128 respectively
to cope with an underwater scene. I’ adds two channels to I”,
and the values of newly added channels are all zero. The
expression of I” is shown in (5).

Rusrer (x,y) =

3
1" (x,y) =1lg [Zu (x,y)} +3 (5)
i=1

The color-restored image also needs to be quantized to
the interval [0, 255]. This article uses the linear quantization
method, as shown in (6).

Rinsrer — min

max — min

image = Clip ( X 255) (6)

In (6), Clip represents a shear function that clips values
outside [0, 255] to the boundary of the range. The values of
min and max are calculated as (7):

(N

min = mean — dynamic - std
max = mean + dynamic - std
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where mean is the mean of all pixels in Ryscr, Std is the
standard deviation of pixels, and dynamic is a hyperparam-
eter. A smaller dynamic value can produce higher contrast.
Normally, its value is 3.0, and it was set to 2.5 for better visual
perception in this article.

B. MASK R-CNN FRAMEWORK

Mask R-CNN is a highly versatile instance segmentation
framework derived from Faster R-CNN [19]. The training
process of Mask R-CNN is briefly depicted in Algorithm 1,
and the more detailed descriptions are in the following.

Algorithm 1 Training Process of Mask R-CNN

For each image in training set:
1: Send a new image and use CNNs to extract different
scales of feature maps;
2: Combine the extracted feature maps to form a feature
pyramid;
3: Traverse the feature pyramid and propose regions of
interest;
4: Perform bounding regression and foreground & back-
ground classification on the regions of interest;
5: Map the regions of interest with higher scores to the
feature map extracted by CNNs, and do normalization for
unified processing;
6: Do bounding regression and classification on the
mapped feature maps;
7: Assign the pixels in the regressed regions to decide
whether it belongs to an object or not;
8: Calculate the loss based on ground truth and update the
weight by stochastic gradient descent;

End For

Repeat the For loop until the end of the last epoch.

Head Network

;/ Target \
| Classification
|

| =

SO i Bounding

—~ ! Regression
|
|
|
i
\

\
N /

Feature Map

Anchors

y T
o T

FIGURE 2. Architecture of mask R-CNN.

The structure of Mask R-CNN is illustrated in Fig. 2.
It consists of the backbone network, the feature fusion net-
work, the RPN, the RolAlign (Region of Interest Align),
and the head network. The backbone network, also known
as the feature extraction network, is used to extract features
of different scales from images. The extracted features are
called a feature map. For the extraction of feature maps of
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FIGURE 3. Process of feature fusions. Conv represents the convolutional
operation. @ denotes the addition of feature maps of the same scale at
the pixel level. x2 represents up-sampling (deconvolution) with
maghnification being 2. P2-P6 is the feature pyramid. P6, the output of
maximum pooled down-sampling, is used only in RPN.

different scales with rich semantic information, the back-
bone network usually adopts a deep convolutional network,
such as VGG [25], Inception [38], or ResNet (deep residual
networks) [39]. The selected deep convolutional network is
divided into five stages, and five different scales of fea-
ture maps are output from each stage, which are recorded
as C1-C5, as shown in Fig. 3. These feature maps of different
scales are sent to the feature fusion network after being
processed by a 1 x 1 256-channel convolution kernel. The
feature fusion network used in Mask R-CNN is an FPN (fea-
ture pyramid network) [40], which superimposes features of
different scales from small to large in the form of a pyramid,
taking both feature accuracy and rich feature information into
account. Finally, FPN outputs the merged features P2—P6.
The specific process is depicted in Fig. 3.

RPN proposes a large number (about 20000) of Rols
(regions of interest) from the feature map, which is the
first stage of the two-stage detection. The Rols proposed
at this stage are derived from the anchor method [19]. The
specific steps include foreground and background classifi-
cation, border regression, and a non-maximum suppression
algorithm [41] to remove repeated anchor boxes. First, for
each point on the five feature maps P2-P6, several anchor
boxes are generated according to different aspect ratios and
scales. The aspect ratios are usually 1:1, 1:2, and 2:1. Then,
the anchor boxes are fed into two fully connected layers
to get foreground and background scores, the offsets of the
center point, and the zoom ratios of width and height. The
foreground and background classification of anchor boxes are
obtained by Softmax. Finally, a part of anchor boxes with the
highest foreground score is selected for bounding regression,
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as shown in (8):

X =x+Ax xw

Y=y+Ayxh
W =hx et ®)
W =w x eAV

where x, y, h, w denote the center point coordinates, height,
and width of the anchor box before adjustment, respectively.

Ax, Ay, Ah, Aw

denote the offsets of coordinates and zoom ratios of the
bounding box, respectively. x’,y', i/, w’ denote the coordi-
nates, height, and width of the anchor box after adjustment,
respectively. The box borders that are beyond the boundary
of the image are clipped and the repeated anchor boxes are
removed by non-maximum suppression. After the above three
steps, Rols are screened out.

The sizes of Rols proposed by RPN are not consistent,
so the Rols need to be normalized for uniform processing.
In Faster R-CNN, RolPool [19] is used for normalization.
This method includes two quantization processes: mapping
the anchor boxes in the picture to feature maps, and nor-
malizing feature maps to a uniform size. However, because
of the down-sampling, quantization is bound to cause pixel
deviation. In Mask R-CNN, RolAlign replaces RoIPool to
ensure pixel-to-pixel alignment between network inputs and
outputs. First, the level k of Rols is determined according to
its width and height, as shown in (9):

k = ko + loga(v/'wh/so) )

where, ko and so represent the reference level and reference
area, respectively. They are set to 4 and 224 in [36]. For
pixel-point matching, bilinear interpolation is used to convert
floating-point coordinates to image values, as shown in Fig. 4.
Then, the corresponding Pk (k = 2 to 5) is selected from the
feature maps P2-P5 for feature extraction.

Feature Map

% /

Bilinear Interpolation

O o =

Extracted Feature Map

FIGURE 4. Bilinear interpolation resolves boundary mismatching. Values
of the blue points are obtained based on the values of surrounding
points.

The feature maps processed by RolAlign are fed into
the final head network, including the classification branch,
the bounding-box regression branch, and the mask branch.
The classification branch and bounding-box regression
branch are consistent with those in the RPN network, thus
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FIGURE 5. Mask branches to decide the assignment of pixels.

are not repeated here. The input of the mask branch is the
bounding-box of the second regression, and the output is a
mask. Specifically, first, feature maps P2—-P5 are processed
by RolAlign; second, the processed feature maps are fed
into four convolutional layers and one up-sampling layer;
finally, a fully connected layer is used to output the mask.
The specific process is shown in Fig. 5.

After these steps, for a specific input picture, an instance
segmentation result with accurate bounding boxes, object
types, and object masks can be output.

Ill. IMPLEMENTATION DETAILS

To deal with the challenges of underwater scenes and a small
sample dataset, some measures are taken in image processing
and model training to manage overfitting, improve accuracy,
and save computing resources. The following paragraphs
outline the specific implementation details of the proposed
method.

A. OVERFITTING MANAGEMENT

To manage overfitting, augmentation is adopted in the prepro-
cessing of the dataset, and transfer learning, freeze training
are adopted during training.

The underwater images used in this article are selected
from the underwater robot competition UPRC2018 [42]. The
whole dataset contains three types of underwater creatures:
echinus, starfish, and holothurian, and it presents complex
scenes, such as fickle shades, blue or green color tone, and
non-uniform sizes, as shown in Fig. 6.

There are only 84 images in the initial dataset (echinus:
183; starfish: 172; holothurian: 149). Thus, the data augmen-
tation is applied to extend the dataset to reduce overfitting.
First, we adopt SinGAN [43] to generate hundreds of images
from the initial dataset, and the most part of generated images
differ from the real world a lot because of the poor quality
of the initial images. We pick up 29 images which are close
to the real world to extend the dataset, some of which are
shown in Fig. 7. Then, the images are flipped upside down
and left to right with a 50% probability. Last, Gaussian noise
is added to each image with its mean value being 0, and its
variance being 255 x 0.02. The specific effect is shown in
Fig. 8. After augmentation, a final dataset which consisted
of 430 images is acquired. Specifically, the dataset contains
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FIGURE 6. Some representative images in UPRC2018. These images are
also used in our datasets.

FIGURE 7. Images generated by GAN.

782 echini, 720 starfishes, and 760 holothurians, totaling
2262 creatures. The VIA (VGG Image Annotator) [44] is
used for annotation, and annotated information is saved as
a JSON (JavaScript object notation) file.

Deep learning is prone to overfitting in the case of a small
sample dataset. Except the data augmentation, this issue can
also be managed to some extent by using the training weight
of COCO dataset for transfer learning and freezing the train-
ing weights of C1-C4 (as shown in Fig. 3) during the training
process.

B. IMAGE ENHANCEMENT

With the influence of water flow, impurities, and uneven
light, underwater images tend to have many problems com-
pared with typical images, resulting in difficulties in detection
and recognition. To address this issue, we compare several
image enhancement algorithms, including CLAHE (contrast
limited adaptive histogram equalization) [45], Dark Channel
Prior [46], and MSRCR. The effects of the three algorithms
are shown in Fig. 9.
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FIGURE 9. Original images and enhanced images.

As can be seen from Fig. 9, MSRCR effectively eliminates
the problem of blue or green tone, and has the best visual per-
ception. To quantify their effects, the comentropy, contrast,
and sharpness are calculated based on grayscale.

The calculation of comentropy is shown in (10):

255
1
Comentropy = N E E P (i) log2P (i) (10)
i=0

where, Num represents the number of images, and P(i) repre-
sents probability of pixel value i.
The calculation of contrast is shown in (11):

1 .
Contrast = ~—— > Zsja i,)%- P (8) 11)

where (i, j) represents the difference between two adjacent
pixels i and j, and P(§) represents the probability of the
difference §.

The calculation of sharpness is shown in (12).

1
Sharpness = N Z (ZY ZX 0 (x, y))
Q) =lf e, =f @+ Lyl-If (e, y)—f (x,y+ D
(12)

where Y and X represent the height and width of an image,
and f (x, y) represents the value of pixel (x, y).
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TABLE 1. Comentropy, contrast and sharpness. And their values are
standardized processed with original dataset as baseline.

Dataset Comentropy  Contrast Sharpness ~ Mean
Original 1 1 1 1
Dark Channel 1.068 1.047 0.783 0.966
CLAHE 1.089 1.078 1.186 1.118
MSRCR 1.121 1.109 1.689 1.306

The results of the aforementioned quality measures are
shown in Table 1, where MSRCR presents the highest score.

Additionally, the RGB histograms are presented to demon-
strate the balanced distribution of MSRCR in Fig. 10.

As can be seen in Fig. 9 and Fig. 10, the images with
MSRCR show a balanced color distribution effect, and the
green channel of Dark Channel Prior rise sharply to near
70000 after the color value of 250, which results in greenish
images. Since MSRCR can make the color distribution more
balanced while having the best visual perception and the best
scores of quality measures, MSRCR is chosen for enhancing
the underwater images.

The scale N of MSRCR is set to 3 to balance the running
speed and enhancement effects. The dynamic is set to 2.5,
and the three dimensions of Gaussian function are set to 2,
52, and 152, respectively. The final enhancement effects are
shown in Fig. 11. Besides, in this article, the MSRCR is
embedded into Mask R-CNN to ensure continuity from image
enhancement to model training.

C. IMPLEMENTATION OF MASK R-CNN

We extend the Matterport’s Mask R-CNN framework [47]
by adding several aforementioned image processing algo-
rithms, such as MSRCR, CLAHE, Dark Channel Prior, flip,
and adding noise. The whole framework runs in a Ten-
sorflow, Keras, and OpenCV environment. The batch size
is 2, image resize shape is 768 x 768, mini-mask shape is
56 x 56, the number of training Rols per image is 200, and
the training epoch is 60. The configuration of the hardware
is as follows. CPU: Intel i3-7100; GPU: Nvidia GeForce
1060 6GB; Memory: dual-channel 16GB DDR4; Operation
system: Windows 10. The training time is approximately
19 hours.

Because computing resources are usually limited in under-
water vehicles, both real-time performance and accuracy are
important. We choose ResNet50 as the backbone, and use the
mini-mask method to compress annotation information for
saving memory. The mini-mask is a lossy compression that
adjusts the mask information to a smaller size and restores
it when needed. Using a 100 x 100 mini mask instead of
a 1024 x 1024 mask can save more than 99% of mem-
ory at the cost of losing pixel segmentation accuracy. The
specific performance loss will be discussed in the follow-
ing section. The principle of the mini-mask is illustrated
in Fig. 12.
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FIGURE 10. RGB histograms. The horizontal axis represents the RGB
level, ranging from 0 to 255, and the vertical axis represents the number
of pixels.

IV. RESULTS AND DISCUSSIONS

We verify the effectiveness of the proposed method by com-
paring the test results of some popular target detection mod-
els with the results of the proposed method on our dataset.
The comparative models include a target detection model
based on SIFT and the deep learning methods: SSD [23],
YOLOV3 [48], and Mask R-CNN (MRCNN). Additionally,
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(a) Original (b) MSRCR

FIGURE 11. Enhancement effects of MSRCR.
TABLE 2. Recognition accuracy of the proposed method and the other

methods, calculated based on region. FPS is the number of pictures
detected per second.

Model Recall/% Precision/% mAP(IOU50)/%  FPS
SIFT 3.97 100 2.87 0.56
SSD 69.10 79.41 70.62 3.66

YOLOvV3 76.56 89.62 79.01 10.67
MRCNN 83.95 94.66 84.63 0.74
Proposed 94.52 97.46 94.84 0.69

we apply five-fold cross-validations on the augmented dataset
for each model. The specific results are shown in Table 2.

It can be seen from Table 2 that the proposed method has
the highest mAP and Recall. Compared with Mask R-CNN,
the mAP of the proposed method increases by 12.06% at the
expense of a 6.8% reduction in speed. The SIFT-based model
achieves a 100% precision, but it is far worse than deep
learning models in mAP and Recall, and its speed is the
slowest. The main reason for its low speed is that it runs
on a CPU, whereas the other deep models run on a GPU.
Therefore, the speed of SIFT-based model is only used for
references.

The mask precision of the proposed method is 43.31,
which is similar to the result in [36]. However, as a result
of using the mini-mask, along with the nature of underwater
creatures, especially the echinus, the contour edges are not
clear, including many protrusions and depressions that cause
inaccuracies in the annotation. Therefore, the mask preci-
sion is only used for reference as well. The final effect of
instance segmentation is shown in Fig. 13, whose correspond-
ing precision-recall is shown in Fig. 14.

As can be seen from Fig. 13, the performance of detection
and segmentation are satisfactory. The pixel segmentation
of the echinus contour edge is not as satisfactory owing to
the appearance characteristics of echinus and the annotation
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FIGURE 12. Mini-mask converts a 10 x 10 mask to a 5 x 5 mask.

Y

i

FIGURE 13. Results of classification and instance segmentation finished
by the proposed method.

Precision-Recall Curve. AP(IOU=50) = 0.857

Precision(%)

o

Recall(%)

FIGURE 14. Precision-recall curve (corresponding to Fig. 13).

deviation mentioned above. The only missed one is a starfish,
whose body is shown in the lower-left corner incompletely.

The effectiveness of the augmentation, which is used to
reduce overfitting, is also verified by experiments, as shown
in Table 3. Obviously, image augmentation has a positive
impact on recognition accuracy. The effect of GAN, which
consumes a lot of computing resources, is not distinct. This
may be caused by the small number of added images.

As for the loss, without augmentation, the training loss
decreases faster and stabilizes at a smaller value, but its test
loss keeps vibrating, as shown in Fig. 15 (a). It indicates
that the model without augmentation has a higher degree and
faster speed of fitting, but its result becomes worse during
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TABLE 3. Recognition accuracy with and without augmentation.

TABLE 4. Recognition accuracy with different enhancement algorithms.

Augmentation Recall/% Precision/% mAP/%
None 70.84 88.50 70.65
Only GAN 71.43 88.69 71.72
All 83.95 94.66 84.63
—Traning loss with augmentation =~ —Test loss with augmentation
—Traning loss without augmentation—Test loss without augmentation
15
S
0.5
0
! Epoch o
(a) Loss with respect to epoch
—Test accuracy with augmentation — Test accuracy without augmentation
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~ ~ :
06 / '\!/
& /J
<
a 0.4
|
|
0.2 //

Epoch
(b) Test mAP with respect to epoch

FIGURE 15. Loss and mAP with respect to epoch. On the augmented
dataset and non-augmented dataset.

testing. As shown in Fig. 15 (b), the accuracy without aug-
mentation peaks faster (at the 9th epoch) than the augmented
one, and then remains in a lower position. This case demon-
strates that, to some extent, an augmented dataset is less likely
to be overfitted during training, or the degree of overfitting is
relatively small.

In addition, through comparative experiments of different
enhancement algorithms, it is demonstrated that all three
enhancement algorithms can benefit the feature extraction in
an underwater environment. The results are shown in Table 4.

It can be seen that the result of the Dark Channel Prior
is the worst among these three algorithms, which is in line
with the expectation. The poor performance may be caused
by the fact that its primary function is defog inland. Even
so, all three algorithms achieve better results than experi-
ments without enhancement, which verifies that an appro-
priate enhancement algorithm can bring about better training
result of CNNG.
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Enhancement  Recall/%  Precision/% mAP/%
None 83.95 94.66 84.63
Dark Channel 87.03 96.59 87.45
CLAHE 89.92 97.69 91.62
MSRCR 94.52 97.46 94.84

TABLE 5. Influences of mini-mask.

Mini-mask Recall/%  Precision/% mAP/% Training time
No 95.64 97.13 96.45 24.9 hours
Yes 94.52 97.46 94.84 19.0 hours

Finally, through the comparative experiment, it can be
found that the result with the mini-mask is not significantly
different from the result without the mini-mask. Meanwhile,
a large amount of memory is saved and the training speed is
improved by 31.05%. Specific results are shown in Table 5.

V. CONCLUSION

This article proposes an object detection and instance seg-
mentation method that incorporates the MSRCR enhance-
ment algorithm into the Mask R-CNN framework to detect
and segment underwater creatures on a small sample dataset.
Through comparative experiments, it is shown that the accu-
racy of the proposed method is improved compared with a
conventional method (SIFT) or popular deep learning meth-
ods (SSD, YOLOvV3, Mask R-CNN). Additionally, by testing
different enhancement algorithms, this article demonstrates
that appropriate image enhancement algorithms can improve
the accuracy of deep learning models in an underwater sce-
nario with small sample datasets. This improvement is pro-
portional to the objective assessments of the images. Besides,
the effectiveness on reducing overfitting of the augmentation
methods (flip, adding noise, GAN) was validated too.

This article provides a viable solution to the development
of an underwater optical vision system. However, consider-
ing the scarcity of computing resources in the underwater
condition, the practical application of the proposed method is
still challenging because of its low speed. Besides, like most
underwater optical vision systems, this method is not suitable
for long-distance underwater object recognition. In future
work, we will strive to improve the computational efficiency
of the model and continue to expand our dataset.
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