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ABSTRACT Agricultural irrigation developments have gained attention to improve crop yields and reduce
water use. However, traditional irrigation requires excessive amounts of water and consumes high electrical
energy to schedule irrigations. This paper proposes a fuzzy-based intelligent irrigation scheduling system
using a low-cost wireless sensor network (WSN). The fuzzy logic system takes crop and soil water
variabilities into account to adaptively schedule irrigations. The theoretical crop water stress index (CWSI)
is calculated to indicate plant water status using canopy temperature, solar irradiation, and vapor pressure
deficit. Furthermore, the soil moisture content obtained by a capacitive soil moisture sensor is used as a
determination of water status in soil. These two variables are thus incorporated to improve the precision of
the irrigation scheduling system. In the experiment, the proposed irrigation scheduling system is validated
and compared with existing conventional irrigation systems to explore its performance. Implementation of
this system leads to a decrease in water use by 59.61% and electrical energy consumption by 67.35%,
while the crop yield increases by 22.58%. The experimental results reveal that the proposed irrigation
scheduling system is effective in terms of precision irrigation scheduling and efficient regarding water use
and energy consumption. Finally, the cost analysis is performed to confirm the economic benefit of the
proposed irrigation scheduling system.

INDEX TERMS Crop water stress index (CWSI), fuzzy logic system, irrigation scheduling, wireless sensor
network (WSN), soil moisture content.

I. INTRODUCTION
Agricultural irrigation always receives attention as an impor-
tant application for the purpose of crop cultivation and
production. A reliable and suitable irrigation water supply
can significantly raise vast improvements in agricultural
productivity and water savings. Clearly, traditional irriga-
tion consumes not only bulk amounts of water, but elec-
trical energy may also be required greatly, depending on
the geographical location. The traditional irrigation practice
involves applying water as uniformly as possible over every
part of the field without taking the variability of soil and
crop water needs into account. Consequently, some parts
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of the field are over-irrigated, meanwhile, other parts of
the field are under-irrigated [1]. In addition, variable rate
irrigation (VRI) provides the flexibility to manage spatial and
temporal variabilities within different zones of a production
field. However, the adoption of VRI is very limited, and it
does not always guarantee the best irrigation [2]. Presently,
water demands are continuously increasing, whereas water
resources are unfortunately limited. With water scarcity,
precision irrigation (PI) systems have been focused and
enabled by the advancement of sensor technologies and
the internet of things (IoT). Currently, the new paradigm
of massive measurements is represented in terms of wire-
less sensor networks (WSN). As the rapid growth of IoT,
low-power and low-complexity communications are one of
the greatest challenges faced by practitioners today. In [3],
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backscatter communication was proposed based on a bistatic
semi-passive scatter radio principle for a long-range WSN.
However, the backscatter communication has several major
limitations, such as short transmission range, low data rate,
and unidirectional information transmission [4]. Hence, due
to the development of network-based information technology,
a WSN plays a significant role in the variety of agriculture
applications. It becomes essential to integrate sensor technol-
ogy and WSN to stimulate and perform precision irrigation.
To date, along with those developments, the sensor-based
automatic irrigation system has considerably been inno-
vated and applied in widespread agriculture instead of the
traditional irrigation, leading to smart and sustainable agri-
culture. In general, irrigation scheduling systems can be
categorized into three approaches [5], i.e. (i) soil-based
approach, (ii) weather-based approach, and (iii) plant-based
approach.

In the literature, automatic irrigation and monitoring sys-
tems are typically based on a soil approach. They can be
achieved by using soil moisture content and climatic data.
The soil moisture content is used to describe the water status
in the uppermost part of a field soil [6]. The determina-
tion of soil moisture status has been considered regarding
plant-water relations [7], while the climatic data are consid-
ered to perform a model-based real-time decision support
system for irrigation systems together with the soil moisture
status, such as air temperature, air humidity, solar radiation,
and wind speed [8]. Furthermore, the smart watering system
was developed for irrigation scheduling based onBlock-chain
and fuzzy logic approach by employing economical sen-
sor devices [9]. The decision-support system of this sys-
tem mainly relied on five variables such as change rate of
temperature, change rate of humidity, intensity of light, and
change rate of moisture and type of plant. Similarly, the urban
irrigation systems were introduced in [10] aiming at saving
water and maintaining crop yields; nevertheless, the system
was simply based on a soil moisture set-point to make a deci-
sion for irrigation. The web-based application was designed
and implemented to manipulate details of crop data and
field information using soil moisture sensors. Subsequently,
the data were analyzed for the watering process and notifying
to users via mobile application [11]. The smart irrigation
system based on IoT was developed and implemented using a
low-cost soil moisture sensor. The system was applied by the
Neuron network for irrigation decisions, while the environ-
ment information can be monitored via the web-page [12].
Also, the IoT-based smart irrigation system was developed
driven by a fuzzy logic system. The system could schedule
irrigation employing soil moisture content, temperature, and
humidity. This system could provide acknowledgment mes-
sages of the job’s statuses via mobile phone [13]. Although
numerous researches have presented the irrigation scheduling
based on a soil-based approach, the irrigation scheduling
using solely soil-based approach may fail to deliver enough
amounts of water to plants as reported in [14], resulting in
severe water stress of the plant.

Besides, the weather-based approach has been developed
using environment variables and forecast methods. In [15],
the environment parameters were monitored and controlled
through WSN, including temperature sensor, humidity sen-
sor, and illumination sensor, to provide optimal crop con-
ditions. However, the above system only employed the
pre-defined threshold value of those parameters to control
irrigations. An automated greenhouse system was proposed
using an affordable weather sensor network for cultivation in
India [16]. Nevertheless, this automated greenhouse system
only employed constant thresholds for environment variables
to control the dynamic behavior of greenhousemicro-climate.
In [17], an innovative irrigation scheduling was developed
combining earth observation data, weather forecasts, and
numerical simulations to planmore precisely water allocation
in space and time in the irrigated agriculture. The differ-
ent types of weather forecasts were taken into account for
irrigation scheduling [18]. Furthermore, a new methodology
based on the use of weather forecast data was proposed to
determine irrigation scheduling [19]. The results showed that
there was only a minor difference between the proposed
weather forecast and the measured weather data. It should be
noted that there are two issues surrounding the use of avail-
able climate prediction and weather forecast for irrigation
scheduling: forecast reliability and the dissemination of the
forecast information to farmers.

For the plant-based approach, crop water stress index
(CWSI) is widely used as an estimator for quantifying plant
water status (water deficit of crops) at any local point based
on measurements of plant temperatures [20]–[22]. Basically,
canopy temperature and temperature baselines are required to
calculate an empirical CWSI. The temperature baselines can
be obtained by artificial crop reference surfaces, while the
canopy temperature can be measured directly by an infrared
temperature sensor. To avoid the artificial crop reference
surfaces, a temperature baseline prediction has been mod-
eled and developed for the CWSI calculation [23]. Based
on the empirical method, the average CWSI was used for
irrigation scheduling of bermudagrass in the Mediterranean
region [24]. CWSI in this technique was calculated based on
the empirical method adapted for practical convenience and
used to create the seasonal CWSI as a criterion for irrigation.
In [24], the effect of water stress on crop yield was also eval-
uated. Furthermore, various physiological parameters were
investigated including crop water stress index for drip and
furrow irrigated processing for red pepper in Turkey [25].
A threshold of CWSI was utilized by prior defining constant
values with day-to-day changes for drip and furrow irriga-
tion. In addition, a dynamic threshold of crop water stress
index was employed to an automatic irrigation scheduling for
apple trees. These thresholds were evaluated associated with
stem water potential and canopy-air temperature difference
during midday [14], [26]. In [26], seven irrigation schedul-
ing algorithms were also evaluated and discussed for more
accurate improvement of water use efficiency. The authors
reported that the plant-based irrigation system was able to
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deliver enough irrigation water to the plant and avoid water
stress. Moreover, CWSI could be used to measure crop water
status and to improve irrigation scheduling for broccoli. The
research indicated that the CWSI of about 0.51 before irriga-
tion was able to produce themaximum yield andwater-saving
irrigation [27]. CWSI could reliably be used in irrigation
scheduling for seed pumpkin plants. The lower limit base-
line was determined by the data of 2015 and 2016 [28].
The aforementioned researches mainly relied on predefined
CWSI thresholds to schedule irrigations; however, this could
result in improper irrigations due to the lack of farmers’
knowledge for the threshold setting. Recently, the sensitivity
analysis was applied for CWSI to explore the most influential
factors of ambient environment uncertainties to the output
variance of the index. The research reported that CWSI was
not recommended to use under shaded conditions [29].

According to the review of the current literature,
the authors have found the opportunities and challenges to
bridge the gap of design and implementation of an intelligent
irrigation scheduling system using a low-cost WSN. Particu-
larly, most of the research has utilizedmerely soil water status
or crop water variability for irrigation. Moreover, the limita-
tions of soil moisture status or crop water stress have been
addressed by [14], [26], [29], [30]. Therefore, the proposed
irrigation scheduling system simultaneously considers soil
water variability obtained by soil moisture content and crop
water variability obtained by CWSI. These two variabilities
used by the proposed irrigation scheduling system, which
give both soil and plant water status information, can improve
the precision of irrigation. However, the implementation
of precision irrigation systems, which may require a high
financial investment, is very limited, especially farmers who
have a tight budget. Thus, the development of a precision
irrigation system using commercially inexpensive WSN is
taken into account in this research. The proposed irrigation
scheduling system is divided into 3 main parts, consisting of
sensor aggregator, central controller unit, and irrigation unit.
The sensor aggregator employs the availability of low-cost
environment sensors, i.e. soil moisture content, canopy tem-
perature, air temperature, humidity, and light. The soil mois-
ture and climatic data are collected by the aggregator and
transmitted to the central controller unit via a WSN. In the
central controller unit, the solar irradiation is measured in
addition to the measured data from the sensor aggregator.
The received data are processed for noise elimination and data
averaging. Afterward, the processed data are used to calculate
the CWSI and soil moisture content. By taking the plant and
soil variabilities into account, the fuzzy system receives the
CWSI and soil moisture content to make irrigation decisions
and releases the control signal to the pump in the irrigation
unit, according to the designed fuzzy system. In the experi-
ment, the measurements are connected to measure water use
and electrical energy consumed by the proposed system. The
experimental results are evaluated to explore the effectiveness
and efficiency of the proposed system compared with the
existing systems. Furthermore, the cost analysis is performed

to evaluate the cost-effectiveness of the proposed system.
Therefore, the main contributions of this paper, that reduce
the knowledge gap between low-cost commercial available
and system designs, are listed as follows.

1) A fuzzy-based intelligent irrigation scheduling system
is designed and implemented using a low-cost WSN.

2) Crop water stress index (CWSI) and soil moisture
content are simultaneously considered as variables for
irrigation scheduling strategy.

3) The prototype of the proposed system is constructed
and validated to gather data on the performance and
functionality of the design.

4) The proposed irrigation scheduling system is experi-
mentally tested to evaluate its effectiveness.

5) The comparative study is performed to explore the effi-
ciencies of the proposed irrigation scheduling system in
terms of water use and energy consumption.

6) The cost analysis is performed to assess the economic
viability of an investment.

The remainder of this paper is organized into five main
sections. In Section II, the materials and methods are primar-
ily described. The intelligent irrigation scheduling system is
proposed in Section III. The experimental setup is performed,
and the experimental results and cost analysis are provided
in Section IV. Finally, the conclusions and discussions are
summarized in Section V.

II. MATERIALS AND METHODS
A. CROP WATER STRESS INDEX (CWSI)
Crop water stress index (CWSI) was first introduced and
widely used to measure the stress of plants regarding
water [20], [21]. CWSI can be divided into two main cate-
gories, i.e. empirical CWSI and theoretical CWSI. The empir-
ical CWSI employs the difference between the actual canopy
temperature and the non-water stressed baseline normalized
by the difference between the water-stressed baseline and the
non-water stressed baseline as calculated in Eq. (1).

CWSIE =
Tc − Tnws
Tdry − Tnws

(1)

where CWSIE is the empirical CWSI. Tc is the actual plant
canopy temperature in degree Celsius (◦C). Tnws is the
non-water stressed baseline obtained by the canopy temper-
ature of a well-watered crop transpiring at maximum rate in
degree Celsius (◦C), while Tdry is the water stressed baseline
obtained by the canopy temperature of a non-transpiring
in degree Celsius (◦C). Nevertheless, Tnws and Tdry require
additional artificial wet and dry reference surfaces, resulting
in limitations of potential use of CWSI in practical implemen-
tations.

Accordingly, the theoretical CWSI was developed and
proposed based on the prediction of temperature baselines
instead of the artificial surfaces. The theoretical CWSI can
be expressed as follows [14].

CWSIT =
1Tm −1Tl
1Tu −1Tl

(2)
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where CWSIT is the theoretical CWSI. 1Tm is the tem-
perature difference between the canopy temperature and air
temperature (Tc − Ta). 1Tl is the temperature difference
between the canopy temperature and the well-watered plant
canopy temperature, as expressed in Eqs. (3) to (6). 1Tu is
the temperature difference between the canopy temperature
and the non-transpiring plant canopy temperature.1Tu can be
calculated by assuming closed stomata for a non-transpiring
canopy and replacing gv with zero as provided in Eq. (7).

1Tl = Rn
1

γ + 1
Pa

− VPD
1

Pa(γ + 1
Pa
)

(3)

Rn = 0.25
(
αSSr + αSτSr + 4(αL − 1)La

)
(4)

γ =
2gHCP − (3αL − 4)εaσT3

a

αgv
(5)

gH = 0.189

√
u
d

(6)

1Tu =
Rn

2gHCP − (3αL − 4)εaσT3
a

(7)

where Rn is the net radiation (Wm−2). γ is the psychro-
metric constant (Pa ◦C−1). 1 is the slope of the relation-
ship between saturation vapor pressure and air temperature
(Pa ◦C−1), while Pa is the atmospheric pressure (Pa). VPD is
the vapor pressure deficit (Pa). αS and αL are the absorptivity
in the short and absorptivity in the thermal waveband (-),
respectively. gH is the air boundary layer conductance to
heat (ms−1). CP is the heat capacity of air (J mol−1 C−1). εa
is the emissivity of the sky (-). σ is the Stefan-Boltzmann
constant (J K−1). Ta is the air temperature in Kelvin (K).
qv is the vapor conductance (mol m−2 s−1). Sr is the global
solar irradiance (Wm−2). τ is the green leaf transmittance
(-). La is the atmosphere long-wave flux density computed
using the Stefan–Boltzmann equation (Wm−2). u is the wind
speed (ms−1). d is the characteristic dimension defined as
0.72 times the leaf width (-).

As given in Eq. (1) and (2), the CWSI value ranges between
0 to 1, where CWSI of 0 indicates a well-watered condition,
while CWSI of 1 indicates a water-stressed condition. There-
fore, the CWSI can be used to quantify a crop water status as
a simple indicator for irrigation scheduling.

B. SOIL MOISTURE CONTENT
Soil moisture content (θ ) is a critical variable in irrigation
management. Soil moisture content can be used for the
estimation of water in soils. Generally, soil moisture con-
tent can be determined by a gravimetric method. However,
the gravimetric method is based on a direct measure of
soil water content, which is destructive and laborious [31].
Hence, the gravimetric method is not able to use for real-time
measurement and application. In the past few decades, indi-
rect methods have been proposed and applied, relying on
various measurement techniques. Essentially, capacitance
and frequency techniques are adopted to develop a soil
moisture sensor, this type of sensor is called by a capacitive

soil moisture sensor. A capacitive soil moisture sensor uses
soil dielectric properties to determine soil moisture content.
The soil permittivity measured by a capacitive soil moisture
sensor can be obtained by inserting its electrodes into the
soil. The measured soil permittivity is then converted into
volumetric soil moisture content. The volumetric soil water
content is expressed by the volume of water in cm3 per unit
volume of soil in cm3. Hence, the volumetric soil moisture
content (θ) ranges between 0 to 100 in cm3 cm−3 or %.

Based on the capacitance and frequency techniques,
a capacitive soil moisture sensor offers various advantages
over other instruments, i.g., lower cost, continuous monitor-
ing, and data logging capabilities. Due to those advantages,
the capacitive soil moisture sensor is widely used for many
applications in agriculture.

C. NOISE FILTERING TECHNIQUE
Normally, measured data contain noises associated with the
capability of measurement devices. Prior to using the data,
the measured data should be processed to eliminate noises.
The simplest technique used for time-series data is based on
a simple moving average (SMA) to eliminate noises. How-
ever, SMA normally creates significant issues, particularly
lags. To reduce lags created by SMA, exponential moving
average (EMA) has been developed by adding exponentially
weights on historical data [32]. The EMA definition can be
provided by the following equations.

y(k) = αy(k)+ (1− α)y(k − 1) (8)

α =
2

n+ 1
(9)

where y(k − 1) is the EMA of the observed data over specific
data points in a series at a previous time instant k−1. α is the
smoothing coefficient, which is between 0 and 1. n is also the
number of data points used in EMA.

In practice, the number of data points (n) is varied based
on the type of measured data. The high fluctuating data are
smoothed with a higher number of data points, in contrast,
a small value of the number of data points is defined for the
low fluctuating data. Moreover, the smoothing technique can
compensate for missing data in case of a temporary sensor
failure or a temporary electrical system failure. Commonly,
the climatic data are defined as the high fluctuating data,
while the soil moisture content data are defined as the low
fluctuating data. In this paper, the climatic data obtained by
environment sensors are thus filtered by defining a higher
number of data points than soil moisture data.

D. STRUCTURE OF WSN
WSNs have contributed significantly to various agriculture
applications. Particularly, a WSN has applied in order to
form precision and sustainable irrigation systems. A WSN is
conceptually constituted by a number of small sensing nodes
that work in a cooperative way to sense and control the envi-
ronment surrounding them [33], [34]. The structure of WSN
is commonly composed of three components, i.e. sensor
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FIGURE 1. The structure of the proposed intelligent irrigation scheduling system.

nodes, coordinator node (gateway), and external node [33].
Sensor nodes are responsible for sensing, data collection, and
data forwarder throughwireless communication. Also, sensor
nodes should work cooperatively to form a centralized net-
work system. Afterward, the relevant data collected by sensor
nodeswill be transmitted to a coordinator node. A coordinator
node allows data communications among the network and
field devices. In a gateway, those data will be handled and
processed. Finally, the processed data will be utilized by an
external node or system. Furthermore, a coordinator node can
communicate with a cloud server for remote applications.

III. PROPOSED IRRIGATION SCHEDULING SYSTEM
A. DESIGN
According to the literature review in Section I, and materials
and methods provided in Section II, the preliminary design
of the intelligent irrigation scheduling system is presented
in Fig. 1. The proposed irrigation scheduling system consists
of 3 main parts, i.e. sensor aggregator, central controller unit,
and irrigation unit. Each part can be explained hereinafter.

1) SENSOR AGGREGATOR
In the sensor aggregator, it is responsible as a sensor node
in WSN. Environment sensors are embedded with the aggre-
gator including soil moisture sensor, air temperature sensor,
relative humidity sensor, light sensor, and infrared tem-
perature sensor. The soil moisture content is determined
using a soil moisture sensor SKU:SEN0193. The ambient

air temperature and relative humidity are determined using
a temperature/relative humidity sensor DHT22, while a
GY-906 (MLX90614ESF) infrared temperature sensor is
employed to measure the crop canopy temperature. The cali-
brations of the sensors used in this aggregator are provided
as follows: soil moisture sensor [35], temperature/relative
humidity sensor [36], and infrared temperature sensor [37].
The Arduino UNO R3 board is employed as the main
micro-controller to aggregate the relevant data measured
by the sensors. Furthermore, the sensor aggregator is con-
tained within a water-proof plastic container for weather
protection. This irrigation scheduling system also adopts
the availability of a WSN to enhance the implementation
in practice. In practical implementation, single measure-
ment data cannot accurately describe the average variation
of actual field data, as reported in [38]. To deal with this
issue, this paper employs two sensor aggregators accord-
ingly. The sensor aggregators are able to send the mea-
sured data obtained by the sensors to the central controller
unit using the NRF24L01 transceiver module for a suite
of communication protocols. The NRF24L01 transceiver
module is used because of its ultra-low power (ULP) con-
sumption, simpler and less expensive. It integrates a com-
plete 2.4GHz RF transceiver, RF synthesizer, and baseband
logic including the Enhanced ShockBurst hardware protocol
accelerator supporting a high-speed ubiquitous SPI (Serial
Peripheral Interface) for the application controller. However,
the NRF24L01 can only transmit data less than 100 m. In this
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work, the NRF24L01 with Power Amplifier/Low Noise
Amplifier (PA/LNA) is thus selected to boost the power of the
signal being transmitted from the NRF24L01 module (up to
1000m.). The star topology basedWSN is utilized and imple-
mented for this irrigation scheduling system, as illustrated
in Fig. 2. In order to save electric power consumed by the
sensor aggregator, a light lux sensor BH1750FVI is used to
automatically turn-on during the daytime and turn-off during
the nighttime. In addition, this can prevent damaging injuries
to plants. Normally, most transpiration activity (the loss of
water from foliage) occurs during the day. Any irrigation can-
not be expelled by stomata at night. Subsequently, moisture
remains on the plant for pathogen infiltration, causing rot and
other damaging injuries to the foliage.

FIGURE 2. The star topology used in the proposed intelligent irrigation
scheduling system.

2) CENTRAL CONTROLLER UNIT
In the central controller unit, it is responsible as both a coor-
dinator node inWSN for receiving and transmitting data from
the sensor nodes and an irrigation (external) system for irri-
gation scheduling. For the role in WSN, the central controller
unit receives the time series data obtained by the aggregators
as described in the previous mention. On the other hand,
the central controller unit acted as a coordinator node will
forward the data to an irrigation scheduling system (external
system). For the role of the irrigation scheduling system,
the forwarded data will proceed in the intelligent irrigation
scheduling system as described hereinafter. According to the
challenges and opportunities in Section I, the proposed irri-
gation scheduling system is designed based on both soil and
plant-based irrigation approaches. Therefore, the proposed
intelligent irrigation scheduling system employs soil moisture
content and CWSI as input variables of the fuzzy logic system
as shown in Fig. 1. The soil moisture content is used to
indicate soil water variability, which can be measured by a
soil moisture sensor. On the other hand, the CWSI calcula-
tion traditionally requires temperature baselines obtained by

artificial plant surfaces. Nevertheless, artificial plant surfaces
lead to limit the use of CWSI in practical application. As a
consequence, this paper uses the theoretical CWSI developed
by [14]. By adopting the theoretical CWSI, the plant water
status can be obtained. To do this, air temperature, relative
humidity, plant canopy temperature, and solar irradiation are
required for the calculation of the theoretical CWSI in Eq. 2.
These measurements are provided by the sensor aggregator
except solar irradiation. Thus, in addition to the sensors
embedded in the sensor aggregator, a pyranometer BGT-
JYZ2 is installed at the central controller unit to measure solar
irradiation. The pyranometer was calibrated based on the
procedure in [39]. Due to solar irradiation varies depending
on the sun and the weather, this paper thus installs only one
pyranometer at the central controller unit. Also, the invest-
ment cost can be reduced. Prior to proceeding the data to
any calculations, the measured data will be processed to
eliminate noises contained in the data using an exponential
moving average (EMA) technique in Eq. (8) and (9). The
number of data points for the EMA technique is defined based
on the characteristic of the measurement data. Since there
are two sensor aggregators, the processed measurement data
will be calculated to obtain the average value. Afterward,
the processed measurement data are used to calculate the
CWSI. The calculated CWSI and soil moisture content will
be used as the input variables of the fuzzy logic system. The
fuzzy logic system will be described in Section III-C. The
fuzzy logic system will release the irrigation decision based
on the knowledge-based design. The irrigation decision will
drive the pump in the irrigation unit accordingly.

3) IRRIGATION UNIT
In this paper, the irrigation unit uses surface drip irrigation.
The irrigation unit is comprised of water supply, pump,
valves, distribution lines, laterals, and emitters. The pump can
be changed its speed to adjust water pressure by pulse-width
modulation (PWM)-based pump drive, according to the irri-
gation decision released by the central controller unit. This
paper also takes the water-energy efficiencies into account.
To measure water use, the water flow sensor is thus installed.
Also, the energy consumption is calculated by integrating
electric power consumed by the motor operation over time
for each irrigation strategy. Hence, the voltage and current
measurements are installed to obtain voltage and current data
of themotor. The voltage and current data are then used to cal-
culate the motor’s electric power. Subsequently, the resulting
power is used to calculate the energy. The work-flow of the
proposed irrigation scheduling system is provided in Fig. 3.

B. IMPLEMENTATION
According to the proposed irrigation scheduling system
design, the irrigation scheduling system design consists of
sensor aggregator, central controller unit, and irrigation unit.
The prototype of the proposed irrigation scheduling system
is shown in Fig. 4. The central controller unit is shown in
number 1 of Fig. 4. The sensor aggregators are shown in
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FIGURE 3. The work-flow of the proposed intelligent irrigation scheduling
system.

number 2 of Fig. 4, while the irrigation unit is shown in num-
ber 3 of Fig. 4. In the sensor aggregator, the dielectric-based
capacitance soil moisture sensor is used because of its capa-
bility as described in Section II, as shown in number 4 of
Fig. 4. To calculate CWSI, the infrared temperature sensor
is used and embedded in the water-proof plastic container as
shown in number 5 of Fig. 4. Furthermore, the air temperature
and humidity sensor are necessarily used to calculate CWSI,
as installed in number 6 of Fig. 4. The light sensor is also
used to detect the sunlight and used to automatically turn off
during the nighttime, as shown in number 7 of Fig. 4. The
wireless module is installed to send the measurement data to
the central controller unit, as shown in number 8 of Fig. 4.
In the central controller unit, the pyranometer is installed to

measure the solar irradiation, as shown in number 9 of Fig. 4.
The structure of the central controller unit is made as shown
in number 10 of Fig. 4.

C. FUZZY IRRIGATION SCHEDULING STRATEGY
This paper applies the discrete affine Takagi-Sugeno (TS)
fuzzy logic system to the proposed irrigation scheduling sys-
tem. Basically, the fuzzy logic system consists of three main
processes, i.e. fuzzification, fuzzy inference, and defuzzifica-
tion [40]. The overview of the fuzzy logic system is illustrated
in Fig. 1. In the fuzzification process, the CWSI and soil
moisture content are converted to fuzzy logic according to
the membership functions in the fuzzification process. This
paper employs a set of symmetric triangular membership
functions. Hence, the membership functions of CWSI and
soil moisture content are provided in Fig. 5. Based on the
previous section, the CWSI value ranges between 0 to 1,
thus the membership function of CWSI is classified into five
types, namely, very low (VL), low (L), medium (M), high (H),
and very high (VH), as shown in Fig. 5(a). Furthermore,
The soil moisture content value also ranges between 0 to
100%, thus the membership function of soil moisture content
is classified into five types as well, namely, very low (VL),
low (L), medium (M), high (H), and very high (VH), as shown
in Fig. 5(b). The fuzzy inference is designed using the knowl-
edge base to evaluate the fuzzy rules and produce an output
for each rule. The rule base is designed based on the two
inputs as provided in Table 1. The 25 rules have been defined
for the output variable.

Subsequently, in the defuzzification, the multiple input
outputs are transformed into a crisp output, in accordance
with the rule base and the output membership function. The
fuzzy system output is designed for generating a control
signal to the pump in the irrigation unit. The fuzzy system out-
put is converted to the crisp using a center-average method.
The fuzzy output membership function employs a single-
ton output membership function, hence, the output member-
ship function is classified into five types, namely, zero (Z),
low (L), medium (M), high (H), and very high (VH) as shown
in Fig. 5(c). Some interpretations of the rules are provided
as follows: if CWSI is high (H) and soil moisture content is
low (L), the pump is operated at 75% in high (H). If CWSI
is high (H) and soil moisture content is very high (VH),
the pump is operated at 0% in zero (Z).

In the discrete multiple input single output (MISO) of the
TS fuzzy model, the fuzzy implication (R) can be represented
by the following set of rules [41].

R : If x1(k) is A1 and . . . and xn(k) is An
Then q = g(x1, . . . , xn) (10)

where x is the input crisp. A fuzzy sets in the antecedent. n
is the number of data. y is the output crisp. q is the conse-
quent. g(·) is the function of output calculation. Furthermore,
the output crisp (y) can be expressed using a center-average
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FIGURE 4. The prototype of the proposed intelligent irrigation scheduling system.

TABLE 1. Fuzzy rules base.

method as provided in the following equation.

y(k + 1) =

m∑
n=1

q · µ(k)

m∑
n=1

µ(k)
(11)

where y is the crisp output. µ is the premise membership
function of the rule.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SET-UP
The field experiments were conducted in a small sample field
of 2 × 3 m2 in Rayong province, Thailand. The location
obtained by the global positioning system is thus 12.824342,
101.216274 (latitude, longitude), elevation above sea level
of 7 meters. The two sensor nodes were adopted in the exper-
iment as described in the previous section. The experimental
testing focused on the verification of the proposed irrigation
scheduling system. In addition to the verification, a compar-
ative study was performed to obtain the performance of the
proposed irrigation scheduling system, compared with the
traditional irrigation system and conventional drip irrigation
system. In the experiment, the manual irrigation was used

for the traditional irrigation system, while the conventional
drip irrigation system was based on pre-defined time-based
irrigation. This paper chose a Southern Giant Curled mus-
tard (Brassica juncea) due to its appropriation related to
the locations and its growing duration. The root depth was
approximately between 10-15 cm; therefore, the selected soil
moisture sensor was suitable for covering the root depth [38].
The photograph of the configuration of the proposed irriga-
tion scheduling system is provided in Fig. 6. The experiment
was tested for ten days in April 2020 (6 to 15April 2020), dur-
ing the summer period in Thailand. All measurements were
collected every 1-minute interval throughout the experiment.

B. SYSTEM EVALUATION
According to the experiment setup, the experimental results
are provided in the following explanations. The relevant mea-
sured and calculated data are shown in Fig. 7 for the ten days
during the experiment. As seen in Fig. 7(a), the soil mois-
ture content increased during the daytime due to the opera-
tion of the proposed irrigation scheduling system, whereas
it gradually decreased during the nighttime. On the other
hand, the relative humidity varied in the opposite direction
of the soil moisture content, as shown in Fig. 7(b). Since
the experiment was performed in the summer period; hence,
the air temperature variation was above 30◦C during the
daytime, as shown in Fig. 7(c). Also, the canopy tempera-
ture varied related to the air temperature variation, as shown
in Fig. 7(d). Furthermore, solar irradiation variation is pro-
vided in Fig. 7(e). It can be observed that the solar irradiation
reached 1,000 Wm-2 in the sunny days. Finally, the CWSI
and pump control signal are respectively given in Fig. 7(f)
and Fig. 7(g).
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FIGURE 5. The designed fuzzy system. (a) input membership functions of
CWSI; (b) input membership functions of soil moisture content; (c) output
membership functions of pump control.

In this study, the proposed irrigation scheduling system
was compared with the time-based irrigation system to eval-
uate its performance. The input and output data of the fuzzy
logic system on 13 April 2020 (Day 8) was selected as shown
in Fig. 8. The soil moisture content andCWSI are respectively
depicted in Fig. 8(a) and Fig. 8(b) for the input variables of the
fuzzy logic system, while the pump control signal is shown
in Fig. 8(c) for the output variable of the fuzzy logic system.
Besides, the variations of CWSI, soil moisture content, and
pump control signal on Day 8 are also illustrated in Fig 9
for the time-based irrigation system. As can be seen in the
shaded area of Fig. 9, the time-based irrigation system applied
irrigation water 2 times a day at 07.00 am and 16.00 pm for
2 hours.

In the morning, the soil moisture content was higher than
75% as indicated in area A of Fig. 8(a) under the proposed

FIGURE 6. The experimental configuration of the proposed irrigation
scheduling system.

FIGURE 7. Measured and calculated data used by the proposed irrigation
scheduling system for 10 days. (a) soil moisture content; (b) relative
humidity; (c) air temperature; (d) canopy temperature; (e) irradiation
(f) CWSI; (g) pump control signal.

irrigation scheduling system, that refers to the water in the
soil is between high (H) and very high (VH) in the input mem-
bership function of soil moisture content in Fig. 5(b). Mean-
while, in area A of Fig. 8(b), CWSI was higher than 0.75 due
to the increase in solar irradiation, which is between high
(H) and very high (VH) in the input membership function of
CWSI in Fig. 5(a). Accordingly, the output signal of the fuzzy
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FIGURE 8. Input and output data used in fuzzy logic system for
13 April 2020 (Day8). (a) soil moisture; (b) CWSI; (c) pump control signal.

FIGURE 9. Variations of CWSI, soil moisture content, and pump control
signal for time-based irrigation.

logic system was between 0% and 25%, according to the rule
base and the output membership function in Fig. 5(c). After
the irrigations, the soil moisture content gradually increased,
meanwhile the value of CWSI decreased. As irrigations were
applied, the crop stress was reduced after area A of Fig. 8(b).
In this period, the time-based irrigation system started to
irrigate for 2 hours at 07.00 am. The soil moisture rapidly
increased; however, CWSI was quite lower than the proposed
irrigation scheduling system as illustrated at point A in Fig. 9.
It can be observed that the time-based irrigation system could
prevent the stress of crops during this period of the day as a
result of a large amount of applied irrigation water.

In area B of Fig. 8, CWSI was around 0.50 under the pro-
posed irrigation scheduling system, which is medium (M) in
the input membership function of CWSI. At the same time,
the soil moisture content tended to be decreased at midday
and varied around 25% to 75%, which is between in large
(L), medium (M), and high (H) in the input membership
function of soil moisture content. The output signal was hence
between medium (M) and zero (Z), according to the rule
base as illustrated in Fig. 8(c). As a result of the successive

irrigation events, the crops could be prevented from water
stress conditions. However, in this period, the irrigation did
not schedule under the time-based irrigation system. As can
be seen at point B in Fig. 9, the soil moisture content con-
tinuously decreased, while CWSI increased significantly due
to high solar irradiation. Hence, the crops were more severe
to the water stress condition at midday under the time-based
irrigation system.

The crops maintained relatively high solar irradiation over
the noon as indicated in area C of Fig. 8(a). The soil moisture
content was quite low in L of the membership function, while
CWSI was nearly 0.50 in medium (M) of the membership
function of CWSI as shown in Fig. 8(b). Therefore, the output
was 75% in high (H) of the membership function as shown
in Fig. 8(c), according to the rule base. Hence, the pump
was activated to schedule irrigations. After the successive
irrigation events, the soil moisture content increased while
CWSI decreased, avoiding water stress of crop. Nevertheless,
for the time-based irrigation system, the highest variability in
CWSI was observed with low soil water availability at point
C in Fig. 9. In this situation, it can be interpreted that the crops
were under water stress conditions. This supports that the use
of the proposed irrigation scheduling system can precisely
irrigation to crop, preventing crop water stress conditions
during midday.

Finally, at point D in Fig. 8(a), the soil moisture con-
tent was between 50% and 75%, which is between medium
(M) and high (H) in the input membership function of soil
moisture content. CWSI was also between 50% and 75%,
which is betweenmedium (M) and high (H) in the input mem-
bership function of CWSI. Thus, the output signal was 50%
in medium (M) of the output membership function. As seen
at point D in Fig. 8(c), the pump was activated continuously
until the reach of point D. In consequence, the soil moisture
content increased to point F of Fig. 8(a). In contrast, CWSI
dropped to nearly 0 at point F of Fig. 8(b). Hence, the pump
control signal was deactivated (0%) as indicated in point F
of Fig. 8(c). At 16.00 pm, the time-based irrigation system
started to applied irrigation water for 2 hours. There was
no significant difference in the tendency for soil moisture
content and CWSI for the proposed irrigation system and the
time-based irrigation system.

Although the frequency of applied irrigations for the
proposed irrigation system was higher compared to the
time-based irrigation system, the amount of irrigation water
applied by the proposed irrigation system was signifi-
cantly less than the time-based irrigation system as shown
in Fig. 10(a). Moreover, the daily electrical energy con-
sumption is provided in Fig. 10(b) for the ten days in the
experiment. It can be noticed that the proposed irrigation
scheduling system consumed less electrical energy consump-
tion and water use, compared with the manual irrigation
system and the time-based irrigation system. Total electrical
energy consumption and water use are illustrated in Fig. 11.
By using the manual irrigation system as the base case sce-
nario, the time-based irrigation system can reduce electrical
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FIGURE 10. Comparative results for electrical energy and water consumption. (a) water use; (b) electrical energy.

FIGURE 11. Total electrical energy and water consumption.

energy consumption and water use by 9.58% and 17.57%,
respectively. The proposed irrigation scheduling system can
significantly decrease electrical energy consumption and
water consumption by 67.35% and 59.61%, respectively.

In this study, the crop yield was determined by manually
picking and weighing after the end of the experiment, verify-
ing the agricultural output. The crop yield of 25,333 kg ha-1

was obtained under the proposed irrigation system, which
was higher than the manual irrigation (20,666 kg ha-1) by
22.58%. The crop yield was 21,833 kg ha-1 for the time-based
irrigation system, while an increase in crop yield was 5.64 %.

Based on these experimental results, the proposed irri-
gation scheduling system can schedule irrigation precisely
according to the soil moisture content and CWSI variabil-
ity. The soil water status can be improved; simultaneously,
the crop water stress can be reduced by using the proposed

irrigation scheduling system. It can be concluded that the
proposed irrigation scheduling system was the most effective
irrigation strategy. The efficiencies in terms of water use
and electrical energy consumption were improved signifi-
cantly by adopting the proposed irrigation scheduling system.
Furthermore, the crop yield was increased by the proposed
irrigation scheduling system compared with the others.

C. COST ANALYSIS
According to the design in Section III-A, the intelligent irri-
gation scheduling system was implemented and validated as
shown in the previous section. The adding components for the
proposed system are provided in Table 2. It can be observed
that the total cost of the complete prototype (one central
controller and two sensor aggregators) was about $288.98,
i.e., $196.56 for one central controller and $46.21 for each
sensor aggregator. The comparisons of existing WSNs used
by irrigation systems are provided in Table 3. It is shown that
it cost $84.10 for the sensor node proposed by [7], while the
cost of the sensor aggregator (node) was $46.21 for the pro-
posed irrigation scheduling system. Considering the whole
WSN system, the cost of the proposed irrigation system was
relatively low compared with the other systems.

Moreover, the revenue from the proposed system invest-
ment was evaluated by using the time-based drip irriga-
tion system as the base case scenario. From the previous
analysis, the proposed irrigation scheduling system used
the average amount of water of 175.03 liters/day, while
the time-based drip irrigation system consumed the average
water of 357.25 liters/day. For the electrical energy con-
sumption, the proposed irrigation scheduling system con-
sumed the average electrical energy of 23.51 Wh/day, while
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TABLE 2. The list of the adding components.

TABLE 3. Comparisons of existing WSNs for irrigation system.

the time-based drip irrigation system consumed the aver-
age electrical energy of 65.11 Wh/day. This paper assumes
that the average water tariff rate is $0.00425/liter, and the
average electricity price is $0.2/kWh. By summing the costs
created by water use and electrical energy consumption,
the proposed irrigation scheduling system spent approxi-
mately $0.7486/day, meanwhile, the time-based drip irriga-
tion system spent approximately $1.5313/day. Comparing to
these two systems, the difference in daily cost is $0.7827/day.
It can observe that the proposed irrigation scheduling system
can save the daily cost created by water use and electrical
energy consumption by 51.11%. Finally, considering the dif-
ference in the daily cost of $0.7827/day, it shows that the

proposed system can return its extra cost after approximately
374 days.

V. CONCLUSION
This paper mainly presented the design and implementation
of an intelligent irrigation scheduling system using a poten-
tial low-cost wireless sensor network (WSN). The proposed
irrigation scheduling system considered the two variabilities
of soil moisture content and crop water stress simultaneously
rather than only one variability consideration, while the use
of low-cost WSN can enable the potential implementation
in practical agricultural applications. As the experimental
results, the proposed irrigation scheduling system yielded
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significant improvement in reliability and precision irriga-
tion, improving the soil water and plant water status within
the proper levels. The proposed irrigation scheduling system
can precisely apply amounts of water for irrigation. Addi-
tionally, it can prevent crop water stress conditions. Hence,
it can be concluded that the proposed irrigation scheduling
system is effective in terms of the improvement of precision
irrigation. Moreover, the experimental results confirmed that
water use and energy consumption were dramatically reduced
when the proposed irrigation scheduling systemwas adopted.
Therefore, it can be concluded that water use and energy
efficiencies can be improved simultaneously, moving toward
sustainable agriculture. The cost analysis also offered a good
agreement that the proposed irrigation scheduling system
can be considered as an affordable and low-cost option for
farmers and can be implemented on a large-scale agricultural
farm with lower investment.

In the current study, we mainly focused on developing an
intelligent adaptive irrigation scheduling strategy considering
soil and plant water variabilities. However, an error associ-
ated with measurements used in the WSN should be taken
into account to explore the impact on irrigation scheduling
performance for future research works. The worst-case error
scenario should be carefully analyzed. Furthermore, in order
to improve WSN capability, next-generation communication
networks should be considered to provide a longer range of
data transmission.
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