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ABSTRACT In recent years, active queue management (AQM) has gained more and more attention as an
important part of network congestion control. Although there are many AQM algorithms, these algorithms
show weaknesses to detect and control congestion due to the complexity and dynamics of the networks.
Hence, this paper proposes a newAQMalgorithm based onmodel predictive control (MPC) theory which has
been widely applied in nonlinear and time-delay systems. In order to adjust the parameters of theMPC-based
AQM algorithm adaptively according to network scenario variations, the adaptive mechanism is introduced
into the new algorithm, named PHAQM, by using the Hebb learning rules from the neural network control
theory. The simulation results show that the algorithm is effective in avoiding network congestion. Compared
to the traditional AQM schemes, such as PI, REM, and GPC algorithm, the PHAQMhas a faster convergence
rate and smaller queue length fluctuations and outperforms especially under dynamically changing network
situations.

INDEX TERMS Active queue management, adaptive control, model predictive control, network congestion
control.

I. INTRODUCTION
The congestion control of the transmission control proto-
col (TCP) network is an important tool to improve the qual-
ity of service (QoS), which can prevent network collapse,
avoid lockout behavior and effectively reduce the proba-
bility of control-loop synchronization [1]. To assist TCP’s
management of network performance, the active queue man-
agement (AQM) mechanism was introduced to allow the
router involved. As an effective congestion control approach,
the AQM has become an attractive research topic [2]. In fact,
the AQM mechanism implemented in the router has signifi-
cant performance development for the network, for instance,
improving network utilization, reducing packet drops, and
keeping the best-effort service with low-delay [3].

There are many related pieces of research focused on the
AQM since the first proposed AQM algorithm named Ran-
dom Early Detection (RED) [4], such as adaptive RED [5],
BLUE [6], and YELLOW [7]. However, these algorithms
were heuristic, which made the algorithms too sensitive to
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parameter configuration. Fortunately, the fluid-flow model
for the congestion control process in TCP networks was
established by using stochastic theory [8], which helps the
researches design and understand the behaviors of internet
systems better. Based on the fluid-flow model, [9] first took
the TCP/AQM system as a feedback system to be analyzed
with control-theory, which has given a feedback control sys-
tem depiction of AQM. The action of an AQM control law is
to mark packets (with probability) as a function of measured
queue length. Generally, when the TCP/AQM system is ana-
lyzed by control-theory as a feedback system, the probability
of packet mark/drop in the router would be the control signal
and the queue length would be the controlled variable. After-
wards, the control-theory-based approaches were used to
solve the network congestion problem based on themodel, for
instance, PI [10], robust control [11], prescribed performance
control [12], and state-feedback congestion controller [13].
These controllers improve the performance of the congestion
control systems in wide network scenarios.

Among the control theories, it is known that model pre-
dictive control (MPC) has become a mature and advanced
control strategy, which has been widely applied in nonlinear
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and time-delay systems. As the network congestion con-
trol system is a typical nonlinear and time-delay system,
the MPC-based AQM algorithms were developed to deter-
mine the optimal control signal during each sampling time
by predicting the future system dynamics. Generalized pre-
dictive control (GPC) is the first MPC that is used for
network congestion control [14]. Then, predictive function
control (PFC) was developed as a privileged AQMmethod in
the high-speed networks [15]. MPAQM controller drop early
packets at the router reasonably according to the predicted
future queue length in the data buffer [16]. Data-AQM is
proposed based on data-driven predictive control which can
obtain the prediction directly basing on the input-output data
alone without any explicit model of the system [17]. These
researches demonstrate that MPC is able to handle system
delay along with low computational load, and theMPC-based
AQM algorithms outperform with a comparison of the tradi-
tional AQM algorithms.

It is known that the parameters of the Internet are
time-varying in practice, such as load factor, round trip time,
and link capacity. However, the traditional control parameters
configured in particular network scenarios are not able to be
adjusted, which causes the performance sensitivity to network
scenario variations. Hence, the researches draw more atten-
tion to the adaptive technique [18]–[23], which is a powerful
method to uncertain system, see [24]–[26], to name a few.
Although there are some results on the AQM schemes based
on adaptive control, the adaptive scheme for the MPC-based
AQM is a challenge because the environment of the Internet is
complex. Fortunately, the neural network control is developed
as a useful tool to design adaptive sampled-data systems [27],
[28]. As Hebb-learning rule is an unsupervised learning rule
for neural-network, it can extract the statistical characteristics
of the training set and is suitable to solve the adaptive problem
for the MPC-based AQM. In order to adjust the parameters of
MPC-based AQM schemes adaptively, this paper investigates
an adaptive Hebb-learning rules for TCP/AQM systems with
MPC control and proposes a new algorithm called PHAQM.

The remainders of this paper is organized as follows. The
fluid model and the Laplace transfer function are presented
in Section II. In Section III, a new AQM algorithm named
PHAQM is proposed based onMPC and Hebb-learning rules.
Section IV gives a simulation study to verify the proposed
method. Finally, a conclusion is provided in Section V.

II. SYSTEM MODELS
Reference [8] had developed a dynamic model of TCP behav-
ior by using fluid-flow and stochastic differential equation
analysis. This fluid-flow model has been widely used in the
design of the AQM algorithms, which can be described by the
following coupled, nonlinear differential equations:

Ẇ (t) =
1
R(t)
−
W (t)W (t − R(t))

2R(t)
p(t − R(t))

q̇(t) =
N (t)
R(t)

W (t)− C
(1)

where ẋ(t) denotes the time-derivative of x,W is the expected
TCP window size, N is the load factor, C is the link capacity,
q is the expected queue length, and R is the round-trip time.
Note that the round-trip time can be expressed as R(t) =
Tp +

q(t)
C , where Tp is the propagation delay (secs), and p

is probability of packet mark/drop. The queue length q and
window-size W are positive, bounded quantities; i.e. q ∈
[0, q̄], andW ∈ [0, W̄ ] where q̄ and W̄ denote buffer capacity
and maximum window size respectively. Also, the marking
probability p ∈ [0, 1].
In order to design the feedback control (AQM), [9] approx-

imate these dynamics by their small-signal linearization
about an operating point (W0, q0, p0) as following:

δẆ (t) =
−2N

R20
δW (t)−

R0c2

2N 2 δp(t − R0)

δq̇(t) =
N
R0
δW (t)−

1
R0
δq(t)

(2)

where δW (t) = W (t) − W0, δq(t) = q(t) − q0, δp(t) =
p(t) − p0, R0 = Tp +

q0
C represent the perturbed variable

about the operating point, and the constraints of δW , δq, and
δp are ignored for simplicity. It is noted that the operating
point (W0, q0, p0) is denoted as following: δẆ (t) = 0⇒ W 2

0 p0 = 2

δq̇(t) = 0⇒ W0 = R0
C
N

(3)

Performing a Laplace transform on the differential (2),
the transfer function Gp(s) which relates the δp and δq can
be obtained as:

Gp(s) =
R0C2

(s+ 2N
R20C

)

N
R0

(s+ 1
R0
)
e−sR0 . (4)

III. PHAQM ALGORITHM
A. AN AQM ALGORITHM BASED ON MPC
To design an AQM algorithm based on MPC, the traditional
zero-order hold (ZOH) is used to discretize (4). Suppose the
values of δp and δq are sampled in each interval Ts, then the
transfer function which relates the δp and δq can be:

G(z) =
(m1z−1 + m2z−2)

(1+ n1z−1 + n2z−2)
z−d , (5)

where d = dR0Ts e is the system delay, m1, m2, n1, n2 are deter-
mined by the network parameters and Ts as the following:

m1=

C3R30

(2−2e− Ts
R0

)
N+CR0

−1+e− 2NTs
CR20


4N−2CR0

m2=

C3e
−
(2N+CR0)Ts

CR20 R30

2

(
−1+e

Ts
R0

)
N−CR0

−1+e 2NTsCR20


2(−2N+CR0)

n1=−e
−

2NTs
CR20 − e

−
Ts
R0

n2=e
−
(2N+CR0)Ts

CR20

(6)
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Define the values of δp and δq as the input value u and
output value y, respectively, then the dynamic model of TCP
behavior can be described as the following input-output dif-
ference equation:

A(z−1)y(t) = z−dB(z−1)u(t), (7)

whereA(z−1) = 1+n1z−1+n2z−2,B(z−1) = m1z−1+m2z−2.
In order to derive the predictive value of δq after jth

interval, i.e., jTs seconds later, a Diophantine equation is
introduced:

A(z−1)E(z−1)+ z−jF(z−1) = 1, (8)

where E(z−1) and F(z−1) are the polynomials determined by
A(z−1) and j, which can be expressed as E(z−1) = e0 +
e1z−1 + · · · + ej−1z−(j−1), F(z−1) = f0 + f1z−1.
Multiplying E(z−1) to the two sides of (7), we have:

y(t + j) = z−dB(z−1)E(z−1)u(t + j)+ F(z−1)y(t). (9)

Let j = d+1, and transfer the above equation from Z domain
to time domain, then

y(t + d + 1) = f0y(t)+ f1y(t − 1)+ g1u(t)+ g2u(t − 1)

+ · · · + gd+2u(t − d − 1), (10)

where g1 = e0m1, g2 = m1e1 + m2e0, g3 = m1e2 +
m2e1, . . . gd+1 = m1ed + m2ed−1, gd+2 = m2ed .
Note that y(t) = δq(t) = q(t)−q0, and the reference queue

length is q(t + d + 1) = q0, so y(t + d + 1) = 0, then (10)
can be simplified as:

u(t) = h1y(t)+ h2y(t − 1)+ h3u(t − 1)+ · · ·

+ hd+3u(t − d − 1), (11)

where h1 = −
f0
g1
, h2 = −

f1
g1
, h3 = −

g2
g1
, . . . , hd+3 = −

gd+2
g1

.

B. ADAPTIVE SCHEME BASED ON HEBB-LEARNING
THEORY
Whereas there are so many researches related to AQM
scheme using the fluid-flow model, most of the exist-
ing works are based on fixed network arguments. Hence,
the parameters of the corresponding AQM algorithm are
fixed. However, the arguments of real networks are time-
varying, which makes the traditional AQM algorithms per-
form unsatisfactorily in real networks. Besides, the fluid-flow
model is not precise due to the complexity in considering
all the situations in the real networks. So, the correspond-
ing AQM algorithm obtained from the fluid-flow model is
not reliable enough to bring good performance in real net-
works. To overcome these problems of conventional AQM
algorithms, this paper introduces an adaptive scheme based
on Hebb-learning theory to adjust the parameters hi (i =
1, 2, . . . , d + 3) shown in (11).

To make the equation easier to understand, rewrite (11) as
following:

u(t) = K
d+3∑
i=1

wi(t)xi(t), (12)

where x1(t) = y(t), x2(t) = y(t − 1), x3(t) = u(t −
1), . . . , xd+3(t) = u(t − d − 1), K > 0 denotes the
proportional coefficient, and the values of wi(t) are the
adaptive-tuned parameters. Using Hebb-learning theory to
adjust the parameters, the adaptive-tuned parameters can be
updated as following:

wi(t) = wi(t − 1)+ ηie(t − 1)xi(t − 1)u(t − 1), (13)

where ηi > 0 is the learning rate, e(t − 1) = q(t − 1)− q0. In
practice, as the arguments of real networks are time-varying,
the values of hi are hard to estimate. Fortunately, the initial
values of wi(t) can be set as small non-zero values, and the
simulation results show that the proposed AQM algorithm,
i.e., PHAQM, is still effective to avoid network congestion.

IV. SIMULATION
In this section, we evaluate the performance and robustness of
the proposed PHAQM algorithm by several simulations. The
network topology used in the simulation is shown in Fig. 1,
where the bottleneck link is located between Router B and
Router C. Unless mentioned otherwise, the default values
are set as follows: the bandwidth of all links is 45 Mb/s,
the propagation delay is 100 ms, the number of TCP connec-
tions (TCP/Reno) is 500, the average size of TCP packets is
1000 Bytes, the buffer size is 1000 packets, router B adopts
PHAQM as the congestion control strategy while other nodes
adopt Drop-tail. The default parameters of PHAQM are set
as follows: the sample interval is 0.01 s, K = 0.01, d = 14,
η1 = η2 = . . . = η17 = 0.001, the expected queue length
of Router B is 500 packets, and the initial values of wi(t) are
w1 = w2 = . . . = w17 = 0.001.

FIGURE 1. Simulation topology.

A. CONSTANT NUMBER OF TCP CONNECTIONS
Load sizes are changeful in real networks, so network con-
gestion algorithms should be able to adapt to different num-
bers of TCP connections. This group of experiments mainly
investigates the queue length of the PHAQM algorithm under
different loads, i.e., different numbers of TCP connections. In
the four simulations, the number of TCP connections is 200,
500, 1000, and 2000 respectively, and all TCP connections
start sending data at the initial time. The simulation results are
shown in Fig. 2. It can be seen that the network load has little
effect on the performance of PHAQM. PHAQM can keep the
queue length stable at the expected value under different TCP
connection numbers.
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FIGURE 2. Queue lengths involving different numbers of TCP
connections: (a) 200 TCP connections; (b) 500 TCP connections;
(c) 1000 TCP connections; (d) 2000 TCP connection.

FIGURE 3. Queue lengths for the following queue length targets:
(a) 100 packets; (b) 900 packets.

B. PERFORMANCE FOR DIFFERENT
REFERENCE QUEUE LENGTH
The reference queue length should be set to reduce round-trip
delay and avoid empty buffer to improve the utilization rate
of the bottleneck link. The smaller the reference queue length
is, the smaller the round-trip delay is, whereas the higher
the probability of empty buffer is. Therefore, it is necessary
to weigh the pros and cons carefully to select a reasonable
reference queue length, which requires that the algorithm
can stabilize the queue length at different values to adapt to
different networks. This group of experiments investigates
the ability of the PHAQM algorithm to stabilize the queue
length at different values. The simulation results are shown
in Fig. 3 when the reference queue lengths are set to 100 and
900, respectively. It can be seen that no matter what the target
queue length is, PHAQM can stabilize the queue near the
target value, with fast convergence speed and small queue
length oscillation.

C. COMPARISON WITH OTHER AQM SCHEMES
In the actual network, new data flows may enter the network
at each time period, and existing data flows may exit the

network. Therefore, the load of the network is dynamically
changed. A good active queue management algorithm should
be able to withstand the load dynamics. This section com-
pares the performance of PI, REM, GPC, and PHAQM in
the case of dynamic changes in the number of TCP con-
nections using two sets of environments. The main control
parameters of each algorithm are as follows: PI parameter,
a = 0.00001822, b = 0.00001816; REM parameter, γ =
0.001, 8 = 0.001; GPC parameter C = 45 Mb/s, N = 500,
R = 0.14 s.

In the first set of experiments, we will compare the control
effects of each AQM algorithm when the network load sud-
denly changes. In this experimental environment, 200 TCP
connections pass through the bottleneck link at the initial
time, and then 100 connections are added every 10 seconds
until the 100th second, i.e., 900 TCP connections are added
in 100 seconds. Then every 10 seconds, 100 connections are
reduced at the same time, and a total of 900 connections are
reduced at last. The results are shown in Fig. 4. It can be
seen that the performances of PI and REMdegrade noticeably
if the network load suddenly changes, which means that PI
and REM are very sensitive to mutation load. The variation
of queue length in the REM method has the highest value,
and REM takes a longer time to regular the queue length
to the target value, especially when the network load sud-
denly decreases. Compared with PI and REM, GPC based on
MPC reduces the sensitivity to mutation network, whereas
the queue length oscillation is large. As an MPC-based algo-
rithm, PHAQM can also absorb burst data streams well in
the dramatically changing network environment, and it can
maintain small queue length oscillation in addition. In fact,
PHAQM gives less overshoot, shorter response time, and
better stability than other algorithms. Conclusively, PHAQM
is able to adapt to the environment involving sudden load
reduction as quickly as possible while maintaining a small
queue oscillation.

FIGURE 4. Queue lengths with different AQM algorithms when the
network load suddenly changes: (a) PI; (b) REM; (c) GPC; (d) PHAQM.
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FIGURE 5. Queue lengths with different AQM algorithms when the
network load uniformly changes: (a) PI; (b) REM; (c) GPC; (d) PHAQM.

In the second set of experiments, we will focus on the
effect on the performance of different AQM algorithms when
the network load changes uniformly. In the experimental
environment, there are 200 TCP connections through the
bottleneck link at the initial moment. During the 10s to
90s, 800 connections are evenly added, and 800 connections
are evenly reduced between 110s and 190s. The results are
shown in Fig. 5. It can be seen that in a slowly changing
network environment, although PI maintains a small queue
length oscillation, the queue length does not stabilize near
the expected value. REM is very sensitive to the change of
the network load, and its queue length is difficult to stabilize.
GPC algorithm shows an acceptable behavior when the load
uniformly decreases, but it performs poorly when the load
uniformly increases. It can be seen that GPC has noticeable
oscillations in the first 100s. Whatever, PHAQM can stabilize
the queue length near the expected value, and the queue length
oscillation is small, no matter the load increases or decreases.

D. MULTIPLE BOTTLENECKS
To evaluate the performance of PHAQM under the
multi-bottleneck link, this section will give the simulation
results with two bottleneck links. The network topology is
presented in Fig. 6. The link between R1 and R2 and the link
between R3 and R4 are two bottleneck links. The settings of
the environments are shown in Fig. 6. PHAQM is employed
as the AQM algorithm on R1 and R3. There are 300 TCP
sources connected to R1, and the destinations of each 100 ses-
sions are connected to R2, R3, and R4. Besides, there are
200 TCP sources connected to R2, and the destinations of
each 100 sessions are connected to R3 and R4, respectively.
Finally, 100 TCP sessions are traveling from R3 to R4. The
results are shown in Fig. 7, where (a) and (b) are the queue
lengths on R1 and R3, respectively. In Fig. 7, the queue
length dynamics are shown to exhibit good robustness and

FIGURE 6. Topology of multiple bottleneck links.

FIGURE 7. Queue lengths: (a) R1; (b) R3.

fast system response. It can be seen that PHAQM can also
effectively stabilize the queue length near the reference value
in a complex network.

V. CONCLUSION
There are many pieces of research devoted to improving the
performance of the congestion control in the Internet. How-
ever, it is still a challenge to detect and control congestion
due to the complexity and dynamics of the networks. Hence,
this paper is aimed to solve the above problem by applying
the MPC theory and employing the adaptive scheme. In
this paper, a TCP/AQM dynamic model is used to obtain
a prediction model. An adaptive AQM algorithm, named
PHAQM, is proposed based on the model by using MPC the-
ory, and the adaptive scheme is designed with Hebb learning
rules.

A large number of simulation experiments demonstrate
the effectiveness of the PHAQM algorithm. The developed
controller not only can guarantee that the queue length tracks
the desired queue length, but also can be adaptive to net-
work scenario variations. It is shown by experiments that
the PHAQM has better robustness, and it has significant
advantages in a dynamic network environment compared
with traditional algorithms, such as PI, REM, and GPC. In
particular, PHAQM can regulate the queue length around
the expected value and obtain a good control effect under
multiple bottleneck link scenarios.

Future work will cover the theoretical analysis of the sta-
bility and convergence speed of PHAQM and the extension
of the simulation environment from numerical simulations to
real network experiments.
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