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ABSTRACT Automatic assessing the location and extent of liver and liver tumor is critical for radiologists,
diagnosis and the clinical process. In recent years, a large number of variants of U-Net based on Multi-
scale feature fusion are proposed to improve the segmentation performance for medical image segmentation.
Unlike the previous works which extract the context information of medical image via applying the multi-
scale feature fusion, we propose a novel network namedMulti-scale Attention Net (MA-Net) by introducing
self-attention mechanism into our method to adaptively integrate local features with their global dependen-
cies. The MA-Net can capture rich contextual dependencies based on the attention mechanism. We design
two blocks: Position-wise Attention Block (PAB) andMulti-scale Fusion Attention Block (MFAB). The PAB
is used to model the feature interdependencies in spatial dimensions, which capture the spatial dependencies
between pixels in a global view. In addition, the MFAB is to capture the channel dependencies between
any feature map by multi-scale semantic feature fusion. We evaluate our method on the dataset of MICCAI
2017 LiTSChallenge. The proposedmethod achieves better performance than other state-of-the-art methods.
The Dice values of liver and tumors segmentation are 0.960± 0.03 and 0.749± 0.08 respectively.

INDEX TERMS CT, liver tumor segmentation, deep learning, attention mechanism, context information.

I. INTRODUCTION
Liver cancer has become one of the most common diseases
for human and causes massive deaths every year [1], [2]. The
liver and liver lesions are segmented manually by radiolo-
gists, which is time-consuming and depends on the exper-
tise of the radiologists for segmentation accuracy. Therefore,
automatic liver and tumors segmentation methods become
critical in the clinical practice. In the past few years,
Convolutional Neural Network (CNN) had achieved great
success in the image segmentation field. Numerous methods
based on Fully Convolutional Networks (FCN) [3] have been
proposed to segment images accurately. Compared with the
natural image segmentation, medical image segmentation is
a huge challenging task because of the low intensity contrast
between the organs and the various size, shape and location
of lesion area within one patient. Moreover, some tumors
have fuzzy boundaries which bring extremely complicated
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tasks for accuracy detection and segmentation. To tackle the
above difficulties, many methods based on Deep Learning
have been proposed in the medical image segmentation field.
The U-Net [4] is one of the most popular network architec-
tures which based on encoder-decoder network in the medical
image segmentation field. To improve segmentation perfor-
mance, it employs skip connections to exploit multi-scale
information features. Moreover, many works with the latest
skip connections have been proposed to improve network
architecture such as residual connections [5] and densely con-
nections [6] andU-Net++ [7]. Although the variances of skip
connections proposed help to capture rich different-levels
semantic features, it cannot describe spatial and channel-wise
relationships between pixels of image, which are essential for
medical image segmentation.

In addition to designing skip connections to fuse different-
level semantic features, other state-of-the-art methods based
on FCNs architecture have been proposed to capture Multi-
scale context feature information of image via using dilated
convolutions with different sampling rate [8]–[10] and
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FIGURE 1. The total architecture of MA-Net.

pooling operations [11]–[14]. For example, [14] designed
Residual Multi-kernel Pooling (RMP) strategy which has
different-size pooling kernels to fuse multi-scale context
feature information. The dilated convolutions with different
sampling rate and pooling operations are used to obtain rich
Multi-scale context information of images, which further
improve segmentation performance. However, the dilated
convolutions and pooling operations cannot leverage the spa-
tial and channel-wise relationship between pixels in a global
view. Moreover, it is easy to loss details from the feature map
information by using pooling operations.

In order to address the above problems, we propose a
novel network architecture named Multi-scale Attention-Net
(MA-Net) for liver and tumors segmentation, which is shown
in Fig1. The self-attention mechanism is used in the MA-Net.
Specifically, we use two blocks based on self-attention mech-
anism to capture spatial and channel dependencies of feature
maps. One is Position-wise Attention Block (PAB), and the
other is Multi-scale Fusion Attention Block (MFAB). The
PAB is used to obtain the spatial dependencies between pixels
in feature maps by a self-attention mechanism manner. The
MFAB is used to capture the channel dependencies between
any feature maps by applying attention mechanism. Besides
considering the channel dependencies of high-level feature
maps, the channel dependencies of Low-level feature maps
are also considered in the MFAB. The channel dependencies
of high-level and low-level feature maps are fused in a sum
manner, which aims to obtain richMulti-scale semantic infor-
mation of feature maps by using attention mechanism and
improve network performance.

In this work, our main contributions can be summarized as
follows.

(1) We propose a novel network named Multi-scale
Attention-Net with the dual attention mechanism to enhance
the ability of feature representation for liver and tumors
segmentation.

(2) We design two Blocks with self-attention mechanism:
Position-wise Attention Block (PAB) and Multi-scale Fusion
Attention Block (MFAB). We use PAB and MFAB to capture
attention feature maps of spatial and channel levels. The PAB
is proposed to obtain the spatial dependencies between pixels
in a global view, and the MFAB is to capture the channel
dependencies between any feature maps by fusing high and
low-level semantic features.

II. RELATED WORK
A. MULTI-SCALE INFORMATION EXTRACTION
Multi-scale information can provide rich semantic features
for medical image segmentation. In the past few years, many
methods [4], [12]–[17] proposed appling Multi-scale infor-
mation to enhance contextual aggregation. We review several
methods about Multi-scale information extraction.

The U-Net [4] have achieved great success in the medical
image segmentation. The U-Net is a classical skip-net, and
it uses skip connections to fuse low-level semantic features.
Many methods are proposed with applying skip connections
to obtain Multi-scale information of images [7], [16], [18],
[19]. For example, [16] designed the cross dense connections
to capture the different-level semantic features. In addition
to using the common skip connections between encoder and
decoder path, [18] designed a novel skip connection named
high-resolution pathway, and the skip connection used dila-
tion convolution with different rate to obtain Multi-scale
information.

In addition to applying skip connections, the dilation con-
volution [8] with different rate and pooling operation [11]
is also used to capture Multi-scale information [12], [14],
[17], [20]. For instances, to gather Multi-scale information,
[14] designed a pooling strategy with different-size pool-
ing kernels for medical image segmentation. Reference [20]
introduced cascaded context pyramid with dilation convolu-
tion of different dilation rate into the proposed network to
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capture multi-scale semantic information. Although the skip
connection, dilation convolution and pooling operation can
obtain the context fusion information, they cannot describe
the spatial and channel relationship between objects in a
global view. It is important to gain rich semantic information
on the basis of local features as well.

B. ATTENTION MECHANISM
Attention mechanism has been widely applied in many fields,
such as [21]–[24]. Especially, the [24] is been seen as the
first to use the attention mechanism to capture the global
dependencies of inputs. Recently, the attention mechanism is
popular and widely used in computer vision tasks [25]–[30].
The attention mechanism can simulate the human visual sys-
tem and focus on the areas of interest. Meanwhile, attention
mechanism can capture the long-range dependencies. For
example, [25] designed a novel Squeeze-and-Excitation unit
to obtain the channel dependencies between feature maps
and adaptively recalibrates channel dependencies responses
of feature maps. Reference [30] introduced the Self-Attention
into Generative Adversarial Network, whichmodels the long-
range dependency for image generation tasks. Moreover,
the attention mechanism is also applied in the medical image
segmentation fields [9], [15], [31], [32]. Through the use of
SEblock, [31] fused 2D and 3D feature maps for chronic
stroke lesion segmentation. Reference [15] embedded the
SEblock in the U-Net network, which obtained the channel
dependencies between feature maps for prostate zonal seg-
mentation. Reference [32] designed a novel attention module
which utilized the attention mechanism for prostate segmen-
tation. Unlike previous works, we consider the spatial and
channel dependencies in our method. Moreover, we also fuse
the high and low-level semantic feature in the channel-wise
dependencies.

C. LIVER AND TUMOR SEGMENTATION
In recent years, many methods based on convolutional neural
network have been proposed for liver and tumor segmen-
tation. Some methods are based on 2D networks or 3D
networks respectively. Reference [33] proposed a bottle-
neck feature supervised (BS) 2D U-Net which uses convo-
lution kernels of different sizes to obtain multi-scale feature
maps for live and tumor segmentation. Reference [34] pro-
posed GIU-Net that combines an improved 2D U-Net neural
network model with graph cutting for liver segmentation.
The GIU-Net model achieved dice scores for liver segmen-
tation is 95.05%. Reference [35] proposed 3D RA-UNet
which achieved dice scores 96.1% for liver segmentation
and 59.5% for tumor segmentation. Reference [6] proposed
H-DenseUNet which combines 2D and 3D network for liver
and tumor segmentation. The H-DenseUNet achieved dice
score 96.5% for liver segmentation and 72.2% for tumor
segmentation. However, the 2D network can not get more
spatial information of images for liver and tumor segmenta-
tion. These methods that apply 3D network to segment liver
and tumor usually take much more time to train, and these

FIGURE 2. The total architecture of Res-block in our proposed method.
The Res-block consists of the convolution layers, GN and residual
connection.

methods own much more parameters. Moreover, the results
of 3D networks are sensitive to parameters initialization.

III. MATH
In this section, we describe the proposed method in detail
including Res-block, Position-wise Attention Block and
Multi-scale Fusion Attention Block. We adopt the improved
encoder-decoder architecture of U-Net for liver and tumors
segmentation in the paper. The Res-block consists of three
3× 3 Convolution blocks and residual connections to extract
high-dimensional feature information. The Position-wise
Attention Block is used to capture the spatial dependencies
of feature maps, and the Multi-scale Fusion Attention Block
is to aggregate the channel dependencies between any feature
maps via fusing High and Low-level feature information.

A. RES-BLOCK
With the increasing of network layers, [5] designed a novel
skip connection named residual connection to address the
problem of vanishing gradient. Inspired the residual con-
nections, we use three 3 × 3 Conv blocks and one residual
connection to capture high-dimensional feature information
of CT images in the encoder path. The 1 × 1 Conv is to
control the number of input channels. Because the size of
the experimental platform’s memory is limited, the batch
size usually is small in the image segmentation field. The
small batch size can cause performance degradation ofmodel.
Hence, [36] proposed the group normalization to alleviate the
problem. We replace Batch Normalization with group nor-
malization in the MA-Net. We use the group normalization
in the Res-block. The frame of Res-block is shown as Fig2.

B. POSITION-WISE ATTENTION BLOCK
Previous work [11], [37] have suggested that local feature
information captured via using traditional convolutional net-
work could lead to misclassification of objects. In order
to capture rich contextual relationships over local feature
maps, [26] designed a position attention module. Inspired
the position attention module, we use PAB to capture the
spatial dependencies between any two position feature maps.
The PAB can model a wider range of rich spatial contextual
information over local feature maps.

The frame of PAB is shown as Fig3. Given a local feature
map I ∈ RH×W×256 as input, then we feed it into a 3 × 3
convolution layer to obtain I ′ ∈ RH×W×512. Then, we utilize
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FIGURE 3. The Position-wise Attention Block (PAB). The input image is HxWx256 and output is HxWx512. The attention feature map is obtained by
Softmax function.

1 × 1 Convolution layers to generate A ∈ RHXWX64,B ∈
RH×W×64 and C ∈ RH×W×512 respectively. We reshape
A and B to RN×64 and R64XN respectively, and then the
matrix multiplication is performed between A ∈ RN×64 and
B ∈64×N . Where N is the number of pixels. After that we
use softmax function to obtain the spatial attention feature
map P ∈ RNXN (see Equation(1)). Where Pji denotes the ith

position’s impact on jth position in the feature map.

pji =
exp(AiBj)∑N
i=1 exp(AiBj)

(1)

Meanwhile, we reshape C ∈ RH×W×512 to C ∈ RN×512.
We perform a matrix multiplication between the spatial atten-
tion map and C ∈ RN×512, and reshape the result to O′ ∈
RH×W×512. After that, we use an element-wise sum operation
between I ′ and O′. Finally, we obtain the final output O ∈
RH×W×512 by a 3 × 3 convolution layer. The final output O
is as following:

Oi = α
N∑
i=1

(PjiCi)+ I ′j (2)

where α is initially set to 0 and gradually learns to assign
more weight in the training phase. The final output O at each
position is a weighted sum of the feature maps across all posi-
tions and original feature maps. Therefore, the final output
O has a global contextual view and selectively aggregates
rich contextual information over local feature maps according
to the spatial attention map, and it considers the long-range
spatial dependency between features in a global view, which
improves intra-class correlation and semantic consistency.

C. MULTI-SCALE FUSION ATTENTION BLOCK
The attention mechanism in the deep learning is similar to
the human visual system. It aims to select information which
is important for current task from a variety of information.
SENet models the channel-wise dependencies among feature
channels and automatically obtains the importance of each
feature channel. The purpose is to enhance the helpful feature
maps and suppress the feature maps that are useless for cur-
rent task. The each channel feature map of high dimensions

can be seen as class-specific response. The area of liver and
tumor is relatively small compared to the whole CT image.
Hence, we try to imitate physicians to review CT images via
introducing attention mechanism into MA-Net. By capturing
the channel-wise dependencies among feature maps, model
can improve the ability of feature representation. Moreover,
many previous works suggest that the Multi-scale informa-
tion helps to improve the segmentation accuracy.

Inspired [25], we design a novel Multi-scale Fusion Atten-
tion Block (MFAB) to extract the interdependence among
feature channels via combining the High and Low-level fea-
ture maps. The MFAB is similar to the human visual system
and automatically select the information that is important for
liver and tumor segmentation from a variety of information.
Our main idea for designing MFAB is that the MFAB learns
the importance of each feature channels which come from
multi-level feature maps without extra spatial dimension, and
enhance the helpful feature maps and suppress feature maps
that have less contribution for liver and tumor segmentation
task according to the importance.

Specifically, we describe the interdependence of feature
channels from Low-level and High-level feature maps. The
High-level features have rich semantic information of image
and the Low-level features from Skip-Connection have more
edge information. The Low-level features are used to recover
the details of images. The MFAB is shown as Fig4. We apply
attention mechanism of channel-wise for High-level and
Low-level features, respectively. The purpose is to increase
the weight of important information for each feature channel
in segmentation task and the useless feature information is
omitted. Firstly, we obtain XHinput by feeding High-level
feature into 1× 1 and 3× 3 convolution layer. The definition
of is :

FCov : XH∗input → XHinput (3)

where XH∗input ∈ R
H×W×C ′ and XHinput ∈ RH×W×C . XHinput

and XLinput have the same number of channels.We use V =
[v1, v2, . . . , vc] as the set of filter kernels, where vc refers
to the parameters of the c-th filter. We can calculate the
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FIGURE 4. The Multi-scale Fusion Attention Block (MFAB). We use two SE-Blocks to capture Low-level and High-level feature map respectively. The
final channel attention feature map is obtained via a Concat connection.

output U = [u1, u2, . . . , uc]:

uc = vc ∗ Xinput =
C∑
i=1

(vic) ∗ x
i (4)

where vc = [v1c, v
2
c, . . . , v

c
c] and Xinput = [x1, x2, . . . , xc],

Xinput ∈ (XHinputorXLinput ). Here ∗ denotes convolution.
Then the global average pooling is used to compress each

feature and become the number column of 1 × 1 × C and
generate channel-wise statistics. Formally, the statisticSc1
and Sc2 are obtained by shrinking the feature maps XHinput
and XLinput . The c-th elements of S1 and S2 are calculated as:

Sc1 = FL(XLinput ) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (5)

and

Sc2 = FH (XHinput ) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (6)

whereH andW denotes height and width respectively, and uc
denotes feature map of each channel. Then Bottleneck layers
with two Fully-Connected(FC) layers and activation function
are used to limit model complexity and capture the channel-
wise dependencies z1 and z2.

z1 = FLs(S1,P) = δ1(P1δ2(P2, S1)) (7)

z2 = FHs(S2,P) = δ1(P1δ2(P2, S2)) (8)

where P1 and P2 denote the Fully-Connected layers, P1 ∈
R

c
r C and P2 ∈ RC

c
r . δ1 and δ2 denote sigmoid function and

ReLU activation function respectively. The reduction ratio r
(r=16 is best) is used to control the number of channel.

Then we use Fadd function to combine the channel-wise
output of Low-level and High-level feature.

z = Fadd (·) = z1 + z2 (9)

The XHoutput is obtained by rescaling T that has the activa-
tion V:

X̃Houtput−c = Fscale(Tc,Vc) = VcTc (10)

where X̃Houtput = [X̃Houtput−1, X̃Houtput−2, . . . , X̃Houtput−c]
and Fscale(Tc,Vc) is the channel-wise multiplication between

the scalar Vc and the feature Tc ∈ RH×W . The multiplication
can complete the re-calibration for the original feature on the
channel dimension. In order to enhance the feature represen-
tation and rich semantic information, we obtain the XH∗output
via concatenate XLinput and XHoutput . The final output Xoutput
of MFAB is obtained by two 3 × 3 convolution layers that
capture semantic information.

D. LOSS FUNCTION
The binary cross-entropy is frequently used as loss function in
numerous image segmentation tasks. A loss function based on
Dice had been used extensively in medical image segmenta-
tion. The Dice loss function can mitigate the imbalance prob-
lem of background and foreground pixels. However, liver and
tumors are more complex and various. The target regions of
tumors usually occupy smaller areas than other regions. Since
the Dice loss function only pays attention to the accuracy rate
in the training process, we use a weighted loss function to
optimize the MA-Net. We employ the combination of cross-
entropy and Dice as the final loss function in this paper. The
loss function is described as:

Lloss = −
1
N

∑N

i=1
(αyi log pi + β

yipi
yi + pi

) (11)

where yi and pi denote the ground truth and the predicted
feature map, and N denotes the batch size. We use two
hypeparameters (0 < α < 5 and 0 < β < 5) to control the
effect of the weighted loss function. In this paper, α = 0.5
and β = 2 can obtain the best performance.

IV. EXPERIMENTS AND RESULTS
A. PRE-PROCESSING AND IMPLEMENTATION DETAILS
We tested the proposed method on the dataset of MICCAI
2017 Liver Tumor Segmentation (LiTS) challenge [38]. The
LiTS dataset consists of 131 training and 70 testing CT scans
images, and the LiTS dataset provide ground truth for liver
and tumors contours. For preprocessing, we truncated the
pixel intensity values of all scans to the range of [−200,
250] HU to remove irrelevant tissues and enhance the con-
trast between liver and other tissues. For liver segmentation,
the size of each CT image is 512 × 512 pixels and will
be cropped to 256 × 256 to accelerate the training phase
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TABLE 1. The value of Dice, VOE and RVD on the ablation analysis (standard deviation).

and increase the region of foreground. For tumor segmen-
tation, we use the result of liver segmentation to locate the
liver. We crop out a rectangular area which contains the liver,
and the rectangular with 20 pixels margin at the top, bottom,
left and right. 10% of training dataset is randomly selected
as the verification dataset. Moreover, we applied the data
augmentation methods to avoid the overfitting problem, such
as random vertical and horizontal flip and random scaling
between 0.8 and 1.2 in preprocessing process. We apply the
early stopping strategy as our regularization method in the
training phase.

The proposed method is implemented on the platform of
Pytorch. The Adam optimizer is used and the initial learn-
ing rate is set to 0.002 and decayed based on the equation
lr = lr × (1 − iter/total_iter)0.9. The maximal number of
epoch is set to 80 and 150 for liver and tumor segmentation,
respectively. All models are trained on Intel I7-9700K,Nvidia
GeForce RTX 2070S with 8GB.

B. EVALUATION METRICS
To effectively evaluate the segmentation performance of the
proposedmethod for liver and tumors. The evaluation metrics
formulae as shown below:

Dice =
2|A ∩ B|
|A| + |B|

(12)

VOE = 1−
|A ∩ B|
|A ∪ B|

(13)

RVD =
|A| − |B|
|B|

(14)

where A and B denote the predicted binary image and the
ground true binary image respectively.

C. ABLATION ANALYSIS
In this section, we apply ablation analysis to evaluate
the effectiveness of proposed method for liver and tumors
segmentation. To evaluate the segmentation performance,
we replace all original convolution layers with Res-block
in the U-Net. The Res-blocks are used to extract feature
information of images in the encoder path. The result of
ablation analysis is shown as Table 1. The U-Net with Res-
blocks is seen as backbone in the table 1. TheU-Net with PAB
and MFAB both improve the segmentation performance for
liver and tumor segmentation. The proposed method achieves

FIGURE 5. The comparative result of MA-Net and U-Net+wide.

better segmentation results for liver and tumors segmenta-
tion. It proves that the PAB and MFAB are beneficial to
improve the segmentation performance. With the increasing
number of network depth, the segmentation accuracy will
also increase. Hence, to prove that MA-Net does not rely on
the number of parameters to improve the segmentation accu-
racy, we increase the number of parameters of the traditional
U-Net. The comparative result is shown as Fig5. It shows
that the MA-Net still achieves better segmentation accu-
racy compared to the U-Net+wide. The MA-Net achieves
0.749 and 0.960 (Dice) on the tumor and liver segmentation
results by the measurement of dice respectively, compared
to the U-Net+wide which achieves 0.625 and 0.913 (Dice)
respectively.

D. COMPARISON WITH OTHER
STATE-OF-THE-ART METHODS
In order to evaluate the effectiveness and robustness of
MA-Net for liver and tumors segmentation, we also compare
the proposed method with other existing state-of-the-art
methods. The U-Net [4] is a famous network of encoder-
decoder architecture in the medical image segmentation field.
Except for the comparison with U-Net, we run experiments
with methods of SegNet [39], Res-Unet [40], U-Net++ [7]
and U2Net [41], respectively. The U2Net has two versions:
U2NetP (4.7MB) and U2Net (176.3MB). The comparison
results are shown in Table 2, where we calculated the mean
value of Dice, VOE and RVD of all testing CT images. More-
over, Dice, VOE and RVD are based on the mean±standard
deviation. We can see that the proposed method achieved
the better segmentation performance than other methods
for liver and tumors segmentation. Our method achieves
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TABLE 2. The quantitative comparison of different variant methods based U-Net. The value of Dice, VOE and RVD are based on the mean standard
deviation.

TABLE 3. The segmentation result of other state-of-the-art methods of liver and tumor segmentation on the testing dataset (%).

the Dice value 0.749±0.08 for tumors segmentation and
0.960±0.03 for liver segmentation. The U2Net has 176.3MB
parameters, while theMA-Net only has 19.42MBparameters.
The U2Net has about 9 times as many parameters asMA-Net.
The U2Net model is more complex than our model. It takes
more than three times as long to train model as MA-Net in
the same experimental platform. Though having less param-
eters, MA-Net obtains competitive results for liver and tumor
segmentation.

In addition, we list 5 CT images which contains liver and
tumor to see the segmentation result visually. These images
are selected random in the LiTS dataset. The segmentation
results of each method are shown in Fig6. The liver tumor
segmentation is seen as the most difficult segmentation task
compare to the liver segmentation because the shape of
the liver tumor is variable and the size is uncertain. From
Fig6, we can see that the proposed method obtains better
segmentation performance than other methods for liver and
tumors segmentation. There are several deep learning mod-
els proposed for liver and tumor segmentation by using the
dataset of the LiTS challenges. We compare MA-Net with
other state-of-the-art methods. We reach a 0.749 Dice for
tumor segmentation and 0.960 Dice for liver segmentation
respectively, which is a desirable performance for liver and
tumor segmentation. The table 3 lists the detail results and
shows all the performances. The MA-Net performs better

than 2D networks. The MA-Net is slightly worse than the
3D network for liver and tumor segmentation, such as 3D
RA-Unet and 3DH-DenseUNet. While these methods are 3D
model, they have more parameters thanMA-Net. Meanwhile,
their network are significantly complicated than our model.
They have longer training time (21 hours on the two NVIDIA
Titan Xp platforms such as 3D H-DenseUNet) than MA-Net
(8 hours on the one NVIDIA 2070S platform). Moreover,
the MA-Net do not use post-processing.

V. DISCUSSION
Automatic liver and tumors segmentation is helpful for radi-
ologists in clinical diagnosis, which provides the precise
contour of the liver and tumors for radiologists and assists
radiologists in clinical process. We design a novel network
based on improved U-Net for liver and tumors segmentation.
We introduce self-attention mechanism into the proposed
method which contains two blocks of self-attention mech-
anism, PAB and MFAB. PAB considers the spatial depen-
dencies between pixels, and MFAB considers the channel
dependencies between any feature maps.

To verify the effectiveness and robustness of the proposed
method, the ablation analysis is used firstly in this experi-
ment. By the ablation analysis, the PAB andMFAB are effec-
tive for liver and tumors segmentation. In order to eliminate
the influence of increasing parameter for the segmentation
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FIGURE 6. Examples of liver and tumors segmentation results of the different methods on the testing dataset. The orange region denotes the
livers and the green region denotes the tumors.
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accuracy, we compare the proposed method with the
U-Net+wide which has the same parameter number. That
also shows the superiority of our method.

To further prove the superiority of the proposed method,
we compare MA-Net with other state-of-the-art meth-
ods for liver and tumor segmentation on testing dataset.
Table 2 shows the results compared to other methods. We can
see that the segmentation performance of the proposed
method outperforms other methods. The proposed method
achieves 0.960±0.03 (Dice) and 0.749±0.08 (Dice) on the
liver and tumors segmentation via measuring the Dice value
respectively. Moreover, we list some Examples of liver and
tumors segmentation results on the testing dataset as shown
in Fig6. The tumors segmentation is a challenging task com-
pared to liver segmentation. Fig6 shows that the proposed
method still performs well for tumors segmentation. The
application of attention mechanism contributes to further
improve the segmentation performance in the CNNs. The
proposed method can provide accurate guidance for doctor
in clinical diagnosis. Compare to some other state-of-the-art
methods of 2D and 3D U-Net models, our model obtains
better segmentation results. While MA-Net is slightly worse
than some 3D models, the MA-Net has fewer parameters and
simpler model than it. For liver segmentation, the MA-Net
performs better than most 2D networks and is comparable
to some 3D models. For tumor segmentation, the MA-Net
performs better thanmost 2D networks. TheMA-Net can also
provide good guidance to doctors.

VI. CONCLUSION
We design a novel network architecture based on improve
U-Net for liver and tumors segmentation. We introduce self-
attention mechanism into our method to segmentation image.
Specially, we use self-attentionmechanism to capture the spa-
tial and channel dependencies of feature maps and consider
the Multi-scale semantic information based on the channel
dependencies between any feature maps. In addition, we use
a new loss function which combined the cross entropy and
Dice.

Massive experiments demonstrated the superiority of our
method on the 2017 LiTS dataset. The proposed method
is helpful to assist the doctor in clinical process. However,
the MA-Net also has some shortcomings and it just can
segmented the liver and tumor in this paper. We will study the
effect of MA-Net on other medical images to assess the seg-
mentation performance and robustness of MA-Net in future
studies. Moreover, we consider adding deep supervision into
MA-Net to improve model. However, we mainly focus on
introducing attentionmechanism intomedical image segmen-
tation filed and the MA-Net not apply the 3D information
of CT images. The 3D information of CT images is also
important for liver and tumor segmentation. We will consider
adding 3D information of CT images to theMA-Net model in
the future studies. Themodel combines 3D information of CT
images and attention mechanism to further improves model.
TheMA-Net has very good potential for further development.
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