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ABSTRACT Object transportation could be a challenging problem for a single robot due to the oversize
and/or overweight issues. A multi-robot system can take the advantage of increased driving power and
more flexible configuration to solve such a problem. However, an increased number of individuals also
changed the dynamics of the system which makes control of a multi-robot system more complicated.
Even worse, if the whole system is sitting on a centralized decision making unit, the data flow could be
easily overloaded due to the upscaling of the system. In this research, we propose a decentralized control
scheme on a multi-robot system with each individual equipped with a deep Q-network (DQN) controller to
perform an oversized object transportation task. DQN is a deep reinforcement learning algorithm, thus does
not require the knowledge of system dynamics, instead, it enables the robots to learn appropriate control
strategies through trial-and-error style interactions within the task environment. Since analogous controllers
are distributed on the individuals, the computational bottleneck is avoided systematically. We demonstrate
such a system in a scenario of carrying an oversized rod through a doorway by a two-robot team. The
presented multi-robot system learns abstract features of the task and cooperative behaviors are observed.
The decentralized DQN-style controller is showing strong robustness against uncertainties. In addition,
We propose a universal metric to assess the cooperation quantitatively.

INDEX TERMS Cooperative object transportation, decentralized control, deep Q-network, multi-robot
system.

I. INTRODUCTION
In the world of humans, complex tasks require multiple per-
sons to cooperatementally and physically. For example, in the
Space Shuttle STS-49 mission [1], NASA originally planned
to have only one astronaut to capture the slow-rotating satel-
lite IntelSat but failed to accomplish the task. The task failed
again the second day with two astronauts working together.
The task was finally accomplished on the fifth day by three
astronauts and one robot (the Canadarm) worked together.
The mission set several records including maximum number
of astronauts in a space walk and longest hours in a single
spacewalk [1]. The main reason such a task requires multiple
astronauts is that the size of the IntelSat is overwhelming for
a single astronaut. We can easily imagine that a single robot is
facing the same challenge when handling oversized objects.
Amulti-robot system (MRS) can achieve the goal but deploy-
ing such a system requires more advanced coordination and
control strategies.

The associate editor coordinating the review of this manuscript and
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Oversized object transportation is a typical task that
is usually composed with smaller subtasks which can be
assigned to multiple robots simultaneously [2]. We assume
that the robots are physically attached to the object, and
transport is achieved by either pushing or pulling (or both)
the object. Decentralized architecture is the natural way to
control a MRS in such a task as it is more flexible and
more scalable [3]. To solve such a problem, on the one
hand, an individual robot has to guarantee accomplishment
of its own assignment. On the other hand, the robots have
to cooperate with each other to achieve the shared high-level
goal. However, the variation of the system (e.g. number of
the robots, moving obstacles, unpredictable perturbations,
etc.) can bring challenges toward management of the MRS.
A leader/follower architecture is very popular in the past for it
can plan and control on top of the leader robot’s well-studied
dynamics model [4], [5]. Besides that, researchers proved
that an MRS with identical controllers equally distributed
on individuals performs the task well [6]. However, treating
all the members equally can result in more complicated
dynamics of the integrated system.
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Designing a good controller for a robot could be extremely
challenging due to the complicated dynamics of the task.
However, the performance of a controller can be easily eval-
uated through the more obvious success conditions. Instead
of modeling dynamics of the system, reinforcement learn-
ing (RL) algorithms model the reward mechanisms which
directly tells the goodness of a state that is the conse-
quence of the controller’s outputs. Therefore, we can opti-
mize the controller with the guide of the reward function
to achieve the goal without knowing the dynamics model at
all [7]. The rapidly developing deep learning technologies
further boost the RL into deep reinforcement learning (DRL)
which enables handling more generally representative data
(e.g. continuous state) and thus has been applied to many
complex control problems [8]. DRL is also welcomed
by the researchers aiming at solving cooperative object
transportation tasks with MRS [9]–[11].

In this paper, we present an MRS controlled by decen-
tralized DRL controllers performing a cooperative object
transportation task. We expand the original DQN algorithm
[8] to train distributed controllers in an MRS. Specifically,
we instantiate theMRSwith two homogeneous mobile robots
with each robot driven by a differential driving mechanism.
The task is transporting a long rod from inside of a room to
the outside of it. The most challenging part is the robots need
to transport the rod through a narrow doorway. We employ
DQN controllers to regulate the behavior of the robots by
estimating the total reward of taking a possible action at any
given state then take the action with the highest value. Due to
the DRL’s nature of working on a value system, we propose
to use absolute error of estimated state-action values between
two robots to quantitatively measure how well they cooperate
with each other. To our best knowledge, this is the first imple-
mentation of DRL algorithm in a cooperative transportation
task by taking in high-level sensing data then output low-level
control signals directly. The highlights of this research are:
• An intuitive cooperation metric is proposed to measure
how different the individuals in an MRS value their
situations at the same moment.

• The Controllers are equally distributed on individual
robots. No command center is involved, no leader/
follower pattern was specified;

• No dynamics modeling, no path planning. Controllers
make decisions directly from the sensing data
(end-to-end);

In the next section (section II), we will review some related
researches. We will introduce our research methodology
including configurations, algorithms and metrics definitions
in section III. The experimental results and in-depth analyses
will be described in section IV. We will summarize and look
into the future of this research in section V

II. RELATED WORK
More researchers began to be interested in solving the prob-
lem of cooperative object transportation using MRS from the
mid 90’s [4], [12]–[15]. Although the settings could be varied

a lot from each others, there are three major strategies to
configure such a problem: 1) pushing-only strategy; 2) grasp-
ing strategy; 3) caging strategy [2]. Our research adopts
the second strategy such that the robots coordinate with each
others using different actions(pushing or pulling), while the
robots are focusing on the transportation without consider-
ing the way they interact with the object. While centralized
control schemes are rarely reported, there exists research
using such an organization [16]. Nevertheless, a majority of
the researchers adopt the distributed architectures, thus the
following literature utilize decentralized control schemes.

When solving an MRS based cooperative object
transportation problem with grasping strategy, the leader/
follower configuration is very popular [4], [5], [17]–[19].
In general, a leader robot is responsible for initiating and
directing the transportation, while the follower robots coor-
dinate their actions with respect to the leader’s guidance.
It is true that the leader/follower architecture saves the cost
of computation and communication, but this architecture
sacrifices some flexibility of the follower robots. Under some
complicated situations, involving a leader robot with superior
capabilities does not make the problem easier.

Researchers investigated MRS with every individual play-
ing the same role, such that the MRS can be more flexible
in their tasks. A swarm of simulated mobile robots were
introduced in a task of cooperatively transporting a payload
around obstacles [20], however, kinematics modeling and
path planning were required. A two-stage motion planning
strategy was proposed in [21], [22] to help the MRS safely
transport an object around dynamic obstacles. A research
scenario that was closely analogous to ours was proposed
in [23]. The researchers were able to control two omnidi-
rectional mobile robots to transport an object through an
narrow opening with decentralized sliding mode controllers.
In this research, predefined trajectories and a dynamicsmodel
of the MRS needs to be established beforehand. An MRS
controlled with decentralized sliding mode controllers was
reported in [6], which was able to transport arbitrary shaped
objects without predefined trajectories. However, a dynam-
ics model of the individual robot is still needed. Research
of a decentralized adaptive control strategy was reported in
[24], which enabled cooperative object transportation with
two robotic arms. These researchers also investigated model
predictive control (MPC) on this task [25]. Although adap-
tive control compensated for uncertainties and MPC dealt
with unsolvable optimalities, the dynamics model and path
planning routine cannot be saved. Our colleagues proposed a
solution with a fuzzy logic system which saves the complica-
tion of dynamics modelling and path planning [26]. However,
the control strategy is only validated with point kinematics
and point-mass dynamics.

Due to the complicated dynamics in the cooperative object
transportation task, researchers began to seek help fromDRL.
The most related research was introduced in [10] that had two
robots transporting an object through a narrow opening man-
aged by a DQN style algorithm [27]. However, this research
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relied on a path planning algorithm and the function of the
DQN algorithm was only to adjust the robots whenever a
pre-planned trajectory is not accessible. In [28], a multi-agent
reinforcement learning algorithm was proposed to deal with
a hose transportation problem. The proposed algorithm was
based on the original Q-learning, thus was not capable of con-
tinuous state inputs. A showcase of multiple robots carrying
a long rod while preventing it from falling was demonstrated
in [9]. This research was highlighted with controlling the
MRS by taking continuous input data to resolve continuous
output signals. Although the algorithmwasmore generalized,
the goal and constraints were largely different from our study.

III. METHODOLOGY
A. SYSTEM CONFIGURATION
The problem originates from a scenario of multiple persons
manipulating a large object. A representative case is two
persons moving a long sofa out of the room through a narrow
door. We simplify and model the case as two mobile robots
linked by a solid rod moving out of a walled cell with an
opening. We define the cell in a squared shape with dimen-
sions of 10m×10m. A global coordinate system {X ,Y ,Z } is
fixed to the center of the room, where X axis is pointing to the
east, Y axis is pointing to the north and Z axis is determined
by the right-hand rule. The opening is located on the south
wall which is a doorway with width, w = 2m and depth,
d = 1m. The rod has length l = w. After attached to the
robots with radius r = 0.25m, the rod cannot be transported
out when parallel to the room opening. We restrict the whole
system with two linear degrees of freedom (DOF) and one
rotational DOF all in the plane of XY . Three body reference
frames: {(1)x,(1) y,(1) z}, {(2)x,(2) y,(2) z} and {(s)x,(s) y,(s) z} are
attached to robot 1, robot 2 and the rod, respectively. The (1)x
and (2)x are set to point toward the head of the robots, while
(s)x is set along the line between body frames of the robots
pointing towards robot 1’s origin. (i)z axes are perpendicular
to the XY plane with the same direction as the Z axis. Hence,
(i)y axes can be determined by (i)x, (i)z and the right hand
rule. Coordinates of the body frames origin under the global
frame define the positions of the robots (Er1, Er2) and the rod
(Ers). To better focus on the object transportation problem,
we assume the rod is connected to the robots with cylindrical
revolute joints, so there is no way for the MRS to drop the
rod during transportation. Our settings can be illustrated by
Fig. 1 (to save more space, we do not draw east and west wall
in full length).

B. DEEP REINFORCEMENT LEARNING CONTEXT
The rod transportation task can be viewed as a series of
events. The task starts at time step t = 0 and ends at time step
t = T . Everything happens in between this period consists of
an episode. At any time step t , we can describe a robot in
the state of (i)st , where i is the index of the robot. Assume
every robot in this system can perfectly sense the pose and
velocity of the rod and all the robots (including itself and
teammates), we can define the state of robot i as: (i)st =

FIGURE 1. Task environment description.

[(i)Ert ,(i) Ėrt ,(s) Ert ,(s) Ėrt ,(j) Ert ,(j) Ėrt ], where Ėr’s are velocity vectors
of the robots and the rod. Each robot can take an action (i)at ∈
{forwardleft, forwardright, backwardleft, backwardright} at
any time step t . Then, the system will transfer to the next step
t + 1, and the state of robot i can be obtained as: (i)st+1 =
[(i)Ert+1,(i) Ėrt+1,(s) Ert+1,(s) Ėrt+1,(j) Ert+1,(j) Ėrt+1]. Together with
the new state, the robot i receives a reward (i)rt+1 as defined in
Eq. 1 which is the key to guarantee the robots can cooperate
in this task. An individual will not receive any reward until
both of them successfully escaped the room.
(i)r((i)s,(i) a)

=

{
1 if entire body of the rod is out of the room
0 otherwise

(1)

However, rewards generated by such a function will be too
sparse and the learning process could be largely slowed down
due to this effect. In practice we extend Eq. 1 to the form as
seen in Eq. 2 to guarantee a non-zero reward can be received
at every time step.
(i)r((i)s,(i) a)

=


400 if entire body of the rod is out of the room
−100 if any robot hit wall
−0.1 otherwise

(2)

The dense reward function in Eq. 2 is inspired by LunarLan-
der environment from OpenAI Gym [29]. Instead of giving
a negative reward according to the scale of control signals,
we punish the robots from the perspective of time. Since we
limit the horizon of an episode to be 1000 time steps, it is
reasonable to give a large negative reward for the event of
hitting the wall 1000 times larger than the routine time cost.
In our case, if punishment of hitting a wall is larger than -100
(e.g. -1), the robots could become stuck at a local optimal
point which will lead them to hit the wall directly. Because
they are more likely to receive a smaller negative total reward
for hitting the wall compare to struggling too long in the room
but accumulating a larger negative reward in the end.
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In an episode, the total reward a robot receives by taking
an action at at state st can be defined as

Rt =

T−t∑
k=0

γ krt+k+1(st , at ) (3)

where γ ∈ [0, 1] is the discount rate which weighs future
rewards less and less because of the nature of uncertainties.
We can further describe the value of an action at taken at state
st to be the expected total reward: Q(st, at) = E[Rt ]. We can
call this value of state-action pair as Q value. Assume the
behavior of a robot is determined by a control policy π (a|s),
then the Q value of current step can be represented by the Q
value of next time step according to the Bellman Expectation
Equation as shown in Eq. 4 [7].

Qπ (st , at ) = rt+1 + γ
∑

st+1∈S
P(st+1|st , at )

×

∑
at+1∈A

π (at+1|st+1)Qπ (st+1, at+1)

(4)

where P is the dynamics model (here we use a probability
model) which governs the transition between two consecutive
time steps. Typically, we need tomodel the dynamics,P , such
that we can make plans for the robots then control it to stick
to the plan. However, obtaining the dynamics model becomes
more challenging as the task becomes more complex. Rein-
forcement learning (RL) methods seek to solve the problem
bypassing the dynamics model to only focus on optimizing
the control policy through trial-and-error style interactions.
The interactions have one objective that is maximizing the
expected total reward at any given state, thus the dynamics
model can be safely ignored. In the MRS cooperative object
transportation problem, the dynamics of the system is hard
to model. Therefore, we propose to use RL methods to solve
such a problem.

C. DQN CONTROLLER FOR MULTI-ROBOT SYSTEM
To succeed in this task, a robot has to employ an optimal
control policy, π∗ that maximizes the expected total reward
at a given state, st by taking an optimal action, at governed
by π∗. Then Eq. 4 becomes Eq. 5 according to Bellman
Optimality Equation.

Qπ
∗

(st , at ) = rt+1 + γ
∑

st+1∈S
P(st+1|st , at )

× maxat+1 Q
π∗ (st+1, at+1) (5)

Q-learning provides a straightforward way to iteratively opti-
mize tabularized Q values without considering the dynamics
model, P [27]. The Q values can be updated through Eq. 6
that

Q(st , at ) = Q(st , at )+ α(rt+1 + γ maxat+1 Q(st+1, at+1)

− Q(st , at )) (6)

where α is the learning rate. However, the original Q-learning
suffered from the limitation of a discrete state and action
space. From the previous section, our robot’s state space and

action space has 18 and 4 dimensions, respectively. Discretiz-
ing such state and action space may result in a giant table
that to optimize it could involve a huge amount of computing
resources or even be impossible. Hence, we can introduce a
function approximator to take continuous states into account
and serve the same role as theQ table inQ-learning algorithm.
A popular type of function approximator is neural networks
(NN), and this is how the Deep Q-network succeeded in
the control tasks with image inputs [8]. We adopt NN with
trainable weights, θ to approximate the Q function as the
Q-net: Q(s, a; θ ). The Q-net needs to approximate the
expected total reward as can be computed in Eq. 3. So,
we need to define a loss function which can tell the difference
between the current Q values and the targeted total rewards
as Eq. 7 shows.

L(θ)= [rt+1 + γ maxat+1 Q(st+1, at+1; θ )−Q(st , at ; θ)]2

(7)

Differentiating Eq. 7 with respect to θ , we obtain the gradient
∇θL. Hence we can use stochastic gradient decent to update
θ and optimize the loss function.
The robots in this task are set to be homogeneous, thus

only one DQN controller needs to be trained with integra-
tion of all the robots’ experience. The individuals in the
MRS can actually accelerate the training by collecting more
data in every time step. A little modification on the original
DQN algorithm leads to our multi-robot DQN algorithm for
homogeneous MRS as shown in Alg. 1. The robots collect
experience based on their own observation, but they share the
experience using the same replay buffer. As a result, a single
DQN controller needs to be trained with the shared experi-
ence data. Once the controller is trained, it can be deployed
onto every individual in the MRS. Although the number of
robots in this research is limited to two, this algorithm can
be scalable to more robots as needed. As opposed to the
original DQN algorithm which set the target Q value to be:
yj = rt+1+γ argmaxaQ(sj+1, a; θ̄ ), we implement a Double
DQN (DDQN) trick to compute target Q value as: yj =
rt+1 + γQ(sj+1, argmaxaQ(sj+1, a; θ ); θ̄). So the algorithm
can suppress the over-optimistic estimations toward the target
Q values [30].

The Alg. 1 describes a distributedly deployed controller,
but the training process is still centralized. In fact, by allo-
cating each individual a replay buffer and an optimizer, sepa-
rately, the training process can be distributed onto individuals
in an MRS. Hence, we extend Alg. 1 to a heterogeneous
version (Alg. 2) as shown in Appendix A so that an individual
in an MRS will be trained by self collected data only. As a
homogeneous MRS is just a special case of a heterogeneous
MRS, Alg. 2 is adaptive to the homogeneous MRS without
any problem.

D. COOPERATION METRICS
As researchers lack tools to quantitatively assess the cooper-
ation among the individuals in an MRS, we propose to intro-
duce themean absolute error (MAE) of Q-values between any
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Algorithm 1 Homogeneous MRS DQN
Require: Initialize replay memory D
Require: Initialize active Q-net with random weights: θ
Require: Initialize target Q-net with identical weights as in

the active Q-net: θ̄ = θ

for episode = 1 to M do
Initialize pose of the MRS randomly
Perform ε decay
for step = 1 to T do
for robot = 1 to N do
Select a random actioniat with probability ε;
otherwise, (i)at = argmaxQ((i)st ,(i) at ; θ )

end for
Execute all (i)at ’s, then observe next states: (i)st+1,
receive rewards: (i)rt+1.
Store all transitions ((i)st ,(i) at ,(i) st+1,(i) rt+1) into D.
Sample random batch of transitions (sj, aj, sj+1, rj+1)

from D.
Set target yj = rj+1 if episode terminates at j+ 1
otherwise, yj = rt+1 + γQ(sj+1, argmaxaQ(sj+1, a; θ ); θ̄ )

Perform gradient decent on θ

Every C steps, reset θ̄ = θ

end for
end for

two robots to be the standard. The nature of the Q-value is the
expected total reward as illustrated by Eq. 4. At time step t ,
the expected total reward of robot i can be represented by
maxa((i)Q((i)st ,(i) at )). The absolute error of Q-values at the
same moment t between robot i and robot j, et = |(i)Qt −

(j)

Qt |, represents how differently these two robots evaluate their
situation at the same moment. Using the MAE of Q-values,
we introduce the novel metric 1Q to assess cooperation
between any pair of robots in an episode (Eq. 8).

(ij)1Q =
1
T

T∑
t=0

|
(i)Qt −

(j) Qt | (8)

We consider the cooperation between two robots having
higher quality when 1Q is smaller. In fact, 1Q not only
allows us to quantify the cooperation in realtime, but it also
offers a tool to measure how good the cooperation will be
if they were working under pre-planned trajectories. More
details can be found in Fig. 3.

E. EXPERIMENT CONFIGURATIONS
Design of the two-robot system is as Fig. 4 illustrates in
Appendix B. For each individual robot, five rigid parts with
basic geometries are included (chassis, left wheel, right
wheel, caster wheel, hat). The rod is attached to the robots
through their hats which can be freely rotated with respect to
their chassis.

The multibody dynamics is taken care of by the Open
Dynamics Engine (ODE) [31], which is integrated in the
Gazebo simulation software [32]. To enable interactions
between the MRS and the simulated task environment,

we first design robot models and an environment model, then
add a Python API for the MRS to interact with the environ-
ment. Lastly, we can implement out RL algorithms through
Tensorflow (an end-to-end open source platform for machine
learning) [33]. The architecture of the software interface can
be seen in Fig. 5. The details of system modeling, software
API construction and training scripts are all open-sourced and
can be found at https://github.com/IRASatUC/two_loggers.

The DQN’s in this research were all constructed with two
fully connected hidden layers with 256 weights in each layer.
Hyper-parameters that we applied in the training are listed
in Table 4 in Appendix C. The training was performed on a
desktop computer with an AMD Threadripper 1900X CPU
and an Nvidia GeForce GTX 1080Ti GPU (A GPU is not
required for this task).

IV. RESULTS AND ANALYSES
A. TRAINING PERFORMANCE IMPROVEMENT
We employ an averaged total reward as the metric to assess
performance improvement during training. Assume the MRS
receives total rewardRm at episodem, then the averaged total
reward at this episode can be expressed as

R̄m =
1
m

m∑
i=1

Ri (9)

The training procedure of using both homogeneous algorithm
and heterogeneous counterparts was recorded and compared
in Fig. 2. In addition to the proposed algorithms, we trained
a centralized controller using the original DQN algorithm [8]
to serve as the baseline which is also presented in Fig. 2. The
centralized DQN took the concatenated individuals’ states
as input and output combinations of actions. The training
process was centralized with one optimizer, and eventually
deployed a single controller on top of the whole MRS.
All these three types of training lasted 30000 episodes.
We can notice that the homogeneousDQN training performed
slightly better than the heterogeneous one. The decentralized
DQN training apparently outperforms the centralized DQN
training for they started to succeed earlier and also achieved
much higher averaged total reward at the 30000 episode mile-
stone. Considering the centralized DQN controller needs to
handle 16 actions (compared to 4 actions for the decentralized
setting), it is reasonable that the learning speed slowed down
and the training process was less stable. The total amount
of interactions(time steps) that happened during the homo-
geneous DQN training was about 5.1 × 106, the training of
heterogeneous DQN took more than 5.8 × 106 interactions,
while training of the centralized DQN took more than 8×106

interactions to finish 30000 episodes. This result suggests
that the decentralized architecture is more efficient than the
centralized counterpart. Employing homogeneous robots in
an MRS is the most efficient configuration when training
decentralized DQN controllers.

B. DQN CONTROLLER PERFORMANCE ANALYSIS
We evaluated the performance of the controllers by running
1000 trials with the MRS randomly initiated in the cell.
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Algorithm 2 Heterogeneous MRS DQN Training
for robot = 1 to N do
Initialize replay memory (i)D.
Initialize active Q-net with random weights: (i)θ .
Initialize target Q-net with identical weights as in the active Q-net: (i)θ̄ =(i) θ .

end for
for episode = 1 to M do
Initialize pose of the MRS randomly.
Perform ε decay.
for step = 1 to T do
for robot = 1 to N do
Select a random actioniat with probability ε;
otherwise, (i)at = argmaxQ((i)st ,(i) at ; θ ).

end for
Execute all (i)at ’s, then observe next states: (i)st+1, receive rewards: (i)rt+1.
for robot = 1 to N do
Store transition ((i)st ,(i) at ,(i) st+1,(i) rt+1) into (i)D.
Sample random batch of transitions ((i)sj,(i) aj,(i) sj+1,(i) rj+1) from (i)D.
Set target (i)yj =(i) rj+1 if episode terminates at j+ 1.
otherwise,
(i)yj =(i) rt+1 + γ (i)Q((i)sj+1, argmax(i)a Q((i)sj+1,(i) a;(i) θ );(i) θ̄ ).
Perform gradient decent on (i)θ .
Every C steps, reset (i)θ̄ =(i) θ .

end for
end for

end for

FIGURE 2. Averaged total reward growth along training episodes.

The homogeneous training algorithm resulted in a MRS
with 0.966 success rate, the heterogeneous training algo-
rithm produced a MRS with 0.955 success rate, and the
centralized DQN gave out a 0.941 success rate. We also
tested the performance of the DQN controllers against
uncertainties. By increasingly adding Gaussian noise to the
states (inputs) of the controllers, we found the success
rate of both MRSs degraded gradually. Table 1 shows the
performance drop of the MRS against the increased noise
level. Considering the success rate of an untrained con-
troller (analogous to taking random actions all the time)
barely reached 0.001, the DQN controllers demonstrated
reasonable robustness against input uncertainties. Especially
when the noise level was controlled under N (0, 0.1),

TABLE 1. Effect of state noise.

TABLE 2. Effect of action randomness.

TABLE 3. Metric of cooperation.

the performance of decentralized DQN were not affected
at all.

The uncertainties can happen on the output end of the
controllers, thus we also tested the controllers’ tolerance
on the randomness of control signals. The results can be
seen in Table 2 that the performance degradation was slowly
building up along the gradually increased output random-
ness. Even with a 50% chance that a controller will take a
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FIGURE 3. Sampled trajectories and cooperation assessment.

random action, all the controllers still had success rate over
0.8. When output randomness was under 10%, there was
no performance drop observed in all three categories. When
output randomness increased to 20%, the decentralized DQN
controllers can still maintain their performance, whereas
the performance of the centralized controller began to
degrade.

C. QUANTITATIVE COOPERATION ASSESSMENT
As a highlight of this research, we proposed a metric, 1Q
(described in III-D), to assess the cooperation between two
individuals in an MRS. Table. 3 shows the result from
1000 test trials with MRS randomly initiated in the cell.
Under the assessment of1Q, controllers trained by the homo-
geneous DQN algorithm demonstrated the best cooperation
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FIGURE 4. Dimensions of the two-robot system.

with minimum difference when estimating the total reward
at the same moment. The two controllers had larger dis-
agreement if trained by the heterogeneous DQN algorithm.
During training, we saved DQN models every 106 interac-
tions, so that the changed behaviors of the robots can always
be tracked by loading previously saved models. We also
compared metric 1Q at different stages of training. Both
algorithms exhibited larger1Qs when trained with 106 inter-
actions data. Both algorithms showed a trend of decreas-
ing 1Q with increasing training episodes, which indicates
both algorithms can shape the value systems in-between the
controllers to a more unified form.

A case study is given here for a better understanding
of the cooperation metric, 1Q. We sampled two trajecto-
ries of transportation using the final models trained by the
homogeneous DQN algorithm and the heterogeneous one,
respectively. We can see these two trajectories on the left
hand side of Fig. 3a and 3b. The homogeneous DQN algo-
rithm trained controllers took more time (219 time steps) to
solve the problem. While the heterogeneous DQN algorithm
trained controllers took fewer time (205 time steps). After
the trajectories were sampled, we can load different versions
of the DQN models to evaluate the same trajectory. On the
right hand side of Fig. 3, we evaluate the cooperation between
these two robots using DQN models from different stages of
training. The graphs on the top, indicate cooperation evalu-
ation using controllers trained by one million interactions.
Similarly, the graphs in the middle employed controllers
trained by 3 million interactions and the bottom ones used
the final states of the controllers. Regardless of whether the
controllers were trained with the homogeneous algorithm or

FIGURE 5. Simulation layout.

the heterogeneous one, the disagreement between the robots
is hardly noticeable. In general, more obvious Q-value devi-
ations can be observed on the heterogeneous DQN algorithm
side. For both homogeneous and heterogeneous DQN algo-
rithms, models trained with 3 × 106 interactions resulted
in similar Q-values as the final models did when evalu-
ating the same trajectories. The cooperation metric 1Qs
were relatively small when using these two versions of the
DQN model. Models trained with 106 interactions, how-
ever, tended to underrate the values of first 70% trajectories.
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TABLE 4. DQN hyper-parameters.

TABLE 5. Case-wise metrics.

It is reasonable since the value was slowly propagated from
the exit to further locations. More than that, larger 1Q
can be observed in the results of the version using 106

models.

D. OTHER FINDINGS AND DISCUSSIONS
We sampled the MRS’s performance from 9 different initial
conditions. Metrics of time consumed, travel distance and
1Q were extracted from the case-wise experiments which
can be found in Table 5. We compared performance of con-
trollers trained by homogeneous, heterogeneous and central-
ized DQN algorithms. While homogeneous DQN algorithm
trained controllers having significantly smaller gaps when
evaluating states at the same moment, they were slightly out-
performed heterogeneous DQN and centralized DQN trained
controllers in the manners of time consumed and distance
traveled. Trajectories of these samples were recorded as
Fig. 6 illustrated in Appendix D. An obvious that pattern
can be observed is that the robot initially closer to the exit
is more likely to be the first to exit, which indicates that the
DRL trained MRS is flexible enough to adjust the individuals
according to specific situations.

Researchers have proposed many advanced DRL algo-
rithms since the birth of DQN. A major draw back of DQN
is it cannot deal with continuous action space. Deep deter-
ministic policy gradient (DDPG) is one of the successors of
DQN, which introduced a policy network to produce con-
tinuous actions [34]. Proximal policy optimization (PPO) is
the one from the family of on-policy RL algorithms, which
can optimize continuous policy through guaranteed improve-
ment without stepping too far to avoid collapsed performance
[35]. We have tested both algorithms in the presented task,
but neither of them induced positive results so far. DDPG’s
convergence was extremely brittle during training, while both

DDPG and PPO had hard time balancing between exploration
and exploitation.

V. CONCLUSION
In this research, we introduced decentralized deep Q-network
(DQN) controllers in a multi-robot system (MRS) to solve
an object transportation task cooperatively. The controllers
learned how to behave and cooperate from scratch. Given the
state of the MRS, the DQN controllers can output discretized
control signals directly without knowing the dynamics nor
planning a path. Two training algorithms were proposed to
adapt homogeneous and heterogeneous MRS, respectively.
Both algorithms were able to train well-performed DQN
controllers on homogeneous robots to solve the task with a
high success rate. The decentralized architecture was proven
to be more efficient than the centralized counterpart. The
DQN controllers were proven to be robust against small
to medium level uncertainties. More importantly, a novel
and universal metric was proposed in this research that can
quantitatively assess cooperation between robots in an MRS.
With the encouraging results, we are now more confident
in the potential of deep reinforcement learning (DRL) type
controllers in MRSs.

In the future, we would like to continue exploring the
potential of MRS’s with more advanced DRL algorithms and
settings. Although DQN as an off-policy DRL algorithm is
theoretically more data-efficient compared to the on-policy
algorithms, the training process in this research still took
more than 5×106 interactions over 10 days. We look forward
to improving the efficiency of training, as this is essential
to bring a DRL-type controller to a robot in the real world.
The solution proposed is only feasible to the introduced
scenario since the input states only contained the pose of the
MRS. Due to the ignorance of other environmental features
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FIGURE 6. Cooperative transportation cases (left: homogeneous; middle:
heterogeneous; right: centralized).

(e.g. distance to wall), the controller cannot be generalized to
a largely varied environment. Hence, in the future, we look
forward to involving low-level input signals (e.g. laser scans,
images, etc.) to engage the MRS in a more generalized
world. Despite the fact that we introduced a heteroge-
neous DQN algorithm, the training actually occurred on
homogeneous instances. We are planning new experiments
to test how exactly this algorithm would perform on a

heterogeneous MRS. The sensing data in the current research
is pulled out directly from the simulation software, which
is not likely to be accessible in real applications. More
than that, current sensing data cannot deal with constantly
changing obstacles (e.g. the doorway is randomly placed).
Hence, we are preparing to upgrade the current robots to be
equipped with cameras and Lidars to adapt to upgraded task
environment with more dynamic objects..

APPENDIX A HETEROGENEOUS MRS TRAINING
ALGORITHM
Unlike the homogeneous counterpart, the training of
heterogeneous MRS happens separately on each individual.
Instead of sharing the data collected by all the members in
the team, each robotic controller will be trained with data
collected by itself.

APPENDIX B ROBOT DIMENSIONS
The mechanical design and robots dimensions are shown
in Fig. 4

Software layout and interfaces are shown in Fig. 5

APPENDIX C DQN HYPER-PARAMETERS
Hyper-parameters used in DQN training are shown in Table 4

APPENDIX D CASE STUDY
We sampled 9 cases of transportations with specified initial
conditions. The trajectories of the transportations using dif-
ferent controllers can be seen in Fig. 6. Key metrics including
total travel distance, time consumed and cooperation met-
rics:1Qwere recorded. Since heterogeneous and centralized
DQN trained controllers failed in the last case, the assessment
on these two were not applicable.
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