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ABSTRACT This article presents the development of an active thermography algorithm capable of detecting
defects in materials, based on the techniques of Thermographic Signal Reconstruction (TSR), Thermal
Contrast (TC) and the physical principles of heat transfer. The results obtained from this algorithm are
compared to the TSR technique and the raw thermogram obtained by stepped thermography inspection.
Experimentally, a short thermal pulse is used and the surface temperature of the sample is monitored over
time with an infrared camera. Due to the volume of data, the first step is data compression. Newton’s law of
cooling was used to store the normalized temperature data pixel-by-pixel over time and a compression ratio
of 99% was obtained. The main contributions of the developed algorithm are: only four parameters for data
compression and the concept of change in the direction of the heat flow to delimit the edges of the defects,
where the borders are identified with a remarkable accuracy. Some well known image processing technique
are also integrated to improve the thermal analysis: edge detection/interface between the sample and the
image background; consolidation in a single image by aggregating the indicators referring to the concept of
cooling/heating time constant, maximum thermal amplitude and contrast.

INDEX TERMS Active thermography, thermal analysis, infrared imaging, data compression, change

detection algorithms, image processing.

I. INTRODUCTION
The increasing demand for industrial machines and prod-
ucts that are more resistant, have higher damage tolerance
and that can be subjected to greater stress is remarkable.
Monitoring and testing are fundamental aspects for industrial
manufacturing, to prevent failures and increase reliability in
these rapidly changing industrial conditions. Nondestructive
testing (NDT), which inspects materials for discontinuities in
characteristics without destroying the object under examina-
tion, has been widely applied, e.g., internal defect detection
in various composite structures [1]-[3].

Thus, the search for non-destructive techniques and their
development for monitoring, evaluating and ensuring the
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integrity of these materials has become an important task.
There are successful applications of nondestructive testing
and evaluation (NDT & E) techniques - such as eddy current,
ultrasound, acoustic emission, X-ray and thermography - for
damage detection in materials [4].

Infrared thermography (IRT) is used as a non-invasive
monitoring technique in several industrial sectors and is
effective for defects inspection in the microelectronic pack-
aging industry. This technique has been used as a non-
destructive technique in order to avoid unexpected equipment
stops [5], [6]. IRT allows the operator to obtain a surface tem-
perature map of any sample, regardless of the geometry, from
the thermal energy radiated in the infrared electromagnetic
band and from the heat flow [7]. Thermal cameras measure
the apparent temperatures of each pixel, which include trans-
mitted and reflected components that are considered noise.
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The atmosphere itself can emit radiation owing to its temper-
ature warm or hot objects in the surroundings (even the ther-
mographer is a source) may lead to reflections of additional
IR radiation from the object or windows. This fact makes this
technique very accurate in measuring temperature variations,
in both spatial and temporal ways. Thus, it is important
to keep the environmental conditions constant during the
test [8].

In non-destructive tests, the most used form of active
thermography involving an external source of heat is flash
thermography, also known as stepped thermography (PT).
In PT, a heat step is applied to the surface of the sam-
ple and its thermal response is monitored during the
cooling phase [9]-[11]. Different geometries, as well as inter-
nal discontinuities (e.g. voids, defects, corrosion), modify this
thermal response and produce hot or cold areas on the sample
surface sites. To improve the identification of defects, it is
then necessary to automate the image processing [12].

Shepard [13] developed the methodology called Thermo-
graphic Signal Reconstruction (TSR), which involves data
compression by way of curve fitting, usually a fifth to eighth
degree polynomial, on a log-log scale (logarithmic in time
and temperature). Compression occurs because it is only
necessary to store the adjusted polynomial coefficients for
each pixel in the image [14]. The first and second derivatives
of the adjusted polynomials are then calculated. As a result,
the images formed by the coefficients of the temperature
polynomials in time, of the first and of the second derivative,
are analyzed. Balageas et al. [15] and Shepard [16] showed
that the TSR technique reduces temporal noise with the
application of the logarithm, improves visual detection and
allows the detection of defects in materials with low thermal
conductivity.

The visibility of defects depends on several factors, includ-
ing, for example, material characteristics, environmental con-
ditions and equipment sensitivity. With regard to the material,
both thermal properties (thermal conductivity, thermal diffu-
sivity) and defects geometry are decisive.

In particular, the main interest of this research is to develop
an algorithm for detecting defects in insulating materials
using physical concepts of heat transfer. Our objectives
include: compressing data with the use of curve fitting and
characterization of the defects captured by the time constant;
finding maximum contrast; determining AT}, of each pixel
and maximum contrast (between the pixel and the maximum /
minimum temperature of each frame); segmentation of
regions of interest (defects), highlighting the background of
the sample image; identification of the defects by the edges
and understanding the physical meaning of the heat flow
change, in order to reduce the subjectivity of the operator by
obtaining a unique RGB image as a final result.

The paper is organized as follows: Section II dis-
cusses the description of the experiment and the method-
ology; Section III presents the algorithm development, and
Section IV presents the results. Final comments and remarks
are presented in Section V.
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FIGURE 1. Original pipe and sample with internal defects.
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FIGURE 2. Experimental setup.

Il. Description of the Experiment

Thermographic analysis was used to detect internal defects
from images of an infrared camera that received radiation
from a sample heated by a pulse and cooled down to the
equilibrium temperature of the environment. A sequence of
thermograms and the temperature distribution on the surface
of the material over time were collected, allowing analysis
of the thermal gradient in the material. As a case study for
the algorithm, stepped thermography was applied to a carbon
fiber reinforced polymer (CFRP) sample as shown in Fig. 2 .
The main weakness of CFRP composite materials is their low
impact resistance. Indeed, a visual and non-intrusive method
that is able to detect impact damage with high efficiency and
reliability is needed [17].

The sample was initially in the form of a pipe (5 mm thick-
ness) made by manual lamination and vacuum compression.
However, in order to carry out the tests, the circumference of
the pipe was sectioned into four equal parts of 90°. In one of
these parts, defects of different diameters and depths were
caused to the inner surface of the sample, which are not
observable by simple visual inspection from the outside.
Tab. 1 shows the geometric specifications of each defect
contained in the sample. The sample was extracted from an
oil pipe, see Fig. 1

For the experimental test, a FLIR SC640 thermographic
camera was used and the distance from the sample to the
camera lens was 0.40 m. Because the modality to be evaluated
in this study was active thermography, it was necessary to use
an external source for thermal excitation. In this case, two
halogen lamps, totaling 5.0 kW, were used as a thermal flash
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TABLE 1. Geometric specification of defects.

Fault 1 Fault2 Fault3 Fault4
Diameter (mm) 4.94 9.84 9.77 9.78
Hole
Depth (mm) 4.38 4.55 2.35 4.24
Sample
thickness (mm) 5.6
TABLE 2. Experimental conditions.
Emissivity (¢) 0.92 Initial temp. (K) 298.25
Total time (s) 60 Ambient temp. (K)  298.75
Heating time (s) 10 Humidity (%) 55
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FIGURE 3. Algorithm Development.

source. Fig. 1 and Fig. 2 show the experimental setup, as well
as one of the specimens. The test conditions were in accor-
dance with specific standards. Data shown in Tab. 2 refers
to the experimental conditions. An expert infrared technician
conducted the experiment, according to the state of the art
and following these standards: ASTM E1933-14 and ASTM
E2582-19. The parameters are not optimized for the proposed
algorithm and this could improve the results.

The experimental tests were carried out at the Laboratory
of Non-Destructive Testing, Corrosion and Welding (LNDC)
of the Federal University of Rio de Janeiro. The config-
uration of the samples can be seen in Tab. 1 and Tab. 2.
In principle, any insulate material is suitable to be used.

lll. ALGORITHM DEVELOPMENT

A flowchart of the algorithm is shown in Fig. 3. It starts
with the compression of the data, which is a data adjustment
(curve fitting) over time. Than, the edges of the sample are
identified and the background is cropped. Three indicators
are calculated to fill each channel of the RGB image and
an unique image is built as result. The first indicator is the
maximum contrast, the second is the AT}, of each pixel and
the time constant is the last. The concept that the heat flow
changes its direction at the boundary of the defects is used
and added to the resulting image. It is expected to provide
the operator with a simple and practical understanding of the
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FIGURE 5. Curve fitting the cooling phase by the Gauss Newton Method.

physical concepts involved, what can be translated into agility
in decision making by characterizing the defects

A. COMPRESSION

To understand the compression procedure, a flowchart is
shown in Fig. 4. The radiometric images were extracted
from a thermographic video and transformed into a matrix
containing the temperatures for each of the pixels in space
To(x, y) at each time interval (e.g. t = 1/30 s).

The temperature signal from each pixel is normalized as
displayed in Fig. 5, where the data and the curve adjusted by
Eq. 1 fits the normalized signal through time. The pixel whose
temperature signal is shown in Fig. 5 was arbitrarily chosen
in a sample without defect, only to illustrate the method. The
curve is fitted independently to both the cooling and heating
phases.

y= a.e bt + c.eid", (1)

Among the coefficients, b and d are the inverses of the time
constants. The Gauss-Newton method was used to fit the
curves. However, before adjusting them, it is recommended
to normalize the signal from each pixel and to apply median
filters to eliminate some noise (high frequency) and to facili-
tate the adjustment, making the convergence faster.

In order to separate the phases, the maximum temperature
of each pixel was obtained. These values and the frame
where the maximums occur were stored. We proposed to
store the heating phase because it could be used for future
reference and to allow the original data to be excluded. The
adjustment was achieved in a similar way to the cooling
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FIGURE 6. Determination coefficient (R2) of cooling phase.
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FIGURE 7. Root Mean Square Error (RMSE) - cooling phase.

phase, i.e. through the sum of exponentials. However, this
only requires one time constant, which means, from Eq. 1,
that the value of d for the heating phase is equal to zero. Maps
of the coefficient of determination (R?) and root Mean Square
Error (RMSE) are presented in Fig. 6 and Fig. 7 [18], [19],
respectively. These indicate the quality of the data in each
pixel.

Using this compression procedure, it was possible to
reduce the temperature matrix from 800MB to 9MB - that
is 98.88% of compression. To reconstruct the tempera-
ture matrix it was necessary to store the following sixteen
matrices:

« Initial heating phase temperatures;

« Four matrices with the coefficients of the heating phase;

o R2 and RMSE correlation matrices of the heating phase;

o Maximum temperatures and their frames, marking the

end of the heating and the beginning of the cooling
phase;

« Four matrices with the coefficients of the cooling phase;

« R2 and RMSE correlation matrices of the cooling phase;

« Final temperatures.

Being in a noisy measurement, there is an expected error
between the reconstructed temperature matrix (7g) and the
raw data (7p).
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FIGURE 8. Flowchart of the sample detection procedure.

Another important point to consider is the physical mean-
ing of the parameter adjustment because, unlike TSR where
the polynomial adjustment is random, the model proposed
here considers the restrictions of the physical phenomenon,
hence following the laws of heat transfer and thermodynam-
ics. It is possible to verify the similarity between Newton’s
Law of Cooling in Eq. 1 and the adjustment with the sum of
the exponential model in Eq. 2:

(t—19)

T=T,+To—Ty)e =, 2

where T is the system temperature, T, is the ambient temper-
ature, Ty is the temperature at time ¢t = ty and t is the time
constant.

B. EDGE DETECTION OF THE SAMPLE

Given a thermographic image, if the edges of the sample
could be identified and the background cropped, it could
reduce the matrix size and improve the image processing
time. In the analysis process, segmentation is usually used
to detect discontinuities and constant characteristics. Thresh-
olding, region grouping, and edge detection are techniques
used in segmentation [20]-[22].

Fig. 8 shows the flowchart of how this segmentation is

done. The procedure consists of the following steps:

o First, a AT matrix is calculated, by subtracting the min-
imum from the maximum temperature for each pixel.
Remember that both matrices are already available after
the compression procedure (Subsection III-A);

o Subsequently, a linear transformation (local threshold-
ing) is applied, which is basically the difference between
the normalized AT matrix and the threshold (a value
between 0 and 1). The value for this study case was 0.6.
The result of this difference is a binary image;

o The product of this binary image and the temperature
matrix results in a matrix of temperatures without back-
ground, where only the sample data is kept for analysis.

To illustrate the result (Fig. 9), Canny edge detector was

applied in the binary image.

C. THERMAL CONTRAST

Thermal Contrast (TC) is the technique to find the maximum
temperature difference between defective and non-defective
regions [23]. In our algorithm, it is proposed to normal-
ize the pixels independently. By applying this normalization
and finding the minimal and maximal temperature in each
frame, two curves are found (Fig. 10). Basically, they are two
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FIGURE 9. Detected edges of the sample.
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FIGURE 10. Normalized maximum and minimum temperature curves.
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FIGURE 11. Maximum thermal contrast using the minimum curve.

vectors: one with the maximal and the other with minimal
temperature of the sample in each frame.

The next step is to find out the maximum thermal contrast
by the difference between the minimum curve and each pixel
of the image ( Fig. 11). It is possible to evaluate the contrast
using the maximum curve (Fig. 12), however, in this case,
it results in a poor image and it was discarted.
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FIGURE 13. Histogram of the maximum contrast between the minimum
curve variation and each pixel of the image with.

The image in Fig. 11 has the following histogram (Fig. 13),
excluding the background zeros. Due to its similarity to a
normal distribution, it was proposed to crop it in 99.87%
pixels to enhance the contrast. The procedure computes the
mean value of the entire matrix (1) and the standard devi-
ation (o), cropping them at p & 30. As a result, the image
in Fig. 14 shows the maximum thermal contrast using the
minimal curve as reference, highlighting the contrast in the
range (1 £ 30).

D. THERMAL AMPLITUDE

Another thermal indicator of a defect proposed for this
algorithm is the difference between maximum and minimum
temperature of each pixel. It was already used for sam-
ple detection (Subsection III-B). Fig. 15 shows this matrix,
already cropped at (u £ 30) to highlight the contrast. The
result is quite accurate and it is very simple to implement.

E. TIME CONSTANT
Similar to the TSR technique, images can be generated with
the coefficients from the fitted model (Eq. 1).
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FIGURE 14. Maximum thermal contrast image cropped at (1 + 30).
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FIGURE 15. Maximum Thermal Amplitude image cropped at (1 + 30).
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FIGURE 16. Time constant B in the cooling phase cropped at (1 + 30).

By analyzing Fig. 16 and Fig. 17, it should be noted that the
constant D is dominant, having an order of magnitude greater
than seven times the constant B. Therefore, the matrix D is
used. Another relevant factor is that the defects probably have
a time constant greater or less than the surrounding region.
These figures are also highlighting the contrast enhancement
in the range (u &+ 30).
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FIGURE 17. Time constant D in the cooling phase cropped at (1 + 30).
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FIGURE 18. Heat flow algorithm for defect edge detection.

F. DEFECT EDGE DETECTION BY HEAT FLOW
In the literature, the use of heat flow for edge detection uses
the concept of anisotropic heat diffusion, where the Laplacian
of the temperature is used as indicator [24], [25]. In this algo-
rithm, it is proposed to use the concept of heat conduction,
where its flow is calculated by the Fourier’s law:
|: aT oT }
q=—kAVT = —kA.|—, —|. 3)
dx  dy

where k is the thermal conductivity of the material and A is
the section area. In this study, the gradient was solved by an
approximate finite difference method without any correction
of perspective or image distortion.

The proposed edge detector is based on the principle that
the conduction heat flow changes its direction in discontinu-
ities. This means that at the edges of the defects, heat flow
should change its direction. This could reflect a geometry
change in the contour region of the defect or any change
in the composition or structure of the material. In our case,
in which holes were made artificially (Tab. 1), a singularity
happens at the edge, changing abruptly the area (A) and, con-
sequently, the heat flow (g). Within the faulty region, the heat
flow distribution should be more continuous, symmetrical,
forming flow lines with a more uniform variation in a given
direction. At the edges, however, abrupt alternations of direc-
tion characterize a diffuse region of heat flow. Fig. 19 shows
the heat flow vectors of the sample. The sample and defects
borders, together with a close up on Fault 02 were added only
to illustrate the concept. The magnitudes are proportional to
the sizes of the arrows and the inclinations show the heat flow
angles.

Fig. 18 shows the flowchart of the calculus, where a gra-
dient is computed in the temperature image, providing the
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FIGURE 20. Detection of edge of the defects by the proposed algorithm.

modulus and the angle of the conduction heat flow in the
image. Mathematically, the direction change of the heat flow
is detected through the derivative of the angle. The derivatives
are thresholded, thus generating a binary image to which a
Canny edge detector is applied. Fig. 20 shows the output of
the edge detection step.

IV. ALGORITHM RESULTS AND VALIDATION

The proposed algorithm combines all indicators in one RGB
figure. Fig. 21 shows the output image of the algorithm. When
all indicators converge in a certain area its color tends to
white.

Two consolidated techniques were used as baselines for
the same experiment: an advanced TSR technique and a
thermogram

Thermograms are thermal images that display the amount
of infrared energy emitted, transmitted, and reflected by an
object. We used the FLIR®Atlas SDK for MATLAB®) to
convert the thermal video into temperature matrices. A skilled
operator analysed the thermal video and chose the frame
displayed in Fig. 22 as the best.
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FIGURE 23. Resultant Image of the TSR technique with a octic polynomial.

Roche et al. [26] proposed a method to create a unique
RGB image using TSR and its result is compared with other
techniques: Pulse Phase Thermography (PPT), Principal
Component Thermography (PCT) and High-Order Statistics
(HOS). The results show that the TSR composite image is the
best. The same procedure described in that paper was applied
here and the result is shown in Fig. 23. It is composed by the
trio of coefficient images (5, 6 and 7) of the polynomial of
degree 7, the same applied in the original paper.
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Using the same criteria of comparison adopted in
Roche et al. [26], the algorithm proposed in this paper has
higher contrast, better sensitivity to the defect depths and
lower noise. The resultant image is quite direct and clean,
filtering even the fibers of the CFRP tube.

V. CONCLUSION
The developed algorithm was based on the physical concepts

of heat transfer and took some ideas from: the Thermo-
graphic Signal Reconstruction (TSR) and Thermal Contrast
(TC) techniques. The use of Newton’s Cooling Law equation
reaches almost 99% compression of the data. Comparing to
the state of the art, the TSR technique normally uses more
than seven parameters to compress the data. It takes the
logarithm on both axes and then fits a polynomial, losing
completely the physical meaning of the parameters. In the
proposed compression method, each parameter maintains its
meaning. A further innovation of the algorithm was the use of
the concept of change in direction of the heat flow to delimit
the edges of the defects, where the borders of the defects are
plotted with a remarkable accuracy as shown in Fig. 20.

Other concepts such as the time constant of the heating
and cooling phase, the concept of maximum thermal contrast
and thermal amplitude were utilized. All these indicators
were used to build an unique image. As described, before
each indicator is inserted into the RGB channels, all data are
normalized and cropped outside the range of (i« &+ 30). This
procedure computes the mean value of the entire matrix (1)
and the standard deviation (o). The idea is take 99.87% of a
normal distribution using the range 30 and crop them at this
limit.

To summarize, the main advantages provided by the
algorithm are:

« Use of the concept of change in direction of the heat flow
to delimit the edges of the regions of interest (where the
defects are probably located). It is a new approach and
results in Fig. 20, where the borders of the defects are
plotted with a remarkable accuracy;

« Data compression: Newton’s law of cooling was used
as the basis of the phenomenon and a compression ratio
of 99 % was obtained. It uses only 4 parameters as shown
in Eq. 1, where the other techniques normally use more
than 7 parameters;

o Compression of the heating phase data (which are
neglected by the other techniques);

« Object segmentation between the sample and the image
background;

o Indicator 1 (Red channel) which receives the maximum
thermal contrast, as described in subsection III-C and
shown in Fig. 14;

o Indicator 2 (Green channel) which corresponds to
the maximum thermal amplitude (subsection III-D) as
shown in Fig. 15;

o Indicator 3 (Blue channel) which receives the dominant
time constant, as discussed in subsection III-E and
illustrated in Fig. 17;
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« Finally, the edges of the defects were added to the
resulting image (Fig. 21), reducing the subjectivity of
the operator and improving the effectiveness of this
thermographic technique;

o One important advantage of the proposed algorithm,
compared to the state of the art, is that it filters the fibers
of the tube and highlights only the defects.

In addition to these advantages, the algorithm also has
some limitations:

o It requires some adjustment by the operator - e.g.,
the local threshold;

o The quality of the radiometric videos influences the
performance of the algorithm: for example, the ambient
conditions and the characteristics of the heating process;

« It is more suitable for low conductivity materials.

Despite all the advantages presented and the good results
obtained, the presented results show that the technique still
needs future improvements, in order to automate the thresh-
old adjustment and validate it for a wider range of materials
and defects.
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