
Received August 22, 2020, accepted September 13, 2020, date of publication September 21, 2020, date of current version October 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3025566

UCIS-X: An Updatable Compact Indexing Scheme
for Efficient Extensible Markup Language
Document Updating and Query Evaluation
WEN-CHIAO HSU 1 AND I-EN LIAO 2
1Department of Information Management, National Taichung University of Science and Technology, Taichung 404, Taiwan
2Taiwan Information Security Center at NCHU, Department of Computer Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan

Corresponding author: Wen-Chiao Hsu (chiaohsu@nutc.edu.tw)

This work was supported in part by the Taiwan Information Security Center at National Chung Hsing University (TWISC@NCHU), and in
part by the Ministry of Science and Technology, Taiwan, under Grant MOST 108-2218-E-005-016 and Grant MOST 109-2218-E-005-005.

ABSTRACT One of the difficulties faced when using XML as the data storage structure is query inefficiency.
Therefore, various indexing methods have been proposed. When designing indexing methods, the first step
is to choose the labeling method. Some labeling methods can work well; however, if they cannot effectively
support update operations, their use is subject to considerable limitations. Most of the update-friendly
labeling methods proposed in the literature assign a unique label to each node in XML and provide an
expandable mechanism for future insertion. However, they encounter some difficulties, such as increasing
the index space, more difficulty in evaluating the relationships between nodes, and increasing the complexity
of labels. In this paper, we introduce a novel update-friendly labeling scheme called branch map, which
records the correspondence between parent and child nodes instead of assigning a label to each node. The
space required for the index is reduced considerably. More importantly, the branch map can maintain the
profile as if it was encoded initially, even after being frequently updated. This paper also proposes a compact
indexing scheme called UCIS-X. Experimental results indicate that UCIS-X performs well in terms of index
size, query, and update efficiency.

INDEX TERMS Branch map, update-friendly labeling scheme, XML indexing, XML update operations.

I. INTRODUCTION
Extensible markup language (XML) is increasingly used for
data exchange and transfer [1], [2], such as in electronic
publishing, web services, e-business, and search engines.
In addition to the standard format for exchanging data, XML
is one of the NoSQL database models [3], [4] and a new
language for specifying video games, called the XML-based
video game description language (XVGDL) [5]. Because of
its high availability and scalability, XML has rapidly gained
attention [6]. XML documents are normally stored as plain
text files. Therefore, it is important to identify an efficient
and easy means of managing data in XML format. There
have been many research studies regarding the issues of
efficiently storing and querying XML data, such as index-
ing [7]–[14] or effective query evaluation [15]–[20]. Com-
pared to indexing and query evaluation, the topic of updating

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan A. Lara .

both XML documents and indexes [21]–[26] has received
much less attention from the research community [27]. The
natural and most convenient means to update XML doc-
uments is to simply edit the text files. However, efficient
query evaluation algorithms require that XML documents be
indexed. Typically, every element and attribute of an XML
document is given a unique identifier that is also recorded in
the index and is used as a key during query evaluation. Most
proposed indexing schemes assume a static environment in
which there is no update of XML documents. Therefore,
these indexing methods involve static labeling schemes. This
restriction obviously limits the application scenarios of the
XML indexing mechanism, as most real-world data change
over time. Because the index must be consistent with the
document, expensive index rebuilding or identifier reassign-
ing is necessary when the original document is updated.
Thus, an efficient indexing technique is required to pro-
vide a mechanism for the synchronized updating of XML
documents.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 176375

https://orcid.org/0000-0001-9226-588X
https://orcid.org/0000-0003-3895-0485
https://orcid.org/0000-0001-5131-8447

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

The key to an updatable index depends on how the elements
and attributes are labeled. The literature on synchronizing
data in XML and the index has mainly emphasized the
labeling method. When modifying XML, the labels must be
updated accordingly, e.g., the relative indexes [25]. Two com-
mon labeling schemes for XML are region labeling and prefix
labeling. Both schemes have their advantages and disadvan-
tages, as discussed later. Because no known labeling method
can effectively address the following issues, designing an
updatable indexing method is challenging.

(1) The label size may increase to support an updatable
mechanism.

(2) The query cost may increase because the evaluation
becomes more complex.

(3) The length of the labels may increase after multiple
XML updates.

(4) The ability to maintain the initial labeling state may be
weak.

To address these issues, we present an update-friendly label-
ing scheme, i.e., branch map, and a compact indexing struc-
ture, i.e., UCIS-X. Instead of assigning labels to elements,
branch map records the matching map between parent and
child elements. It can therefore shorten the label length and
reduce storage. In addition, branch map can extract informa-
tion and update operations efficiently. UCIS-X is an improved
version of CIS-X [13]. It adopts a branchmap that can support
updating operations on XML documents. The experimental
results indicate that UCIS-X outperforms many other meth-
ods in terms of the index construction cost, query evaluation
performance, and label maintenance costs.

The remainder of this paper is organized as follows.
Section II explores related studies on labeling schemes,
indexing, and the query evaluation of XML. Section III intro-
duces the proposed branch map labeling scheme. Section IV
describes the UCIS-X index structure as well as how
UCIS-X can effectively support query and update operations.
Section V presents our experimental results, and Section VI
concludes this paper with some directions for future work.

II. RELATED WORK
To fully evolve XML into a data representation and exchange
standard, it is important to provide an efficient means to
address not only query evaluation but also update manage-
ment. To speed up queries, the indexing of documents is a
good solution. To handle the hierarchical tree model of XML
data, a suitable indexing method is required to extract and
reconstruct XML document structural information, such as
the tag names of elements, containment relationship, sibling
order, and depth of the XML data tree. The labeling scheme
used by the indexing method is the most important basis for
recording the document structure. To maintain the correct-
ness of the query results, the labels should be updated when
the original XML document has been updated. The portion
to be relabeled could be very large if the labeling method
is not update-friendly, making the update processes quite

inefficient. In this section, we briefly review some related
studies, such as basic labeling schemes, updateable labeling
methods, and how to carry out indexing and evaluate queries.

A. BASIC LABELING SCHEMES
An XML document can be represented by an XML data
tree [28]. Before indexing, each node of the XML data tree
is assigned a label to record its structural information. Two
commonly used labeling schemes for trees are the region
labeling scheme and prefix labeling scheme [24]. The region
labeling scheme [12], [22] exploits the properties of tree
traversal to maintain the node order and determine various
structural relationships among nodes. Typically, each node in
the tree is encoded with a triple (sn, en, dn), where sn is the
serial number of node n derived from a depth-first traversal
of the data tree, en is the serial number after visiting all child
nodes of n, and dn is the depth of n. In region encoding, a node
u is an ancestor of a node v if su < sv < eu. Moreover, u is
the parent of v if dv = du + 1. The region-labeling scheme is
suitable for most query evaluation methods. However, when
applied to an update mechanism, a significant number of
nodes may need to be relabeled when a new node is inserted
in an intermediate position of the tree. For example, as shown
in Fig. 1(a), when a new node is inserted, the gray nodes must
be relabeled.

FIGURE 1. Examples of relabeling a portion of an XML document.

The Dewey order [29] is a typical example of a prefix
labeling scheme. If node v is the nth child of node u, then
Dewey(v)=Dewey(u)+"."+n, where the root is always set
to 1. The Dewey label of each node contains the labels of
all its ancestors. Thus, the relationship between two nodes

176376 VOLUME 8, 2020

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

can be deduced by comparing their labels. For example,
the ancestors of node u labeled "1.3.1.5" are nodes labeled
"1.3.1," "1.3," and "1." Because the prefix labeling scheme
allows each node to inherit its parent’s label as the prefix of its
own label, the portion to be relabeled is usually smaller than
when applying the region labeling scheme while inserting
new nodes. An example is shown in Fig. 1(b). However, it is
still not an update-friendly method. If the new node is to be
inserted as the first child of the root, the entire tree except
the root must be relabeled. Moreover, the results presented
establish that any immutable labeling scheme requires �(N)
bits per label, where N is the size of the document, thus
incurring a high storage overhead. In addition, using a prefix
labeling scheme is less efficient than using a region labeling
scheme because determining the relationship between two
elements using a prefix comparison is slower than using a
simple integer comparison.

B. UPDATEABLE LABELING SCHEMES
The region-based labeling methods represent a global
order encoding method [29], which is more unfriendly
toward updating than prefix-based labeling methods. Many
updatable labeling schemes have been proposed and are
prefix-based [19], [23], [25], [30], [31]. The strategies used
to support updates mostly preserve the space available for
labeling or extend a label. In this paper, we examine three
updatable labeling methods: ORDPATH [32], used in the
latest versions of Microsoft R©SQL ServerTM, and DFPD [31]
and DPLS [23], two recently proposed methods.

FIGURE 2. Example of insertions in ORDPATH.

ORDPATH [32], which is based on the Dewey order num-
bering scheme, permits the insertion of new nodes into arbi-
trary positions in a tree without the need to relabel existing
nodes. In ORDPATH, only positive odd numbers are assigned
during the initial labeling, and even numbers and negative
integers are reserved for later insertions. Fig. 2 illustrates an
example of ORDPATH, where two new nodes are inserted.
The first new node is inserted between nodes 1.1 and 1.3. The
even number 2 is used because 2 = (1 + 3)/2. Assume that
there is a virtual node labeled 1.2; then, the first new node
is labeled 1.2.1 as a child of 1.2 so that the last number is
an odd number. The second new node is inserted to the left
of the first new node (i.e., 1.2.1) and is labeled 1.2.-1. The
level or depth of each node in the tree can be determined by
counting the number of odd component values in the label.
For example, 3.5.6.2.1 is a child of 3.5 and a grandchild of 3.

The limitations of ORDPATH result from the variable length
labeling scheme employed in conjunction with the waste of
one-half the total number of nodes by virtue of labels ending
in odd numbers. This can result in increased storage costs in
the case of frequent updates as well as expensive comparative
label evaluations between sibling nodes of varying lengths.
Furthermore, the ORDPATH labeling scheme cannot com-
pletely avoid the relabeling of existing nodes because of the
overflow problem.

To summarize, the characteristics of ORDPATH are as
follows:

• A variable-interval labeling scheme is used for nodes of
the same depth.

• It uses odd numbers for the initial labeling and saves
even numbers for future expansion.

• The labels of deleted nodes can be reused.
• No relabeling is required when updating.
• A query evaluation can be more complicated because of
the different lengths of the labels.

• The design of the virtual nodes requires larger memory
space for labels.

FIGURE 3. Example of updating in DFPD.

DFPD [31], a dynamic floating-point Dewey labeling
scheme, is an insertion-friendly labeling method that effi-
ciently supports dynamic queries. The initial labeling method
is consistent with the Dewey order. To avoid relabeling exist-
ing nodes, the encoding of new nodes becomes somewhat
complicated when inserting them. For example, Fig. 3 shows
an XML data tree, initially labeled by the Dewey order,
and then several changes are made in the following order:
inserting A, inserting B, inserting C, deleting A, inserting E.
Node A is inserted between nodes 1.1 and 1.2, and
its label is 1.3/2, calculated from the following formula
‘‘1.(1 + 2) / (1 + 1)’’. Similarly, node B is inserted between
nodes 1.3/2 and 1.2, and its label is 1.5/3, calculated from
‘‘1.(3 + 2) / (2 + 1)’’. Node C is a child of node B, and
its label is 1.5/3.1 according to the Dewey labeling scheme.
Then, node A is deleted, and node E is inserted in the same
position previously occupied by node A. In this case, node E
is inserted between node 1.1 and node 1.5/3, and its label is
1.6/4, calculated from ‘‘1.(1 + 5) / (1 + 3)’’, which differs
from the label of node A. From this, it can be seen that
when alternating insertions and deletions occur, DFPD is
suboptimal.

VOLUME 8, 2020 176377

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

The characteristics of DFPD are summarized as follows:

• A fixed-interval labeling scheme is used for nodes of the
same depth.

• Integers are used for the initial labeling, and fractions
are used for expansion.

• The labels of deleted nodes are not reused.
• No relabeling is required when updating.
• The query evaluation for label comparison is faster than
that of ORDPATH.

• The space required for labels may grow quickly if
updates are frequent.

The dynamic prefix-based labeling scheme (DPLS) [23] is
also a Dewey-based labeling scheme. In fact, the solutions
of the initial labeling and primitive node insertions in DPLS
are consistent with those in DFPD. Unlike DFPD, which does
not consider the reuse of deleted labels when new nodes are
inserted, DPLS uses the reduction of a fraction operation to
reuse deleted node labels. When an insertion occurs at the
same position where a deletion occurred, no new label is
introduced. Therefore, DPLS improves the shortcomings of
DFPD by limiting the growth rate of label sizes when frequent
insertions and deletions of nodes occur. Let us consider the
same example as in Fig. 3 with the following update order:
inserting A, inserting B, inserting C, deleting A, and insert-
ing E. The label of node E is 1.6/4 for DFPDwhen the reuse of
deleted labels is not considered. However, DPLS reduces the
fraction of the label of node E to 1.3/2 to reuse the original
label of node A. Thus, DPLS inherits the characteristics of
DFPD but improves on the latter’s disadvantages by reusing
labels; hence, the space required for labels is reduced.

From the above examples, the space required for labels
and the time for query evaluation will increase when XML
documents must be updated dynamically. A noteworthy phe-
nomenon is that the appearances of the labels are inconsistent,
as would occur after initialization. Taking Fig. 3 as an exam-
ple, when initialized, the label of the second child of the root
was 1.2, and it changed to 1.3/2 after node E was inserted.
The same situation occurs in ORDPATH, DFPD, and most
updatable labeling methods. When the labels become longer
and more complex, it is anticipated that complete relabeling
will occur.

C. INDEXING AND QUERY EVALUATION
To accelerate query processing, various indexing and query
evaluation methods have been proposed. DataGuide [11] was
one of the first XML indexing models proposed. DataGuide
is a structural summary scheme that merges nodes lying
along the same traversal path. Subsequent literature intro-
duced other different solutions for merging. Two common
methods are path equivalence [9]–[11], [33] and bisim-
ulation [7], [8], [34], [35]. DataGuide summarizes XML
using path equivalence. On the other hand, summarizing by
bisimulation involves grouping together nodes having the
same set of incoming paths. In terms of node labels, ear-
lier studies used simple encoding methods. For example,

FIGURE 4. Example of updating in DPLS.

DataGuide [11], 1-index [35], and A(k)-index [34] encode an
XML tree bymaking a breadth-first traversal and use only one
number for each node. Because the structural information in
the summarized structure is incomplete, it can support only a
single-path query. To handle more complex queries, such as
twig (or branching), different encoding methods have been
proposed. As mentioned earlier, region labeling and prefix
labeling schemes have been applied for this purpose. TwigX-
Guide [22] labels each node of the XML using a region-
labeling scheme and then constructs a DataGuide as an index.
With more structural information recorded in the label, a twig
query can be handled. PCIM [12] and NCIM [36] also make
good use of the advantages of encoding methods combined
with a structural summary scheme to support twig queries
efficiently.

In addition to index models, many query evaluation algo-
rithms have been developed in recent years to address com-
plex queries. Basic XML queries include single-Path and
Twig-Path queries [37]. Most of the existing query evaluation
methods encode the nodes of the XML map using a regional
labeling scheme and then simply cluster the labels using
the same tag name. Then, they use their proposed query
evaluation algorithms to effectively find the matched results.
Both Structural Join [16] and TwigStack [17] are two-phase
algorithms, which break down a twig query into several single
paths that are evaluated separately in the first phase, with
the final result being produced by merging the results of
the single paths in the second phase. Twig2Stack [18] and
TwigList [20] are one-phase algorithms. To eliminate the
merge costs incurred in the second phase, Twig2Stack and
TwigList use hierarchical stacks and a set of lists, respec-
tively, to store the results. Most query evaluation algorithms
produce some intermediate results during processing. Some
of them are not part of the final result. DGReLab+ [38],
a path query processing technique, was proposed to avoid
buffering irrelevant results before producing the final results.
The evaluation results showed that DGReLab+ outperformed
TwigStack and QTwig [39] in query processing performance.

Some studies combine the structural summary scheme
and query evaluation algorithm to provide better query
processing, such as TwigX-Guide [22], CIS-X [13], and
MatchQTP [40]. TwigX-Guide constructs the DataGuide and
converts it into a DG index table, which is used to evaluate

176378 VOLUME 8, 2020

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

FIGURE 5. Example of branch map using encoding rules 1, 2, and 5.

input queries using TwigStack. TwigX-Guide attempts to
combine the advantages of these two schemes. Although the
speed of query processing for a single path in the first phase
is fast, the efficiency is less optimal in the second (merg-
ing) phase. The shortcomings of TwigStack, which produces
useless intermediate results and requires an expensive merg-
ing phase, have not been resolved. For more details on the
challenges faced when applying structural summary methods
and query evaluation methods, please refer to our previous
work [13]. A good index structure must reduce the costs
associated with time and space and must support complex
queries. CIS-X performs well regarding these aspects and has
the following characteristics:

• In terms of labeling, CIS-X uses only one integer to
label each node by counting the numbers in the preorder
traversal of XML. The effect is that the space required
for labels is reduced.

• In terms of indexing, CIS-X adopts the structural sum-
mary method to minimize the required size and stores
the index in hash-based tables for rapid access.

• In terms of query processing, CIS-X uses the TwigList
algorithm. Unlike TwigList, which runs its processes
directly on XML, CIS-X processes the index. Therefore,
the additional cost of useless intermediate comparisons
associated with TwigList is very low in CIS-X.

Although CIS-X provides a good solution to speed up XML
queries, it is not an update-friendly method. Therefore, based
on CIS-X, this paper proposes the branch map labeling
scheme to support the demands associated with updates.

MatchQTP is a twig pattern matching algorithm with
an indexing technique, called RLP-Index, and an XML
node labeling scheme, called RLPScheme. RLP (root-to-leaf
labeled path) records the sequence of tags from root to leaf,
such as /tag0/tag1/. . . /tagn, where tag0 is the tag of the root
and tagn is a leaf node. A binary ID is assigned to each RLP,
which can be used to compute the ancestor nodes of a node.
RLP-Index also adopts the principle of structural merging of
DataGuide, whichminimizes the storage space utilization and
query processing time of MatchQTP.

III. BRANCH MAP LABELING SCHEME
In this section, we propose a novel update-friendly labeling
scheme called branch map. Before describing branch map,
let us consider the purpose of encoding, which is to retain
the information of the original XML structure in the index.
Therefore, as long as this purpose can be achieved, it is not
necessary for each node to have a unique label. The branch
map labeling scheme was designed based on this idea by
recording the corresponding map of the nodes. A branch map
is suitable for the structural summary indexing scheme and is
generated during the index construction phase.

The XML document is presented as an original ‘‘XML
tree’’ (Fig. 5(a)). During the indexing construction phase, the
XML tree is traversed in a specified order, and each node is
visited twice. The nodes with ‘‘path equivalence’’ are sum-
marized to generate a summarized ‘‘index tree’’ (Fig. 5(b)) as
well as the branch map of each ‘‘index node.’’ The encoding
rules of the branch map method are as follows:

1. The branch map of the root is ‘‘1’’.
2. While first visiting node n of the XML tree, if there is

no index node with the same travel path, create a new
index node N. The branch map length of N is equal to
the length of N’s parent, where the first length-1 bits
are ‘‘0’’ and the last bit is ‘‘1’’.

3. While first visiting node n of the XML tree, if there is
an index node N with the same travel path, append a
‘‘1’’ after the branch map of N and group the bits with
the same parent by using brackets (i.e.,‘‘(’’ and ‘‘)’’).

4. During the second visit to node n of the XML tree,
determine if each child of index nodeN has been visited
in the same round. For each unvisited child N’ of index
node N, append a ‘‘0’’ after the branch map of N’, and
group bits with the same parent using the ‘‘(’’ and ‘‘)’’
notation.

5. For plain text nodes lying in the same travel path, group
the values of attributes according to the order of travel.
If there is no such path, use an empty value to maintain
the position.

Fig. 5(a) shows an original XML tree, in which element
nodes and attribute nodes are represented by circles and the

VOLUME 8, 2020 176379

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

FIGURE 6. Example of branch map using encoding rule 3.

FIGURE 7. Example of branch map using encoding rule 4.

plain text nodes are represented by rectangles. The tag of an
attribute starts with ‘‘@’’ for identification. When the gray
nodes in Fig. 5(a) are visited, part of the index tree is as shown
in Fig. 5(b). The branch map of each index node is enclosed
by ‘‘{‘‘ and ‘‘}’’. The branch map of root R is therefore {1}
according to Rule 1. When traveling from a1 to e1, there are
no identical travel paths in the index; thus, the corresponding
index nodes are generated, and the branch map consists only
of {1} values according to Rule 2. The plain text nodes are
also recorded in the index tree according to Rule 5.

When node a2 is first visited, there is a corresponding
index node A. Because a2 has the same parent as a1, a
‘‘1’’ is appended after the branch map of A, and two bits,
representing a1 and a2, are grouped according to Rule 3. The
branch of A is thus {(11)} at this point. Fig. 6 shows the
index tree when node c2 is first visited. When c2 is visited
the second time, as shown in Fig. 7, the child index node E of
C is not visited in this round. According to Rule 4, a ‘‘0’’ is
appended, and the two bits, 1 and 0, are grouped. The branch
map of E is {(10)} at this point.

Fig. 8(b) shows the complete index tree. The number
in the round rectangle represents the appearance frequency
of the tag. For example, ‘‘A:3’’ indicates that nodes with
the tag ‘‘a’’ appeared three times. In fact, the index tree
does not actually exist; it is recorded as hash tables during

the indexing construction phase. We describe this in the
next section. To determine the relationship between index
nodes in the hash tables, each index node is labeled using
Dewey labels, which can be found at the top of each index
node.

A branch map can be used to reconstruct the original XML
architecture by comparing the relative positions of the bits
of two index nodes. Fig. 9 shows two examples. Fig. 9(a)
compares A:3(1.0) {(111)} and B:4(1.0.0){(11(11))}. It is
easy to determine that A is a parent of B based on the Dewey
labels. Comparing the branch maps, the first two bits of A are
‘‘1’’, which correspond to the first two ‘‘1’’ bits of B. This
means that there are two pairs of nodes A and B, i.e., (a-b,
a-b), in the original XML tree. The third bit of A, which is
‘‘1’’, is related to the group following B, which is (11). This
indicates that a branch occurred and that the third node of ‘‘a’’
has two b-tag children. Fig. 9(b) compares A:3(1.0){(111)}
and E:2(1.0.0.1.1){(10(10))}. We know that A is an ancestor
of E based on the Dewey labels. The first node ‘‘a’’ has
an e-tag descendant, while the second node ‘‘a’’ does not,
because the first two bits of the branch maps of A and E are
{11} and {10}, respectively. In addition, a branch occurred
in the path between the third node ‘‘a’’ and second node ‘‘e,’’
and there is an e-tag node in the first fork path; however, there
is no branch in the second fork path.

176380 VOLUME 8, 2020

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

FIGURE 8. Example of the complete index tree.

FIGURE 9. Reconstruction examples.

Compared to other labeling schemes, branch map requires
less space because each node in the XML uses only one bit
for labeling. Although some positions where a node does
not exist are supplemented with a ‘‘0’’ to maintain the cor-
respondence among nodes, the wasted space is much less
than the saved space. The most novel feature of branch map,
which cannot be handledwell by other labeling schemes, is its
ability to maintain the initial labeling state even after multiple
updates.

IV. UCIS-X: AN UPDATABLE COMPACTED INDEXING
SCHEME FOR XML
UCIS-X is an index structure applicable to anXMLdocument
that adopts the branch map labeling scheme. In this section,
we first provide the basic conceptual structure of UCIS-X,
followed by a query evaluation.

A. INDEX CONSTRUCTION
In Section III, an XML document is summarized as an index
tree based on a branch map. Because the tree structure is
inefficient for partial matching in most cases, the index tree
is stored as a pair of hash tables, which are called UCIS-X.
We use an algorithm similar to CIS-X for structural summa-
rization (see Algorithm 1: Index-Construction in [13]). The
differences between the two are the labeling schemes and the

information stored in the hash tables. The index construction
algorithm is shown in Algorithm 1, where the SAX parser
is used to parse an XML document. The actS is a temporary
stack used to record the active traversal path. While looking
back at Section III, lines 7-14 handles the first visit to the
root as in Fig. 5. Lines 24-18 deal with the first visit to nodes
a1 to e1 in Fig. 5. Nodes a2 to d2 in Fig. 6 are processed by
lines 17-22. Fig. 7 demonstrates the situation of rule 4 for
an unvisited child E of C, which is addressed in lines 34-35.
The output of Algorithm I is UCIS-X, a path index table and a
content index table, as shown in Fig. 10. The path index stores
the information regarding the path and structure with the tag
name, represented by a hash key. Each hash entry points to
a list that links data nodes having the same tag name. Each
data node holds certain information (label, branch, count,
children), where label is the Dewey label used to represent the
positions of the nodes in the index tree, branch is the branch
map and each "1" represents a node in the XML tree, count is
the appearance frequency of the tag, and children records the
tag names of the children of a node. The content index uses
label as the hash key and stores the corresponding content.
UCIS-X provides a compact format for an XML document.
The original XML document can be rebuilt when the root
node in UCIS-X is known.

B. QUERY EVALUATION
The query evaluation algorithm used by UCIS-X is shown in
Algorithm 2. In the initial stage, we obtain the corresponding
dataNode lists from Tp according to the QTP (query tree
pattern) (lines 1-5). The first phase generates candidate data
nodes (Function getCandidate), and the second phase filters
out inconsistent bits in the branch maps (Function checkBM).
For example, consider a query Q1 =‘‘//B[@H]/C[D]/E’’,
where the QTP [14] is as shown in Fig. 11(a). The target
node E is underlined. In the first phase, five linked lists in
the path index table are examined: B, @H, C, D, and E.
By getCandidate, the Dewey labels of each data node are
checked, and the candidate data nodes are produced, as shown
in Fig. 11(b). In the second phase, the branch maps are
checked. Only bits at the relative position that are ‘‘1’’ are

VOLUME 8, 2020 176381

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

Algorithm 1 Index Construction
Input: an XML document, D
Output: a path index table, Tp, and a content index table,
Tc

1 Function startDocument()
2 initialize stack actS as empty and integer N as 0;
3 initialize hash tables Tp and Tc as empty;
4
5 Function startElement(Elemente)
6 if e is an attribute, e.fullname = "@" +e.fullname;
7 if actS is empty
8 create a new dataNode c
9 c.label="1", c.tagname= e.fullname;
10 c.Vid = N+1, and c.parent=N;
11 c.preBM= ‘‘(1’’ and c.postBM= ‘‘)’’;
12 c.count =1 and c.children = empty;
13 push(actS, c);
14 N ++;
15 else
16 p =top(actS);
17 if e.fullname⊂ p.children and is the (x+1)th child of

p;
18 mark the child of p as visited;
19 pathlist = Tp.get(e.fullname);
20 c = the dataNode with label (p.label+ ‘‘.x’’) in

pathlist;
21 c.Vid = N+1;
22 updateBM(c, p)
23 else
24 create a new dataNode c
25 c.label=p.label+count(p.children), c.tagname=

e.fullname;
26 c.Vid = N+1, and c.parent=p.Vid;
27 c.preBM= p.preBM, c.postBM = p.postBM;
28 c.count =1 and c.children = empty;
29 push(actS, c);
30 N ++;
31
32 Function endElement()
33 c =top(actS);
34 if there is any child y of c that has not been visited
35 updateBM(y, c);
36 pathlist = Tp.get(c.fullname);
37 if pathlist = null, create a new pathlist;
38 if c.label is in the pathlist
39 update corresponding dataNode in pathlist;
40 else append c into pathlist;
41 Tp.put(c.fullname, pathlist);
42 Pop(actS, c)
43
44 Function characters(Stringvalue)
45 c =top(actS);
46 contentlist = Tc.get(c.label);
47 if contentlist = null, create a new content list;
48 append (value) into contentlist;

49 Tc.put(c.label, contentlist);
50
51 Function endDocument()
52 //Finished
53
54 updateBM(c, p)
55 if c.parent == p.Vid
56 if c is the second child of p.Vid
57 c.preBM = c.preBM.substring(0, length-2)+

‘‘(’’+ ‘‘11’’;
58 c.postBM = ‘‘)’’+c.postBM;
59 else
60 c.preBM = c.preBM+ ‘‘1’’;
61 else
62 if p.preBM end with ‘‘(11’’
63 c.preBM = c.preBM.substring(0, length-2)+

‘‘(’’+ ‘‘11’’;
64 c.postBM = ‘‘)’’+c.postBM;
65 else
66 c.preBM = c.preBM+ ‘‘1’’

matched (lines 23-24). In this case, only the first bits of all
branch maps are ‘‘1’’. By accessing the content index using
the label of E, ‘‘1.0.0.1.1’’, the final result ‘‘<e>Ve1 </e>’’
can be outputted.

C. BASIC UPDATE OPERATIONS
In recent studies, several update operations and languages
for XML have been defined [22], [26]. The XQuery Update
Facility language [41] is recommended by the World Wide
Web Consortium (W3C) and provides the ability to modify
some parts of an XML document and leave the remainder
unchanged. Although the W3C approach includes multiple
update operations, the basic update operations are insert,
delete, replace, and rename. In this section, only the inser-
tion and deletion operations are demonstrated because the
replace and rename operations can be completed by directly
changing some features of the existing node or through a
series of deletions and/or insertions. All update processes are
directly executed using UCIS-X without index rebuilding.
How UCIS-X supports W3C XQuery update operations is
introduced in the next sections.

1) INSERTION
For UCIS-X, the insertion process can be classified into three
cases. The basic insertion algorithm is shown in Algorithm 3.
Case 1: when there is a reserved space denoted by ‘‘0’’

in the branch of the corresponding data node for the new
node, the corresponding bit in the branch is changed from
‘‘0’’ to ‘‘1’’, and the value of count is increased by 1. For
example, ‘‘<e3>Ve3</e3>’’ is inserted as the second child
of c2, as shown in Fig. 12. The branch of E(1.0.0.1.1) is
{(10(10))}, where the second bit, denoted as ‘‘0’’, is the space
reserved for this insertion. The branch is then updated from

176382 VOLUME 8, 2020

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

FIGURE 10. UCIS-X of an XML tree T.

{(10(10))} to {(11(10))}, and the value of count is updated
from 2 to 3. Then, the label ofE , ‘‘1.0.0.1.1’’, is used to access
the corresponding content list. Write ‘‘Ve3’’ to the second
position to complete this update operation.
Case 2: when there is no reserved space in the branch and

the traversal path of the new node exists in the index tree,
the branches of the target data node and its descendants (if
any) need to be updated. Following the principles of Rule 3 in
Section III, a ‘‘1’’ is added to the branch of the target data
node, and bits with the same parent are grouped by ‘‘(’’ and
‘‘).’’ In addition, a ‘‘0’’ is added to the branch of each descen-
dant of the target data node. An example is shown in Fig. 12,
where ‘‘<d6>Vd6</d6>’’ is inserted as the second child of
c5. The branch of D(1.0.0.1.0) is {(11(11))}, and there is no
reserved space for this insertion. The new node d6is therefore
inserted after d5, and both have the same parent. There-
fore, the branch is updated from {(11(11))} to {(11(1(11)))},
and the value of the count is updated from 4 to 5. Then,
the corresponding content list of D is accessed through the
‘‘1.0.0.1.1’’ label, and ‘‘Vd6’’ is appended at the end of the
list.
Case 3: if the traversal path of the new node does not exist

in the index, a data node is created, and the tag name of the
new node is added to the children of the parent (Fig. 12).
In this case, ‘‘<g1></g1>’’ is inserted under a1, and a new
data node with ‘‘G’’ as the hash key is created in the path
index. Following the principles of Rule 2 in Section III, the
length of the branch map of the new data node is equal to the
length of its parent. Therefore, the length of branch G is 3.
Because g1 is the child of a1, the first bit of the branch is ‘‘1’’,
while the others are ‘‘0’’. Finally, add ‘‘G’’ to the children of
A to complete this update operation.

FIGURE 11. Query Evaluation of Q1 = //B[@H]/C[D]/E using UCIS-X.

The costs to insert a node in Cases 1 or 3 are low because
only a few data nodes must be updated. The worst case occurs
in Case 2, when cascading updates in the descendants occur.
A related example is when the maximum number of updated
nodes is equal to the depth of the index tree (Example I4).
However, this case is similar to reserving space for future
insertions, which is quite similar to reserving columns of
attributes for an inserted tuple in a relational database.

2) DELETION
For deletion, the easiest method is to find the corresponding
digit and change it from ‘‘1’’ to ‘‘0’’. After deletion, one of the
following three situations may be encountered. We consider
several examples to show that this method will not break the
rules of the branch map.
Case 1: when the node to be deleted does not have a

sibling node with the same tag, change the corresponding bit
from ‘‘1’’ to ‘‘0’’. An example is shown in Fig. 13. When

VOLUME 8, 2020 176383

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

Algorithm 2 Query Evaluation
Input: a QTP, Q, with n nodes {N1, N2, . . . , Nn}, and
the UCIS-X, Tp and Tc
Output: a set of branch maps with marked matching
digits

1 Function queryEvaluation(Q, Tp, Tc)
2 initialize a tree T as empty;
3 Travel Q in preorder, for each node Ni in Q
4 obtain the sequence of Ni-type dataNodes from Tp

by the tagname Ni;
5 add the Ni-list to T in the same position of Q;
6 getCandidate(T);
7 checkBM(T);
8
9 Function getCandidate(T)
10 initialize n pointer to the first dataNodes of each Ni-list
11 for each dataNode x of Nroot-list
12 check each other pointed dataNode y of Ni-list
13 while length(y.label) <= length(x.label)
14 y->next dataNode
15 if one of the pointed dataNode y is not the child of x
16 remove x from Nroot-list
17 else
18 x->next dataNode
19
20 Function checkBM(T)
21 initialize n pointer to the first dataNodes of each Ni-list
22 while not end of list
23 for each branchMap of dataNodes
24 if all the corresponding bits are ‘‘1’’
25 mark as matched.
26 each n->next dataNodes

‘‘<d1>Vd1</d1>’’ is deleted and because d1 is the only
d-tag child of c1, the branch of D(1.0.0.1.0) is updated from
{(11(1(11)))} to {(01(1(11)))}, and the count is reduced by 1.
Then, the corresponding content list is accessed, and ‘‘Vd1’’
is deleted.
Case 2: when the node to be deleted has a sibling node

with the same tag, there are two choices available for the
deletion. The first step is the same as in Case 1. For example,
after deleting ‘‘<d5>Vd5</d5>’’ (see Fig. 13), the branch
and count of D(1.0.0.1.0) are updated from {(01(1(11)))} to
{(01(1(01)))} and from 4 to 3, respectively. The deletion can
end here but will leave some unused space. The branch of
D(1.0.0.1.0) will be {(01(11)) }, and the space for Vd5 will
be deleted from the content list. Another choice is to reserve
them for later insertions. In practice, garbage collection can
be triggered at an appropriate time if necessary.
Case 3: when the count of a data node is equal to 1 and

only one node is to be deleted, then similar to Case 2, the
data node is either reserved or deleted. The example in Fig. 13
reserves G in the path index even if no such path exists. It is
also alternatively acceptable to delete data node G.

Algorithm 3 Basic Insertion
Input: the UCIS-X, Tp and Tc, a target node p, and an
inserted node c
Output: the updated UCIS-X

1 Function insertion(Tp, Tc, p, c)
2 find the dataNode x of the p-type list and mark the digit

of p;
3 if a c-type dataNode y is found, which is the child of x,
4 check the corresponding digits of the branch maps of

x and y
5 if the position of c to be inserted is denoted by ‘‘0’’
6 change ‘‘0’’ to ‘‘1’’ //Case 1
7 update Tc if corresponding data exist
8 else
9 change the previous digit ‘‘d’’ to ‘‘(d1)’’ //Case 2
10 update Tc if corresponding data exist
11 y.count ++;
12 else //Case 3
13 create a new c-type dataNode y
14 y.label = x label+count(x.children),

y.tagname=c.fullname;
15 y.count = 1;
16 y.branchmap = x.branchmap, where all values of

‘‘1’’ are set to ‘‘0’’ and the position of c is set to
‘‘1’’

17 update Tc if corresponding data exist

We demonstrate that the initial encoding rules of the branch
map are not broken after multiple insertions and deletions.
This feature is difficult to achieve using the labeling methods
proposed in the current literature. Another feature is that all
the queries and updates are performed under the structure of
UCIS-X instead of the original XML document. We know
that when performing an update operation, the first step is
to find the target node and then perform the update. Almost
all other methods involve finding the locations of the target
nodes through the index and then traveling across an XML
document to reach the target node for updating. Because
UCIS-X is a compact form of XML, any searching and
updating operations can be completed in succession without
having to visit the original document. UCIS-X is one of the
few methods that can fully integrate the functions of labeling,
indexing, querying, and updating.

D. SUPPORTED W3C XQUERY UPDATE OPERATIONS
The update operations defined by UCIS-X are based on the
W3C XQuery Update Facility 3.0. Twelve update operations
are defined by theW3C. For update operations, $target, $con-
tent, or $replacement represent XPath expressions [2], [42]
that specify a set of XML node(s). UCIS-X can support
almost all of the update operations except the put operation,
which stores an XDM (XQuery and XPath Data Model)
node tree to a location specified by a valid absolute user
resource identifier (URI). Furthermore, because UCIS-X

176384 VOLUME 8, 2020

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

FIGURE 12. Insertion examples.

FIGURE 13. Deletion examples.

supports unordered matching of XML [42], a few insert oper-
ations defined by UCIS-X are different from those recom-
mended by theW3C. Fig. 14 shows the initial state of anXML
tree and the summarized index tree obtained using UCIS-X.
The description of each update operation is followed by an
example with graphical explanations. The update operations
defined by UCIS-X are as follows.

1) INSERTINTO($TARGET, $CONTENT)
Insert $content as the child of $target. If the root of $content
does not exist in UCIS-X, then $content will be inserted as
the last child of $target. Otherwise, $content will be inserted
after the children, with the same tag name $target.
Example I1 (insertInto (/R/A[2], <X><Y></Y></X>)):

Because the path ‘‘R/A[2]/X/Y’’ does not exist in UCIS-X,
node x (denoted by ‘‘x1’’ in Fig. 15) is supposed to be inserted
as the last child of ‘‘R/A[2]’’ in the XML tree, followed
by the insertion of node y (denoted by ‘‘y1’’) as the child
of x. In UCIS-X, two new data nodes X and Y are created

at ‘‘1.0.1’’ and ‘‘1.0.1.0’’ instead. Fig. 15 shows the results
after the insertion operation.

2) INSERTATTRIBUTES($TARGET, $CONTENT)
Insert $content as attributes of $target. Similar to insertInto,
$content will be inserted as the last child of $target or after
the children with the same tag name $target.
Example I2 (insertAttributes (/R/A[2], @id= ‘‘#01’’)):

Because the path ‘‘R/A[2]/@id’’ does not exist in UCIS-X,
attribute ‘‘id’’ (denoted by ‘‘@id1’’ in Fig. 15) is supposed
to be inserted as the last child of ‘‘R/A[2]’’. However,
in UCIS-X, a new data node @ID is created at ‘‘1.0.2’’.
Fig. 15 shows the results after insertion.

3) INSERTINTOASFIRST ($TARGET, $CONTENT)/
INSERTINTOASLAST ($TARGET, $CONTENT)
Insert $content as a child of $target so that $content becomes
the first/last sibling of all nodes with the same tag name.

VOLUME 8, 2020 176385

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

FIGURE 14. Initial state of the XML and the summarized index tree obtained using UCIS-X.

FIGURE 15. Final state after Examples I1, I2, I3, and D1.

Example I3 (insertIntoAsFirst (/R/A/B/C/D, <G>

Vg</G>)): There are two nodes that meet ‘‘/R/A/B/C/D’’ in
Fig. 15. Node d1 is the first matched node. Because it has a
g-tag child, g1, a new g-tag node is inserted before g1, denoted
by ‘‘g2’’. The second matched node d3 does not have a g-tag
child; thus, a new g-tag node is inserted as the last child
of d3. UCIS-X is therefore updated directly. In this example,
multiple nodes are inserted simultaneously. If each node in
the XML tree has a unique label, many labels must be created.
In contrast, only one data node needs to be updated using
UCIS-X.

4) INSERTBEFORE ($TARGET, $CONTENT)/ INSERTAFTER
($TARGET, $CONTENT)
Insert $content immediately before/after $target if the leaf
node of $target and the root of $content have the same
tag name. Otherwise, insert $content as the last child of
$target. Note that this condition is applicable to the unordered
matching of XML, which is slightly different from the W3C
definition.
Example I4 (insertAfter (/R/C[1], <C></C>)): Node c2

in Fig. 15 matches $target, and the tag name is the same as the
root of the path ‘‘<C></C>’’. A new node c4 is supposed

176386 VOLUME 8, 2020

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

FIGURE 16. Final state after examples R1, R2, R3, and R4.

to be inserted immediately after c2. In UCIS-X, according to
this insertion, data node C(1.1) is updated instead, and the
branch and count are changed from ‘‘{1}’’ to ‘‘{(11)}’’ and
from 1 to 2, respectively. Note that cascading updates occur
in this case. The branches of all the descendants of C must be
updated from ‘‘{1}’’ to ‘‘{(10)}’’ to maintain the complete
mapping relationship.

5) DELETE($TARGET)
Delete the subtree rooted at $target. The descendants of
$target are automatically deleted.
Example D1 (delete(/R/A/B/C/D/E)): There are two nodes

thatmeet ‘‘/R/A/B/C/D/E’’ in Fig. 15: e1 and e3. After deleting
them as well as their content values, the count of data node D
in the index tree is set to 0. As mentioned previously, data
node D can be either reserved or deleted.

6) REPLACENODE ($TARGET, $REPLACEMENT)
Replace $target with $replacement.
Example R1 (replaceNode (/R/C[2], /R/C[1])): The second

node of ‘‘/R/C’’ will be replaced with the content of the first
node of ‘‘/R/C’’. In Fig. 16, there are three nodes and a content
value rooted at the first node, denoted by c2, which are copied
and pasted to the position of the second node, denoted by c4,
before updating. In UCIS-X, only the subtree rooted at C(1.1)
is updated. Because the spaces of the descendants of C were
created in advance in Example I4, the cost of this updating
was reduced.

7) REPLACEVALUE ($TARGET, $STRING-VALUE)
Replaces the string value of $target with $string-value.
Example R2 (replaceValue (/R/A[1], "XML")): The first

a-tag node of ‘‘/R/A’’ is denoted by a1 in Fig. 16. The string
value of a1, ‘‘Va1’’, is replaced by $string-value, "XML."

Please refer to Fig. 16 for the results obtained after perform-
ing the replacing operation.

8) REPLACEELEMENTCONTENT ($TARGET, $TEXT)
Replace the existing children of the element node $targetwith
the optional text node $text. The attributes of $target are not
affected.
Example R3 (replaceElementContent (/R/A[2]/X, "XML")):

The second a-tag node of ‘‘/R/A’’ is denoted by a2, and x1
matches ‘‘/R/A[2]/X’’ in Fig. 16. Each child of x1 is set to
empty, and therefore, y1 is deleted in this case. $text, ‘‘XML,’’
is placed in x1. The updated results of UCIS-X based on this
rule are shown in Fig. 16.

9) RENAME ($TARGET, $NEWNAME)
Change the tag name of $target to $newName.
Example R4 (rename (/R/A/B/C, K)): There are two nodes

that meet ‘‘/R/A/B/C’’ in Fig. 16: c1 and c3. The results of
changing the tag name ‘‘c’’ to ‘‘k’’ are shown in Fig. 16. This
is also an example of updatingmultiple nodes simultaneously.
However, using UCIS-X, only one data node is updated.

V. EXPERIMENTAL DESIGN AND RESULTS
In this section, the proposed labeling scheme based on
UCIS-X was compared with several other labeling schemes:
ORDPATH, DFPD, DPLS, and CIS-X. ORDPATH is a refer-
ence indicator used inMicrosoft R©SQL ServerTM. DFPD and
DPLS are relatively recent methods. Because DPLS has been
compared with many methods and performs well, we omit a
comparison with other comparable methods. A comparison
of the five labeling methods is shown in Table 1. Because
the studies on DFPD and DPLS did not specify the query
method used, to obtain a fair comparison, a data structure
(hash tables) and query method (TwigList) similar to those
used by UCIS-X were applied to the greatest extent possible.

VOLUME 8, 2020 176387

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

TABLE 1. Comparison of labeling methods.

TABLE 2. Characteristics of XML datasets.

The methods were evaluated with respect to the index con-
struction cost, query evaluation performance, and update
performance.

The experiments were performed using a Windows 7 sys-
tem with an Intel Core i7-2600 3.4 GHz central processing
unit and 16 GB of RAM. Three widely used datasets for
benchmarking XML indexing methods were chosen: DBLP,
XMark, and Nasa. The statistical data for the three datasets
are shown in Table 2. DBLP represents the class of low-depth
and high-fan-out documents. XMark embodies a document
of high depth and low fan-out. Nasa is of a small size with
a low fan-out. A noticeable characteristic of DBLP is the
high average number of node repetitions. The total number
of nodes of elements and attributes is 3,736,406 in DBLP,
but only 40 distinct tags are used. In contrast, there are only
532,963 nodes in Nasa, the number of distinct tags of which
is 68, which is greater than that of DBLP. The follow-up will
also explain whether these characteristics affect the results of
the experiments.

A. INDEX CONSTRUCTION COSTS
The index construction costs include the construction time
and the required size. Because the index mainly records
structural information, there is no special processing for the
plain text nodes; only the index sizes of the structure are
compared here. The results of the index construction time
for the different methods are shown in Fig. 17. ORDPATH,
DFPD, and DPLS use the Dewey order for the initial encod-
ing. DFPD and DPLS follow the same method in the initial
stage; thus, the time spent is the same. The construction
time for ORDPATH is slightly longer than for the other two

methods, probably because ORDPATH assigns only positive
odd integers, which requires a larger number of calculations.
Typically, the structural summary indexing methods require
more time to set up because building the summarizing struc-
ture is time-consuming [13]. CIS-X and UCIS-X improve
the construction performance by using a temporary stack
to record an active traversal path and thus avoid actually
building a summarized index tree. The results indicate that
the time spent by CIS-X or UCIS-X is less than that of the
other methods. Comparing CIS-X and UCIS-X, CIS-X needs
only cluster nodes, while UCIS-X must additionally compare
the mapping relationships between parent and child nodes;
thus, UCIS-X requires a longer build time than does CIS-X.

To achieve more precise discriminability, the indexes in
the memory were written to text files, and their sizes were
compared. Fig. 18 shows the required index sizes for the dif-
ferentmethods. ORDPATHhad a larger index size than that of
DFPD and DPLS, as expected. Both CIS-X and UCIS-X use
streamlined labeling methods, which efficiently save space.
UCIS-X performed better than CIS-X by using one bit instead
of an integer to record the position of each node in the XML
data tree. Based on the above experimental results, CIS-X and
UCIS-X demonstrate excellent performance in terms of the
index construction costs.

The nodes of the XML trees were visited in a pre-
ordered manner, where ORDPATH, DFPD, and DPLS, using
TwigList, clustered the labels in linked lists with the same tag
name and CIS-X and UCIS-X merged those labels with the
same tag name. We observed that depth and fan-out had not
significant effects on the cost of index construction. However,
CIS-X and UCIS-X were more affected by the degree of
node repeatability. The higher the repeatability of a node,

176388 VOLUME 8, 2020

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

FIGURE 17. Comparison of index construction times.

FIGURE 18. Index sizes required by different methods.

the better for CIS-X and UCIS-X. For example, DBLP is a
dataset with highly repetitive nodes, while Nasa is relatively
less repetitive. The costs of index construction in DBLP
(Fig. 17 and Fig. 18) for CIS-X and UCIS-X were obviously
much less than those of the other three methods. However,
only slight differences exist in Nasa.

B. PERFORMANCE ON QUERY EVALUATIONS AND
UPDATE OPERATIONS
In this section, the update performances are compared for
the above methods, except CIS-X, which does not provide an
update-friendly labeling mechanism. Because insertions can
trigger the creation of new nodes, modification of existing
nodes, and/or deletion of related nodes, most research has
focused on insertions. In addition, other operations can be
created by a series of deletions and/or insertions. There-
fore, the following experiments focused on insertions and
deletions.

The index structures of the four methods clustered nodes
with the same tag name and stored them in hash tables. The
position of the node to be inserted or deleted was not the main
factor affecting the process of query evaluation, insertion and
deletion. However, due to the different theories of the labeling
methods, the worst cases happen in different situations. For
ORDPATH, DFPD, and DPLS, the worst case of insertion
occurs when all new nodes are inserted concentratedly in a
certain location (such as in Figs. 2, 3, and 4). For UCIS-X, the
worst case of insertion occurs in Case 2, such as Example I4.
To avoid an unfair experimental design, YFilter [43] was used
to generate test target expressions and evaluate the overall
performance.

Each update operation first searches the target nodes
and then performs insertion or deletion. To examine the
query and update performances, a large number of update
expressions were fed into each method. Each update expres-
sion included a target expression for searching the target
node(s) and an active expression, which actually updated
the node(s). The target expressions were single-path queries
generated by YFilter. Two types of target expressions
were examined. The first type was XPath expression with
a position predicate. For example, the update expres-
sion of ‘‘insertAfter(//<author>/books/book[1]/author,
<author>Thomas</author>)’’ contains a position predi-
cate ‘‘book[1]’’ and inserts another author element after
the author of the first book. Therefore, only one author
element is inserted. The second type was XPath expres-
sion without a position predicate. For example, ‘‘insertAt-
tributes(//books/book), @code=‘‘B’’) inserts a code attribute
into each book, which triggers numerous insertions.

1) INSERTION PERFORMANCE
For insertion, ORDPATH, DFPD, and DPLS always cre-
ate new nodes in the original XML document. The inser-
tion process using UCIS-X is classified into three cases.
Cases 1 and 2 involve modification of the related branch
maps, and Case 3 creates new nodes, as discussed in
Section IV. All modifications are made within the summa-
rized index structure. One hundred insertion expressions were
sequentially processed by each method, the results of which
are shown in Figs. 19 and 20. Because the processing time
range was large, a logarithmic scale was used for the vertical
axis.

All three methods, i.e., ORDPATH, DFPD, and DPLS, are
update-friendly labeling methods, but they are inefficient in
label evaluation, as this process requires considerable time to
search for the target nodes. Each insertion must first check
the labels of the neighboring nodes to calculate the value of
the target label and then assigns a new space for the new
node. Moreover, each insertion will cause further expensive
manipulation and storage costs. In contrast, the proposed
UCIS-X must create only new index nodes under certain
conditions or modify an existing branch map of index nodes
to avoid creating a large number of nodes at once. Therefore,
the execution times of UCIS-X for insertion were faster than
those of the other three methods. We also noticed that by
comparing the insertion times with and without the position
predicate, the gap between UCIS-X and the other methods
increased for the latter, reflecting the advantages of UCIS-X
with the summarized index method.

2) DELETION PERFORMANCE
Figs. 21 and 22 illustrate the number of executions for 100
deletions when using each method. For deletion, ORDPATH,
DFPD, and DPLS deleted nodes and released the space with-
out any relabeling issues. However, if the deleted node was an
intermediate node, a cascading deletion was triggered. Using
these three methods, searching for the descendants of the

VOLUME 8, 2020 176389

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

FIGURE 19. Execution time for insertion with position predicate.

FIGURE 20. Execution time for insertion without position predicate.

FIGURE 21. Execution time for deletion with position predicate.

deleted node became expensive, which caused the methods
to spend more time than expected to process a deletion.
In contrast, it is not necessary to delete nodes using UCIS-X
while processing a deletion by reserving the deleted space
for later insertions. Cascading deletion may also occur in
the UCIS-X method; however, because it is relatively easy
to find descendants in the index structure, the overall speed
of UCIS-X is still faster than that of the three other methods.
Similarly, comparing Figs. 21 and 22, when deleting multiple
nodes at once, the efficiency of UCIS-X is more obvious.

A noteworthy result is that when processing deletion
with position predicates (Fig. 21), the execution times of
ORDPATH, DFPD, and DPLS were almost the same despite
the use of different databases. This result indicated that the
characteristics of the dataset have little effect on deletion. The
same is true for UCIS-X. While processing deletion without
position predicates (Fig. 22), ORDPATH, DFPD, and DPLS
spent almost the same amount of time for the same dataset.
The deletion time differed for different datasets mainly due
to the number of deleted nodes. However, UCIS-X still had
no significant difference among different datasets.

3) DIFFERENCES IN THE INDEX SPACE
To compare the increases in the index size after multiple
updates, 200 insertion and 200 deletion expressions were

FIGURE 22. Execution time for deletion without position predicate.

FIGURE 23. Increase in index size after 200 insertions and 200 deletions.

mixed and fed into eachmethod. Fig. 23 shows the differences
in the index size after execution. The increased index size is
the index size after execution minus the index size before exe-
cution. Among all methods, the size increase achieved using
ORDPATH was the largest because it only uses odd num-
bers for normal encoding and even numbers for extending.
Because the even numbers are virtual labels, they increase the
sections of a Dewey label and require additional space. The
encoding principles of DFPD and DPLS are relatively simi-
lar; the difference is that DPLS considers the mechanism of
label reuse. Thus, DPLS performed slightly better than DFPD
in terms of the required index space. UCIS-X maintains the
original labeling state after multiple insertions and deletions;
thus, the index space normally does not change significantly.
In some cases, the spacemay be reserved for future insertions,
as previously discussed.

VI. CONCLUSION
In this paper, we reviewed some well-known indexing meth-
ods and query evaluation algorithms. In addition, the prob-
lems associated with existing labeling schemes for supporting
dynamic XML updates were discussed. To overcome these
problems, UCIS-X with a branch map was proposed. The
advantages of UCIS-X include compression of the index
structure, the support of efficient query processing, and the
dynamic update of XML documents. Moreover, UCIS-X can
support most update operations defined by the W3C without
disturbing the original labels.

Severalmethodswere comparedwithUCIS-X:ORDPATH,
DFPD, DPLS, and CIS-X. The results demonstrate that
CIS-X and UCIS-X can be constructed quickly and require
less space than the other three methods. The experimental
results also indicate that the execution time for the update
processing of a branch map is more efficient when using
UCIS-X than that when using ORDPATH, DFPD, or DPLS.

176390 VOLUME 8, 2020

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

UCIS-X benefits from the branch map scheme and achieves
both efficient structural information extraction and low stor-
age consumption.

There are several issues worthy of further discussion.
First, the space required for indexes was simply compared
with the text files in the experiments. To keep the indexes
in the database in the future, a theoretical analysis method is
necessary. Second, although UCIS-X is excellent regarding
its index space, query speed, and update friendliness, it is suit-
able only for XML partially ordered matching. The UCIS-X
design is based on the fact that the children of a node are
represented in two types: unordered collection for nodes with
different tag names and ordered collection for nodes with the
same tag names. It is important to know the different tag
names of the children of each node, but their order can be
ignored. Only the order of children with the same tag name
was preserved, because the information would be meaningful
in some cases. For example, the first and second authors of
a book are meaningful, and the branch map preserves this
information. Although the proposed method can only support
partially ordered updates, the experimental results show that
UCIS-X has significant improvements in terms of the index
construction time and index size, as shown in Fig. 17 and
Fig. 18. However, an ordered updatable XML is necessary in
some applications. Therefore, in the future, we will attempt
to design a user-friendly indexing and labeling method that
supports the ordered matching of XML documents.

REFERENCES
[1] E.Menahem, A. Schclar, L. Rokach, and Y. Elovici, ‘‘XML-AD: Detecting

anomalous patterns in XML documents,’’ Inf. Sci., vol. 326, pp. 71–88,
Jan. 2016, doi: 10.1016/j.ins.2015.07.007.

[2] G. Z. Qadah, ‘‘Indexing techniques for processing generalized XML doc-
uments,’’ Comput. Standards Interfaces, vol. 49, pp. 34–43, Jan. 2017,
doi: 10.1016/j.csi.2016.07.002.

[3] Z. Brahmia, H. Hamrouni, and R. Bouaziz, ‘‘XML data manipulation
in conventional and temporal XML databases: A survey,’’ Comput. Sci.
Rev., vol. 36, May 2020, Art. no. 100231, doi: 10.1016/J.COSREV.2020.
100231.

[4] Y. Khan, A. Zimmermann, A. Jha, V. Gadepally, M. D’Aquin, and
R. Sahay, ‘‘One size does not fit all: Querying Web polystores,’’
IEEE Access, vol. 7, pp. 9598–9617, 2019, doi: 10.1109/ACCESS.2018.
2888601.

[5] J. R. Quinones and A. J. Fernandez-Leiva, ‘‘XML-based video game
description language,’’ IEEE Access, vol. 8, pp. 4679–4692, 2020, doi: 10.
1109/ACCESS.2019.2962969.

[6] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, ‘‘In-
memory big data management and processing: A survey,’’ IEEE Trans.
Knowl. Data Eng., vol. 27, no. 7, pp. 1920–1948, Jul. 2015, doi: 10.
1109/TKDE.2015.2427795.

[7] Q. Chen, A. Lim, andK.W.Ong, ‘‘D(k)-index: An adaptive structural sum-
mary for graph-structured data,’’ in Proc. ACM SIGMOD Int. Conf. Man-
age. Data (SIGMOD), San Diego, CA, USA, 2003, pp. 134–144, doi: 10.
1145/872757.872776.

[8] Q. Chen, A. Lim, and K. W. Ong, ‘‘Enabling structural summaries for
efficient update and workload adaptation,’’ Data Knowl. Eng., vol. 64,
no. 3, pp. 558–579, Mar. 2008, doi: 10.1016/j.datak.2007.09.012.

[9] C.-W. Chung, J.-K. Min, and K. Shim, ‘‘APEX: An adaptive path index for
XML data,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD),
2002, pp. 121–132, doi: 10.1145/564704.564706.

[10] B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon,
‘‘A fast index for semistructured data,’’ in Proc. 27th Int. Conf. Very Large
Databases (VLDB), 2001, pp. 341–350.

[11] R. Goldman and J. Widom, ‘‘DataGuides: Enabling query formulation and
optimization in semistructured databases,’’ in Proc. 23rd Int. Conf. Very
Large Databases (VLDB), 1997, pp. 436–445.

[12] W.-C. Hsu, I.-E. Liao, S.-Y. Wu, and K.-F. Kao, ‘‘An efficient XML
indexing method based on path clustering,’’ in Proc. 20th IASTED Int.
Conf. Modeling Simulation, 2009, pp. 339–344.

[13] W.-C. Hsu and I.-E. Liao, ‘‘CIS-X: A compacted indexing scheme
for efficient query evaluation of XML documents,’’ Inf. Sci., vol. 241,
pp. 195–211, Aug. 2013, doi: 10.1016/j.ins.2013.03.055.

[14] S. K. Izadi, T. Härder, and M. S. Haghjoo, ‘‘S3: Evaluation of tree-pattern
XML queries supported by structural summaries,’’ Data Knowl. Eng.,
vol. 68, no. 1, pp. 126–145, Jan. 2009, doi: 10.1016/j.datak.2008.09.001.

[15] S. Agreste, P. De Meo, E. Ferrara, and D. Ursino, ‘‘XML matchers:
Approaches and challenges,’’ Knowl.-Based Syst., vol. 66, pp. 190–209,
Aug. 2014, doi: 10.1016/j.knosys.2014.04.044.

[16] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and
Y. Wu, ‘‘Structural joins: A primitive for efficient XML query pattern
matching,’’ in Proc. 18th Int. Conf. Data Eng., San Jose, CA, USA,
Feb./Mar. 2002, pp. 141–152, doi: 10.1109/ICDE.2002.994704.

[17] N. Bruno, N. Koudas, and D. Srivastava, ‘‘Holistic twig joins: Optimal
XML pattern matching,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data
(SIGMOD). New York, NY, USA: Association Computing Machinery,
2002, pp. 310–321, doi: 10.1145/564691.564727.

[18] S. Chen, H. G. Li, J. Tatemura, W. P. Hsiung, D. Agrawal, and
K. S. Candan, ‘‘Twig2Stack: Bottom-up processing of generalized tree-
pattern queries over XML documents,’’ in Proc. 32nd Int. Conf. Very Large
Databases (VLDB), 2006, pp. 283–294.

[19] Z. Chen, J. Gehrke, F. Korn, N. Koudas, J. Shanmugasundaram, and
D. Srivastava, ‘‘Index structures for matching XML twigs using rela-
tional query processors,’’ Data Knowl. Eng., vol. 60, no. 2, pp. 283–302,
Feb. 2007, doi: 10.1016/j.datak.2006.03.003.

[20] L. Qin, J. X. Yu, and B. Ding, ‘‘TwigList: Make twig pattern matching
fast,’’ in Proc. 12th Int. Conf. Database Syst. Adv. Appl. Jeju, South Korea:
Springer, 2007, pp. 850–862.

[21] H. A. Al-Jamimi, A. F. Barradah, and S. Mohammed, ‘‘Siblings labeling
scheme for updating XML trees dynamically,’’ in Proc. Int. Conf. Comput.
Eng. Technol., 2012, pp. 21–25.

[22] S.-C. Haw and C.-S. Lee, ‘‘Extending path summary and region encod-
ing for efficient structural query processing in native XML databases,’’
J. Syst. Softw., vol. 82, no. 6, pp. 1025–1035, Jun. 2009, doi: 10.1016/j.
jss.2009.01.007.

[23] J. Liu and X. X. Zhang, ‘‘Dynamic labeling scheme for XML updates,’’
Knowl.-Based Syst., vol. 106, pp. 135–149, Aug. 2016, doi: 10.1016/j.
knosys.2016.05.039.

[24] J.-K. Min, J. Lee, and C.-W. Chung, ‘‘An efficient XML encoding and
labeling method for query processing and updating on dynamic XML
data,’’ J. Syst. Softw., vol. 82, no. 3, pp. 503–515, Mar. 2009.

[25] X.-T. Nguyen, S.-C. Haw, S. Subramaniam, and C.-K. Pham, ‘‘Dynamic
node labeling schemes for XML updates,’’ in Proc. 6th Int. Conf. Comput.
Inform., 2017, pp. 505–510.

[26] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld, ‘‘Updating XML,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), 2001,
pp. 413–424, doi: 10.1145/376284.375720.

[27] Z. Brahmia, H. Hamrouni, and R. Bouaziz, ‘‘TempoX: A disciplined
approach for data management in multi-temporal and multi-schema-
version XML databases,’’ J. King Saud Univ.-Comput. Inf. Sci., to be
published, doi: 10.1016/j.jksuci.2019.08.009.

[28] S. Maneth and F. Peternek, ‘‘Grammar-based graph compression,’’ Inf.
Syst., vol. 76, pp. 19–45, Jul. 2018, doi: 10.1016/j.is.2018.03.002.

[29] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang, ‘‘Storing and querying ordered XML using a relational database
system,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD),
2002, pp. 204–215, doi: 10.1145/564691.564715.

[30] S.-C. Haw, S. Subramaniam, W.-S. Lim, and F.-F. Chua, ‘‘Hybridation of
labeling schemes for efficient dynamic updates,’’ Indonesian J. Electr. Eng.
Comput. Sci., vol. 4, no. 1, pp. 184–194, 2016, doi: 10.11591/ijeecs.v4.i1.

[31] J. Liu, Z. M. Ma, and L. Yan, ‘‘Efficient labeling scheme for dynamic
XML trees,’’ Inf. Sci., vol. 221, pp. 338–354, Feb. 2013, doi: 10.1016/
j.ins.2012.09.036.

[32] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury,
‘‘ORDPATHs: Insert-friendly XML node labels,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data (SIGMOD), 2004, pp. 903–908, doi: 10.1145/
1007568.1007686.

VOLUME 8, 2020 176391

http://dx.doi.org/10.1016/j.ins.2015.07.007
http://dx.doi.org/10.1016/j.csi.2016.07.002
http://dx.doi.org/10.1016/J.COSREV.2020.100231
http://dx.doi.org/10.1016/J.COSREV.2020.100231
http://dx.doi.org/10.1109/ACCESS.2018.2888601
http://dx.doi.org/10.1109/ACCESS.2018.2888601
http://dx.doi.org/10.1109/ACCESS.2019.2962969
http://dx.doi.org/10.1109/ACCESS.2019.2962969
http://dx.doi.org/10.1109/TKDE.2015.2427795
http://dx.doi.org/10.1109/TKDE.2015.2427795
http://dx.doi.org/10.1145/872757.872776
http://dx.doi.org/10.1145/872757.872776
http://dx.doi.org/10.1016/j.datak.2007.09.012
http://dx.doi.org/10.1145/564704.564706
http://dx.doi.org/10.1016/j.ins.2013.03.055
http://dx.doi.org/10.1016/j.datak.2008.09.001
http://dx.doi.org/10.1016/j.knosys.2014.04.044
http://dx.doi.org/10.1109/ICDE.2002.994704
http://dx.doi.org/10.1145/564691.564727
http://dx.doi.org/10.1016/j.datak.2006.03.003
http://dx.doi.org/10.1016/j.jss.2009.01.007
http://dx.doi.org/10.1016/j.jss.2009.01.007
http://dx.doi.org/10.1016/j.knosys.2016.05.039
http://dx.doi.org/10.1016/j.knosys.2016.05.039
http://dx.doi.org/10.1145/376284.375720
http://dx.doi.org/10.1016/j.jksuci.2019.08.009
http://dx.doi.org/10.1016/j.is.2018.03.002
http://dx.doi.org/10.1145/564691.564715
http://dx.doi.org/10.11591/ijeecs.v4.i1
http://dx.doi.org/10.1016/j.ins.2012.09.036
http://dx.doi.org/10.1016/j.ins.2012.09.036
http://dx.doi.org/10.1145/1007568.1007686
http://dx.doi.org/10.1145/1007568.1007686

W.-C. Hsu, I.-E. Liao: UCIS-X: Updatable Compact Indexing Scheme

[33] B. Zhang, Z. Geng, and A. Zhou, ‘‘SIMP: Efficient XML structural
index for multiple query processing,’’ in Proc. 9th Int. Conf. Web-Age
Inf. Manage. Washington, DC, USA: IEEE Computer Society, Jul. 2008,
pp. 113–118.

[34] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes, ‘‘Exploiting local
similarity for indexing paths in graph-structured data,’’ in Proc. 18th
Int. Conf. Data Eng., San Jose, CA, USA, Feb./Mar. 2002, pp. 129–140,
doi: 10.1109/ICDE.2002.994703.

[35] T. Milo and D. Suciu, ‘‘Index structures for path expressions,’’ inDatabase
Theory—ICDT’99 (Lecture Notes in Computer Science), vol. 1540. Berlin,
Germany: Springer-Verlag, 1999, pp. 277–295.

[36] I.-E. Liao, W.-C. Hsu, and Y.-L. Chen, ‘‘An efficient indexing
and compressing scheme for XML query processing,’’ in Networked
Digital Technologies (Communications in Computer and Informa-
tion Science), vol. 87, F. Zavoral, J. Yaghob, P. Pichappan, and
E. El-Qawasmeh, Eds. Berlin, Germany: Springer, 2010, doi: 10.1007/978-
3-642-14292-5_8.

[37] H. Fan, Z. Ma, D. Wang, and J. Liu, ‘‘Handling distributed XML queries
over large XML data based on MapReduce framework,’’ Inf. Sci., vol. 453,
pp. 1–20, Jul. 2018, doi: 10.1016/j.ins.2018.04.028.

[38] S. Subramaniam, S.-C. Haw, and L.-K. Soon, ‘‘DGReLab+: Improv-
ing XML path query processing by avoiding buffering irrelevant
results,’’ Procedia Comput. Sci., vol. 115, pp. 804–811, Dec. 2017, doi:
10.1016/j.procs.2017.09.157.

[39] S. Subramaniam, S.-C. Haw, L.-K. Soon, and K.-L. Koong, ‘‘QTwig:
A structural join algorithm for efficient query retrieval based on region-
based labeling,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 27, no. 2,
pp. 321–342, Mar. 2017, doi: 10.1142/S0218194017500115.

[40] F. Azzedin, S. Mohammed, M. Ghaleb, J. Yazdani, and A. Ahmed,
‘‘Systematic partitioning and labeling XML subtrees for efficient pro-
cessing of XML queries in IoT environments,’’ IEEE Access, vol. 8,
pp. 61817–61833, 2020, doi: 10.1109/ACCESS.2020.2984600.

[41] (Jan. 24, 2017). XQuery Update Facility 3.0, W3C Working Group Note.
[Online]. Available: https://www.w3.org/TR/xquery-update-30/

[42] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi, ‘‘Efficient filtering
of XML documents with XPath expressions,’’ VLDB J. Int. J. Very Large
Data Bases, vol. 11, no. 4, pp. 354–379, Dec. 2002, doi: 10.1007/s00778-
002-0077-6.

[43] Y. Diao, P. Fischer, M. J. Franklin, and R. To, ‘‘YFilter: Efficient
and scalable filtering of XML documents,’’ in Proc. 18th Int. Conf.
Data Eng., San Jose, CA, USA, Feb./Mar. 2002, pp. 341–342, doi: 10.
1109/ICDE.2002.994748.

WEN-CHIAO HSU received the B.S. degree in
international trade from Chinese Culture Univer-
sity, Taiwan, R.O.C., in 1993, the M.S. degree in
computer information systems from the Florida
Institute of Technology, USA, in 2003, and the
Ph.D. degree in computer science and engineering
from National Chung Hsing University, Taichung,
Taiwan, in 2012. She is currently an Assistant Pro-
fessor with the Department of Information Man-
agement, National Taichung University of Science

and Technology, Taiwan. Her research interests include database systems,
data mining, extensible markup language databases, and recommended
systems.

I-EN LIAO received the B.S. degree in applied
mathematics from National Chengchi University,
Taiwan, in 1978, and the M.S. degree in mathe-
matics and the Ph.D. degree in computer and infor-
mation science from The Ohio State University,
in 1983 and 1990, respectively. He is currently a
Professor with the Department of Computer Sci-
ence and Engineering, National Chung Hsing Uni-
versity, Taiwan. He also leads a Research Team
with the Taiwan Information Security Center at

NCHU (TWISC@NCHU) working on the design and implementation of
secure and resilient mechanisms for critical infrastructure information pro-
tection. His research interests include data mining, extensible markup lan-
guage databases, big data analytics, and information security. He is a member
of ACM and the IEEE Computer Society.

176392 VOLUME 8, 2020

http://dx.doi.org/10.1109/ICDE.2002.994703
http://dx.doi.org/10.1007/978-3-642-14292-5_8
http://dx.doi.org/10.1007/978-3-642-14292-5_8
http://dx.doi.org/10.1016/j.ins.2018.04.028
http://dx.doi.org/10.1016/j.procs.2017.09.157
http://dx.doi.org/10.1142/S0218194017500115
http://dx.doi.org/10.1109/ACCESS.2020.2984600
http://dx.doi.org/10.1007/s00778-002-0077-6
http://dx.doi.org/10.1007/s00778-002-0077-6
http://dx.doi.org/10.1109/ICDE.2002.994748
http://dx.doi.org/10.1109/ICDE.2002.994748

