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ABSTRACT Cataract constitutes half of the blindness cases worldwide; hence, detecting and treating
cataracts in a timely manner are effective strategies for blindness prevention. Recently, methods of detecting
cataracts through deep learning are flourishing; however, the task of improving the grading mechanism is
still the priority in the research field. This study evaluates the classification capability of the automated
nuclear cataract detection algorithm using ocular images captured by smartphone-based slit-lamp. The task
of the algorithm is to automatically detect cataract severity in terms of the photometric appearance of the
nuclear region of the crystalline lens of the eyes. The nuclear region of the ocular lens was localized by
YOLOv3. Subsequently, the combination of a deep learning network, ShuffleNet, and a support vector
machine (SVM) classifier was used to grade cataract severity, evaluating the gray conjugate features of the
nuclear region. Using the trained algorithm, 819 anterior ocular images captured by smartphone-based slit-
lamp were utilized to evaluate the algorithm’s performance. The accuracy was 93.5% with Kappa of 95.4%
and F1 of 92.3%. The AUC was 0.9198. The proposed validation method could evaluate a cataract severity
in 29 ms and the entire classification process in less than 1s. This study can improve the accuracy of the
examination, reduce misdiagnosis rate and the difficulty of the doctor’s examination. The addition of scoring
system can improve the quality of pictures obtained by non-ophthalmologists. The method is especially
suitable for cataract screening in the underdeveloped areas or areas which are in shortage of ophthalmic
resources. It can also improve the accessibility of ophthalmic medical treatment.

INDEX TERMS Images captured by smartphone-based slit-lamp, automated cataract detection, grade
cataract, deep learning.

I. INTRODUCTION
Today, the world has approximately 400 million vision
impairment and 40 million blind population [1]. As a country
with the largest population, China accounts for a quarter
of the world’s vision impairment and blindness. In addi-
tion, among the blind population, more than half are caused
by cataracts [2]. American Academy of Ophthalmology
defined cataract as the clouding of the lens [3]. The lens
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opacity also significantly reduced one’s visual acuity and
quality of life; hence, the delay in detecting and treating
cataracts also cause critical burden to the society [4], [5].
Studies show that the risk factors of cataract include age-
ing, diabetes, hypertension, smoking, and the exposure to
radiation [6].

There is no definite method to prevent cataract [6]. The
treatment can be restored by installing artificial lens surgi-
cally. The recovery effect is obvious, and it almost achieves
the normal visual function. Therefore, early and accurate
detection is critical to preventing vision loss.
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Cataract can be generally divided into congenital cataract
and acquired cataract. Acquired cataract is mostly senile
cataract, and occurs above the age of 40 years, except cataract
caused by external factors such as trauma, poisoning and
radiation. The human lens is an oval structure, which is
located behind the iris and can be divided into three lay-
ers: cortical layer, nucleus and posterior capsule. Clinically,
senile cataract is usually divided into cortical cataract, nuclear
cataract and posterior cystic cataract according to its stages.
Cortical cataract is mainly due to the gray-white turbidity
of the lens cortex layer, which can gradually develop into
excessive maturity from the initial stage. Nuclear cataracts
usually start in the center of the lens, that is, the nuclear
layer. It gradually worsens and expands to all sides at the
same time. The color changes from light to deep, initially
showing light yellow, then gradually becoming dark yellow
and dark brown yellow as the disease worsens and the color
deepens. People with cataracts are relatively more likely to
develop nuclear cataracts, so nuclear cataracts are also most
common. Posterior cystic cataract is a lesion in the posterior
capsule of the lens. If it is located in the visual axis region,
it can affect vision in the early stage. Therefore, how to
accurately diagnose and treat cataract in time is important
to avoid blindness caused by cataract. Currently, cataract is
diagnosed by doctors, observing the state of the lens through
a slit lamp or a hand-held slit lamp under a slit lamp micro-
scope. Doctors can diagnose by comparing the examinees’
crystal images with standard graded images. These standard
graded images include the Lens Opacity Classification Sys-
tem III(LOCS) [7]. The Wisconsin Cataract Classification
System [8]. However, such graded assessments are subjective.
Automatic grading will improve diagnostic efficiency and
avoid the involvement of subjective factors. It can effectively
improve the clinical management of cataract disease, and
provide theoretical basis for the epidemiology [9]. Especially
in the less developed areas with scarce ophthalmologists,
the automatic grading system can allow ordinary doctors to
screen cataracts and provide doctors with expertise in artifi-
cial intelligence-assisted diagnosis treatment.

Recently, multiple computer aided diagnostics in disease
detection appear in the field of ophthalmology. But most
of the technologies are focused to detect posterior eye dis-
eases [10]. Hence, this study proposes a cataract severity
classification algorithm based on deep learning, to provide a
basis for automated disease detection of anterior eye diseases.

In this work, our primary contribution is to propose an
innovative framework for automated classification using arti-
ficial intelligence. This framework integrates three different
artificial intelligence networks by means of logical regres-
sion, which improves the accuracy of diagnosis and reduces
the false positive rate in the process of screening, so that doc-
tors can easily obtain the crystal picture of the patient. This
paper also innovatively uses yolov3 for pupil location and
cataract identification, instead of simply classifying pictures.
Because of the high accuracy of yolov3, it can effectively
reduce the difficulty of doctors taking pictures and make it

easier for doctors to obtain lens images of subjects, so that
through the optimization of the framework, the difficulty of
examination of cataract can be reduced.

The article is structured as follows: The second section
reviews the relevant automated cataract classification algo-
rithms in the literature. The third section introduces the pro-
posed algorithm. The fourth section evaluates the proposed
algorithm using a testing dataset. The final section discusses
the results.

II. RELATED WORKS
This chapter summarizes automated cataract detection algo-
rithm that is recently documented in the literature.

The majority of the day’s automatic cataract detection
algorithms was developed using ocular images captured by
slit-lamps as the study datasets. Reference [11], [12] used
image rankings on neighbor markers and optimized the learn-
ing functions to make cataract severity predictions. Refer-
ence [13] designated the color of the crystalline lens as the key
feature to provide feedback and support clinicians to make
diagnosis. Reference [14] developed an algorithm to classify
cataract severity by evaluating visual axis and extracted crit-
ical features and their significance from slit-lamp images.
With the development of research, the researchers in ref-
erence [15]–[22] found that it can effectively extract the
features of cataract images, and adequate usage of classifi-
cation algorithm could accomplish automatic classification.
The basic principle is to extract global features or local
features of the image to use support vector machine (SVM)
or vector regression (SVR) to complete the classification
tasks. The algorithms accuracy is up to 90%. Reference [23]
used sparse linear regression constraints to perform feature
and parameter selection together to complete the grading
task. Reference [24] first used the enhanced texture fea-
tures of extracted cataract images, and the team used sta-
tistical data of the enhanced texture features to train linear
discriminant analysis (LDA) to detect cataracts. The study
tested the algorithm using 4,545 clinical images and obtained
an accuracy of 84.8%. Reference [25] extracted features
from fundus images based on wavelet transform or discrete
cosine transformation and used classification algorithm to
complete classification tasks. Although nuclear cataract is
the most common type of cataract, multiple studies were
developing algorithms in detecting cortical cataracts. Refer-
ence [26], [27] used nonlinear least square method and edge
detection method to detect cortical opacity and judge the
grade of cortical cataract. Other studies distinguished corti-
cal cataract by separating cortical opacity from other opac-
ity types based on different characteristics. The mentioned
classification methods utilized traditional methods. Today,
with the rapid development of deep learning, researches on
cataract classification using deep learning approaches are
carried out widely. In reference [28], convolution neural
network (CNN) was used to extract the features of pedi-
atric ocular images, and SVM algorithm or softmax clas-
sifier are combined to achieve automatic classifications.
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FIGURE 1. An illustration of the proposed UDFA based solution for slit-lamp based nuclear cataract grading.

Compared with conventional methods, the suggested deep
learning approach was more effective on automatic classi-
fication. Reference [29] also used deep convolution neu-
ral network to complete cataract classification. The study
trained an algorithm using fundus images and achieved a
grading accuracy of 86.7%. Reference [30] published a paper
at MICCAI conference to better study the classification of
nuclear cataract. By using Faster R-CNN to locate its nuclear
region and taking the nuclear region as input, the classifica-
tion model based on ResNet-101 was trained. Although the
method of automated cataract classification was continuously
proposed, the approach to improving the accuracy of cataract
classification is still a problem that needs to be addressed.
This study proposes a combination of three machine learning
methods to finally complete cataract classification prediction.
The detailed methods are presented in the next section of the
paper.

III. PROPOSED METHODOLOGY
Smartphone-based slit-lamp photos from individuals with
different cataract severity were used in this study, and the
algorithm’s main task is to automatically classify the cataract
severity based on the photometric appearance of the crys-
talline lens. Figure 1 represents the complete framework of
the proposed algorithm.

A. IMAGE BLUR DETECTION
Multiple images of individuals would be captured while
users of the smartphone-based slit-lamp are capturing ocular
images for eye screening. It is likely that the images are blurry
due to shiver and lack of focus when the images are captured.
To resolve this issue, Tenengard [31] algorithm is used in
the automated nuclear cataract classification framework to
calculate the T-values of multiple images taken by the slit-
lamps. Among all, the image with the largest T-value is

selected as the output and entered into the next nuclear region
detection algorithm. Set the dataset I be a plurality of images
taken and Ii is the i-th image among them.
Tenengard [31] function is a gradient-based image def-

inition evaluation function. During the image processing
mechanism, an image with sharper edges has larger gradient
function values. Tenengrad function uses Sobel operator to
extract gradient values in horizontal and vertical directions.
The larger the average gray value of the image processed by
Sobel operator, the clearer the image. The specific process is
shown below:

Set the Sobel convolution kernel be Gx ,Gy, and the gradi-
ent of the image Ii at the point (x, y):

Si(x, y) =
√
Gx × Ii(x, y)+ Gy × Ii(x, y) (1)

The Tenengrad value of an image is defined as:

Ti =
1
n
∗

∑
x

∑
y
s(x, y)2 (2)

In formula (2), n is the total number of pixels of the image.
The value Ti of each image in the data set I s calculated. Fig.2
shows the values of image in (a) ∼ (d) useing equation (1),
and (2) to find the i-th image corresponding to the final return
value. max(Ti), i ∈ I of T value would be used in the next
step.

B. NUCLEAR REGION LOCALIZATION BY YOLOv3
Reference [32] proposed YOLO v3. The new feature extrac-
tion network used by YOLO v3 integrates the network

Darknet-19 in YOLO v2 and the new popular residual
network (residual structure of ResNet). The network uses
a large number of 3 × 3 and 1 × 1 convolution layers to
connect and add shortcut connections between the nodes,
so its network structure is more complex with 53 convolution
layers. Therefore, YOLO v3 feature extraction network is
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FIGURE 2. Ilustrations of anterior ocular image captured by physicians
using smartphone-based slit-lamps in practice (images from the same
eye). The green values shown on the top left corner of the images (a)-(d)
represent the Tenengrad score evaluating the image clarity. The higher the
value, the clearer the image.

called Darknet-53. YOLO v3 improves the prediction accu-
racy on the premise of maintaining the speed advantage, espe-
cially strengthening the recognition ability for small objects.
We mainly evaluate our models on the Marked Slit Lamp
Picture Project (MSLPP) classification dataset. We follow
most of the training settings and hyper-parameters used in
most papers, and we set the weight decay to 0.0005 and the
learning rate is set to 0.001. And the momentum is set to 0.9.
The input image size is 416 × 416. It takes 1 day to train a
model on 1 GPU, whose batch size is set to 64. Leaky is used
to activate the function. We use exactly the same settings for
all models to ensure fair comparisons.

When loss converges, the training model is output. During
the test, the image of the test set is taken as the input, and the
input image size is defined as 416 × 416. According to the
training model, the position coordinates of the nuclear region
are confirmed, and the required data set is obtained according
to the corresponding operations. This algorithm shrinks the
scale of the original images. Even though the coordinates are
accurate, the pixels of the obtained intercepted image data
will be lost. Therefore, after obtaining the coordinates, they
are converted to coordinates that can be intercepted on the
basis of the original image in proportion k1, k2. The specific
operations are as follows:

k1 =
image.size [0]

model_image_size [0]
(3)

k2 =
image.size [1]

model_image_size [1]
(4)

image.size [0] , image.size [1] are the length and width of
the original image. The values of model_image_size [0] and
model_image_size [1] are 416, so the obtained positioning
coordinates ((left, top), (right, bottom)) in proportion k1, k2

are converted into:

top2 = floor(k1 ∗ top) (5)

left2 = floor(k2 ∗ left) (6)

bottom2 = floor(k1 ∗ bottom) (7)

right2 = floor(k2 ∗ right) (8)

C. GRADING
When classifying the nuclear lens regions, we adopt two
classification methods, namely ShuffleNet network based
on deep learning, and SVM classifier model based on gray
conjugate features.

1) ShuffleNet V1
ShuffleNet v1 [33] achieves higher accuracy than other
lightweight models in ImageNet classification and MS
COCO target detection tasks, such asMobileNet v1. OnARM
devices, ShuffleNet is 13 times faster than AlexNet. The
architecture designed in this paper adopts ShuffleNet network
in one of the cataract classification recognition algorithms,
which has the advantages of higher accuracy and faster speed.

This section analyzes the pre-training and migration learn-
ing based on ShuffleNet network, and uses ImageNet as the
dataset for pre-training. At the same time, the transfer learn-
ing technology, Leaky ReLU is used to activate the function.
Subsequently, its own dataset is added for re-training. Our
models are largely evaluated on theMarked Slit Lamp Picture
Project(MLSPP) classification dataset. We followmost of the
training settings and hyper-parameters used in most papers,
but we set theweight decay to 4e-5 instead of 1e-4. Use linear-
decay learning rate policy. It takes 1 or 2 days to train a model
on 1 GPU, whose batch size is set to 32. Leaky ReLU is used
to activate the function. The input image size is 224 × 224,
the learning rate is set to 0.001. We use exactly the same
settings for all models to ensure fair comparisons.

2) CONVENTIONAL METHOD FOR GRADING FEATURE
EXTRACTION
Statistical texture analysis is divided into two types: the first
-order of statistical texture method and the second-order of
statistical texture method. The first-order of the statistical
texture method is based on the characteristics of histogram
image to calculate features. In some cases, the first-order
statistical texture method cannot be used to identify the dif-
ferences between images. In this study, we used Gray Level
Co-occurrence Matrix (GLCM). This method distinguishes
the normal and cataract. GLCM was proved to be popular
statistical method of extracting textural feature from images.
GLCM reflects the comprehensive information of image
gray level about direction, adjacent interval, and variation
amplitude. GLCM can be used to analyze the local fea-
tures and arrangement rules of images. To describe texture
conditions more intuitively with GLCM, the obtained co-
occurrence matrix was not directly applied. Quadratic statis-
tics were obtained on the basis of the obtained co-occurrence
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matrix. Reference [34], [35] defined 14 feature parameters
of GLCM for texture analysis: second moment, contrast, cor-
relation, difference moment, deficit moment (homogeneity),
sum average, sum variance, sum entropy, entropy, variance,
difference entropy, correlation measure 1, correlation mea-
sure 2, and maximum correlation coefficient.

Ulaby et al. found that among the 14 texture features
based on GLCM, only 4 feature parameters were irrele-
vant. These 4 features are convenient to calculate and can
achieve high classification accuracy. Generally, second-order
moment (energy), contrast, correlation and entropy are used.
The four most commonly used features are used to extract
texture features of images. SVM is used to train the classifier
for the gray conjugate matrix generated by the above method,
and the model model_svm is generated.

3) MODEL FUSION
With the aim of improving the accuracy of the whole stacking
method, we proposed a new fusion process of combining
YOLO v3 model, ShuffleNet model, and the support vec-
tor machine based on gray level Gray Level Co-occurrence
Matrix. Stacking [36] method uses the model output values
that need to be merged as the input values in the next stage,
and the final classification label is used as the output value,
so that the coefficient can be obtained by the logistic regres-
sion method.

The logistic regression can use the equation (9):

logit P = α + β1x1 + β2x2 + · · · + βmxm (9)

P is the final category. x1, x2, · · · , xm are determinis-
tic variables associated with probability. α is a constant.
β1, β2, . . . βm are the logistic regression coefficient, which
indicates the coefficients at the possibility of P after the input
values of the logistic regression x1, x2, · · · , xm are confirmed.
In this method, three different models are used for inte-

gration. So m=3, the output values of three different models
are x1 ∼ x3, as the inputs of logistic regression. P is the
known label of the final classification. The β1-β3 trinomial
coefficients can be obtained by fitting calculation.

The detailed process of fusion is as follows: At first, We
performed 5-fold cross validation on the training dataset
of 500 images, and obtained the results t1∼t5, also used
100 images as the test dataset. Next, we would utilize three
machine learning methods to categorize the data: method
C, D, and E. (Method C represents YOLOv3; D represents
ShuffleNet; E represents method B in P.3. The complete
process of stacking is: Towards each method C, D, and E,
it would use dataset t2 to t5 to train, and test on t1. The result
would be saved as d1, and the results on the testing dataset
would be saved as td1. Subsequently, t1, t3, t4, t5 would be
used to train the algorithm and be tested on t2. The result
would be saved as d2, and the results on the testing dataset
would be saved as td2. Under the same process, d1, d2, d3, d4,
d5 and td1, td2, td3, td4, td5 would be obtained. The results
of d1 to d5 would be combined as d, then d would be fed into
model C, D, and E, so the trained results would be considered

DC,DD,DE respectively.Meanwhile, wewould calculate the
average value of td1 to td5 to obtain TC, TD, TE. Eventually,
DC, DD, and DEwould be considered input values. A logistic
regression would be carried out to train further to address
the weight of every algorithm before obtaining the complete
model of model_final.

IV. EXPERIMENTS
A. DATASETS
The study data was obtained from the Marked Slit Lamp
Picture Project (MSLPP) dataset created by He Eye Spe-
cialist Hospital (HESH) from 2015 to 2018. The dataset
consists of 16,103 anterior ocular images. Among the
images, 4,738 images were captured from eyes with pro-
nounced cataracts, 5,346 images from early cataracts, and
6,019 images from non-cataracts.

The images were collected by the community screen-
ing team (including physicians, nurses, and consultants) of
HESH. The dataset grows as more screenings are completed.
During the screening, the method of image capturing is
adapted to the environment of the screening in order to main-
tain the validity and the completeness of the images captured.

For instance, when the images were captured in a bright
environment, the individuals being captured would put on eye
cover box to minimize the exposure to the ambient light. The
reflection from the light was also minimized according to the
brightness of the environment. All of the board-certified oph-
thalmologists with more than 5 years of clinical experience
graded the images and checked whether the image showed
signs of cataracts or not.

When there were disagreements among the ophthalmol-
ogists, they would vote to make a final judgement on
the cataract severity, including pronounced cataract, early
cataract, and non-cataract. Fig.3 represents exemplary images
captured by smartphone-based slit-lamps. The image dataset
was randomly separated into the training group and the val-
idation group using the ratio of 7:3 in order to develop the
algorithm. The testing set, which is composed of 819 images,
was captured by smartphone-based slit-lamps.

B. EVALUATION METRICS
The dimensions used to evaluate the performance of the pro-
posed algorithm included: image entropy, Brenner gradient
function, gray variance function SMD, gray variance product
function SMD2, mAP, Acc (accuracy), kappa coefficient and
F1 value. The suggested quantitative metrics were compared
between different methods proposed in other papers using the
same dataset.

1) IMAGE ENTROPY

E = −
∑n

i=0
Pilog2Pi (10)

P(i) is the probability of a certain pixel value i appearing in
the image, and n is the gray value range(generally 0-255).
The larger the information entropy E value of the image,
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FIGURE 3. The reference standard comes from the board-certified ophthalmologists who grade the images into three categories: (a) normal with a
grade of 0. (b) early cataract with a grade of 1. (c) pronounced cataract with a grade of 2.

FIGURE 4. The ocular images were randomly selected from the MSLPP dataset. The YOLO v3 algorithm identifies the nuclear section of ocular images and
crops the target sections.

the larger the size of the gray area deviating from the peak
of the image histogram in the image. The probability of all
gray values appearing tends to be equal. And the larger the
amount of information carried by the image, the richer the
information.

D (f ) =
∑

y

∑
x
|f (x + 2, y)− f (x, y)|2 (11)

Among them, f (x, y) represents the gray value of the corre-
sponding pixel points of the image f and D (f ) is the result of
image definition.

2) GRAY VARIANCE METHOD FUNCTION

D (f ) =
∑

y

∑
x
|f (x, y)− f (x + 1, y)|

+ |f (x, y)− f (x, y+ 1)| (12)

3) GRAY VARIANCE PRODUCT FUNCTION
The equation of the gray variance product function is shown
below:

D (f ) =
∑

y

∑
x
|f (x, y)− f (x + 1, y)|

∗ |f (x, y)− f (x, y+ 1)| (13)

4) CALCULATION EQUATION OF ACCURACY AND F1 VALUE
The calculation equation of accuracy and F1 value is shown
below:

Acc =
(TP+ TN )

(TP+ FN + TN + FP)
(14)

Specificity = TNR =
TN

FP+ TN
(15)

Precision =
TP

TP+ FP
(16)

5) CALCULATION EQUATION OF ACCURACY AND F1 VALUE
The calculation equation of accuracy and F1 value is shown
below:

Sensitivity = TPR = Recall =
TP

TP+ FN
(17)

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(18)

Youden index = Sensitivity+ Specificity− 1

= TPR− FPR (19)

TP, FP, TN and FN stand for the number of true positives, false
positives, true negatives and false negatives in the detection
results respectively.
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FIGURE 5. ROC curves and AUC values of the three models. Figure A shows the ROC curve and AUC value of GoogleNet. Figure b is
the ROC curve and AUC value of Resnet101. Figure C is the ROC curve and AUC value of UDFA.

TABLE 1. Diagnosis framework for automated nuclear cataract grading based on slit-lamp images. Use the tenengrad to determine the blur of the eye
lens image. Use the YOLOV3 to detect and cut crystal images of high-definition eyes. The cut image data is trained by ShuffleNet and SVM method based
on GLCM. Finally, the three models are fused and output.

According to the description in chapter 3B, we use the box
obtained by yolo3 algorithm to intercept the cataract nuclear
region of the original size image input into the network
according to equation (3) ∼ (8) (the original image size is:
2000 ∗ 3000) as shown in Fig.5. For TABLE 3, the Entropy,
SMD2, SMD and Brenner values calculated from the original
image (resize 256∗256) are higher than those from the box

image (resize 256∗256) obtained directly by the object detec-
tion algorithm. In the table TABLE 4, we further compared
the images cut by the method proposed in this paper with the
images cut by the method proposed in [21] without scaling,
and found that the Entropy, SMD2, SMD and Brenner val-
ues obtained by the method proposed in this paper are still
higher than those obtained by the method proposed in [21].
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TABLE 2. The structure of the image dataset (MSLPP) obtained by the eye care screening team in he eye specialist hospital (HESH) using
smartphone-based slit-lamps.

TABLE 3. The entropy, SMD2, SMD, Brenner values calculated from the uniformly contracted images (256 ∗ 256) of ocular images using the YOLOv3 and
FRCNN algorithms after cropping the images.

TABLE 4. The entropy, SMD2, SMD, Brenner values calculated from the images (without contraction) of ocular images using the YOLOv3 and FRCNN
algorithms after cropping the images.

This shows that the image screenshot method in this paper
can retain more image information and definition and is more
suitable for cutting cataract nuclear regions. The results of
TABLE 3 and TABLE 4were obtained by randomly selecting
50 nuclear regions shearmaps and calculating themean value.

In order to compare the effect of nuclear region detection
in this paper with that of faster-rcnn used in [21], we use the
evaluation indexes in Table TABLE 5 to explain. By compar-
ison, we found that the detection method used in this paper
is nearly 3 times faster than faster-rcnn in single graph detec-
tion. The results aboveMeanAverage Precision (mAP) are all
calculated in the verification set in TABLE 2. In the final step
of nuclear cataract classification recognition, we used the test
set of TABLE 2 for statistics. The test set data of TABLE 2
were the clinical data from HESH. UDFA uses YOLOv3 to
locate the nuclear region of the eye lens image, and intercepts
the nuclear region of the original image to obtain a nuclear
region dataset, and uses ShuffelNet and SVM classifiers for
grading

training. Fuse the grading results probabilities x1-x3, then
get the final classification model. At the same time, Resnet-
101 andGoogleNet are used to perform classification training
on the nuclear region datasets obtained by UDFA. Finally,
the classification effects obtained by the three methods are
compared. The comparision results are shown in TABLE 6.
In order to assess how well the model predicts the outcome,

TABLE 5. YOLOv3 and faster-RCNN use the validation set in table 2 to
experiment, and calculate the map value. At the same time, detect and
calculate the time in a single picture, and judge the detection speed by
the obtained map and time.

we also use the idea of receiver operator characteristics
(ROC) curves for the test datasets including the area under
the curve (AUC) as our criteria. Figure 5. shows the ROC
curves and the AUC value of three algorithm in GoogleNet,
Resnet101 and the UDFA (Unified Diagnosis Framework for
Automated Nuclear Cataract Grading) methods. We can see
that the AUC’s values from GoogleNet, Resnet101 and the
UDFA methods are 0.8389, 0.8990 and 0.9198 respectively.
Note that a larger AUC is better predictability, measured
by sensitivity and specificity of test datasets. It means that
for the MSLPP datasets, the UDFA method performs bet-
ter than the other two. methods. TABLE 6 represents the
results and shows that our method achieved an accuracy
of 93.48% when it was detecting cataract, higher than 87.6%
of ResNet101 and 83.53% of GoogleNet. In terms of Kappa
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TABLE 6. The accuracy, sensitivity, specificity, Youden, F1, and kappa values among the algorithm proposed in this study, GoogleNet, and ResNet when
they were trained from MSLPP dataset and classified testing set images.

value in classifying cataract severities (pronounced cataract,
early cataract, and non-cataract), the Kappa value of our
proposedmethod differs fromGoogleNet’s Kappa coefficient
by 0.062, slightly higher than ResNet101’s Kappa coefficient.
In terms of F1 value and Youden index, our results are much
higher than the other twomethods. Through the above experi-
ments, it is shown that themethod proposed by us not only has
a good classification effect, but also has a good performance
in consistency compared with other methods.

V. CONCLUSION
This article first introduces the background and significance
of cataract diagnosis. The automatic diagnosis of cataract can
improve the accessibility of cataract examination and provide
an important reference for underdeveloped areas with scarce
medical resources to prevent blindness caused by cataract.

This study proposed a unified framework to perform
automated nuclear cataract severity classification using
smartphone-based slit-lamp photos. Motivated by Grafting,
our framework combines deep learning and traditional fea-
ture extraction methods. Compared with the popular deep
learning target detection method Faster-RCNN, this method
can achieve real-time detection, and the Mean Average Preci-
sion (mAP) is higher. In order to make this method applicable
to medical circumstances, this paper proposes to evaluate the
image blur degree before grading, so as to ensure the qual-
ity of the picture uploaded to UDFA. Experimental results
show that the framework is competitive among many existing
cataract grading methods.

This method simplifies the complicated operation in
cataract screening process, reduces the difficulty of screening
by artificial intelligence technology, improves the accuracy
rate, reduces the misdiagnosis rate and greatly improves the
accessibility of medical treatment. The methods involved
in this study have been widely used in cataract screening
in Liaoning Province, China, and 94246 people have been
screened so far. This method is actively involved in China’s
medical anti-poverty work, currently involved in Pingtang
County and Luodian County, Guizhou Province. Internation-
ally, this method is also being used in cataract screening in
Nigeria, Africa, which has so far screened 1079 people.
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